struct dat { struct asd { u16 index; u16 icon_id; u16 mp_cost; u16 unknown; u16 targets; u8 name[32] | encoding('sjis') str; // The encoding actually depends on ROM region u8 description[256] | encoding('sjis') str; // ^ Ditto, we can't express this (we need parser options) u8 padding[726] nul; } ability[until (false)]; }; // # Instructions // // Instructions are variable-length with minimum size of 16 bits and maximum size of 128 bits[1]. // They are encoded with the following schema `5:name 2:n (16 * 2^n - 7):modifiers`, where `name` specifies the // instruction name and `n` specifies the total width of the instruction in bits with the formula `16 * 2^n`. // // Here's a table that shows how `n` maps to the instruction size: // n | instruction size in bits // 0 | 16 // 1 | 32 // 2 | 64 // 3 | 128 // // In the list below the notation for instruction and its modifiers is `NAME<1:arg1, 1:arg2> [STACK1] (STACK2)` // where `NAME` is the name of instruction, and inside the `<>` brackets are the modifiers for the instruction. // The optional number before the modifier tells the modifier size in bits, if omitted rest of the bits are used. // Inside `[]` brackets are the arguments that will be popped from the stack. `()` parenthesis are used instead, // if the stack argument is optional. // // List of instructions: // Name | Hex | Description // VERSION | 0x00 | Indicates the version of this bytecode. // REG | 0x01 | Allocates a new register. // * * If `len` is not zero, the next `len` bytes will be stored in this register. // PUSH | 0x02 | Pushes `v` to the stack. // PUSHR | 0x03 | Pushes the contents of register at index `R` to the stack. // STORE [v] | 0x04 | Stores `v` into register at index `R`. // OP [...] | 0x05 | Performs operation specified by the `op`, and pushes the result to the stack. // QUEUE (...) | 0x06 | Queues next `len` bytes for execution for the next `IO` instruction. // * * The code is executed before or after `IO` instruction, depending whether VM is packing or unpacking. // IO [R] (...) | 0x07 | Unpacking: Reads data from external VM input (usually a file) to register at index `R`. // * * Packing: Writes data to external VM output (usually a file) from register at index `R`. // * * `sz` is the size of the element in bits. // * * Rest of the stack is the number of elements, if empty, the elements to read/write is 1. // EXEC (...) | 0x08 | Executes instructions stored in register at index `R`. // * * Rest of the stack is the number of times to execute, if empty, execution happens only once. // CALL (...) | 0x09 | Calls a function. The name of the function is stored in register at index `R`. // JMP | 0x0A | Jumps to the `off` (in bytes). // JMPIF [v] | 0x0B | Performs `JMP`, if `v` is true. // STRUCT [R2] | 0x0C | Describes register at index `R` as struct structure. Register at index `R2` contains the name of the struct. // SELECT | 0x0D | Describes register at index `R` as select structure. // FIELD (...) | 0x0E | Links field to last structure. Register at index `R` contains the name of the field. // * * Rest of the stack contains register indices for registers that are instances of this field. // BSZ [sz] | 0x0F | Describes last field as a primitive field. `s` describes whether the field is signed. `v` describes how the // * * field should be represented. `sz` contains the size of field in bits. // REF | 0x10 | Describes field as a substructure. Register at index `R` contains the structure definition. // FDIMENSION | 0x11 | Adds fixed dimension to a field. `sz` indicates the size of the dimension. // VDIMENSION | 0x12 | Adds variable length dimension to a field. // ENUM | 0x13 | Links field to a enum // // List of operations for the `OP` instruction: // Name | Hex | Argc | Description // UNM | 0x00 | 1 | Unary minus operation `-r1`. // LNOT | 0x01 | 1 | Logical not operation `!r1`. // BNOT | 0x02 | 1 | Bitwise not operation `~r1`. // MUL | 0x03 | 2 | Multiplication operation `r1 * r2`. // DIV | 0x04 | 2 | Division operation `r1 * r2`. // MOD | 0x05 | 2 | Modulo operation `r1 % r2`. // ADD | 0x06 | 2 | Addition operation `r1 + r2`. // SUB | 0x07 | 2 | Substraction operation `r1 - r2`. // SHIFTL | 0x08 | 2 | Left shift operation `r1 << r2`. // SHIFTR | 0x09 | 2 | Right shift operation `r1 >> r2`. // LESS | 0x0A | 2 | Less than operation `r1 < r2`. // LESSEQ | 0x0B | 2 | Less or equal operation `r1 <= r2`. // EQ | 0x0C | 2 | Equal operation `r1 == r2`. // NOTEQ | 0x0D | 2 | Not equal operation `r1 != r2`. // BAND | 0x0E | 2 | Bitwise and operation `r1 & r2`. // BOR | 0x0F | 2 | Bitwise or operation `r1 | r2`. // BXOR | 0x10 | 2 | Bitwise xor operation `r1 ^ r2`. // LAND | 0x11 | 2 | Logical and operation `r1 && r2`. // LOR | 0x12 | 2 | Logical or operation `r1 || r2`. // CTERNARY | 0x13 | 3 | Conditional ternary operation `r1 ? r2 : r3` // SUBSCRIPT | 0x14 | 2 | Subscript operation `r1[r2]` // // List of visuals for the `PIO` instruction: // Name | Hex | Representation // NUL | 0x00 | None // DEC | 0x01 | Decimal // HEX | 0x02 | Hexdecimal // STR | 0x03 | String // FLT | 0x04 | Float