summaryrefslogtreecommitdiff
path: root/jni/ruby/ext/bigdecimal/lib/bigdecimal/newton.rb
diff options
context:
space:
mode:
Diffstat (limited to 'jni/ruby/ext/bigdecimal/lib/bigdecimal/newton.rb')
-rw-r--r--jni/ruby/ext/bigdecimal/lib/bigdecimal/newton.rb79
1 files changed, 79 insertions, 0 deletions
diff --git a/jni/ruby/ext/bigdecimal/lib/bigdecimal/newton.rb b/jni/ruby/ext/bigdecimal/lib/bigdecimal/newton.rb
new file mode 100644
index 0000000..db1a5ad
--- /dev/null
+++ b/jni/ruby/ext/bigdecimal/lib/bigdecimal/newton.rb
@@ -0,0 +1,79 @@
+require "bigdecimal/ludcmp"
+require "bigdecimal/jacobian"
+
+#
+# newton.rb
+#
+# Solves the nonlinear algebraic equation system f = 0 by Newton's method.
+# This program is not dependent on BigDecimal.
+#
+# To call:
+# n = nlsolve(f,x)
+# where n is the number of iterations required,
+# x is the initial value vector
+# f is an Object which is used to compute the values of the equations to be solved.
+# It must provide the following methods:
+#
+# f.values(x):: returns the values of all functions at x
+#
+# f.zero:: returns 0.0
+# f.one:: returns 1.0
+# f.two:: returns 2.0
+# f.ten:: returns 10.0
+#
+# f.eps:: returns the convergence criterion (epsilon value) used to determine whether two values are considered equal. If |a-b| < epsilon, the two values are considered equal.
+#
+# On exit, x is the solution vector.
+#
+module Newton
+ include LUSolve
+ include Jacobian
+ module_function
+
+ def norm(fv,zero=0.0) # :nodoc:
+ s = zero
+ n = fv.size
+ for i in 0...n do
+ s += fv[i]*fv[i]
+ end
+ s
+ end
+
+ # See also Newton
+ def nlsolve(f,x)
+ nRetry = 0
+ n = x.size
+
+ f0 = f.values(x)
+ zero = f.zero
+ one = f.one
+ two = f.two
+ p5 = one/two
+ d = norm(f0,zero)
+ minfact = f.ten*f.ten*f.ten
+ minfact = one/minfact
+ e = f.eps
+ while d >= e do
+ nRetry += 1
+ # Not yet converged. => Compute Jacobian matrix
+ dfdx = jacobian(f,f0,x)
+ # Solve dfdx*dx = -f0 to estimate dx
+ dx = lusolve(dfdx,f0,ludecomp(dfdx,n,zero,one),zero)
+ fact = two
+ xs = x.dup
+ begin
+ fact *= p5
+ if fact < minfact then
+ raise "Failed to reduce function values."
+ end
+ for i in 0...n do
+ x[i] = xs[i] - dx[i]*fact
+ end
+ f0 = f.values(x)
+ dn = norm(f0,zero)
+ end while(dn>=d)
+ d = dn
+ end
+ nRetry
+ end
+end