From fcbf63e62c627deae76c1b8cb8c0876c536ed811 Mon Sep 17 00:00:00 2001 From: Jari Vetoniemi Date: Mon, 16 Mar 2020 18:49:26 +0900 Subject: Fresh start --- jni/ruby/array.c | 5811 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 5811 insertions(+) create mode 100644 jni/ruby/array.c (limited to 'jni/ruby/array.c') diff --git a/jni/ruby/array.c b/jni/ruby/array.c new file mode 100644 index 0000000..baa7193 --- /dev/null +++ b/jni/ruby/array.c @@ -0,0 +1,5811 @@ +/********************************************************************** + + array.c - + + $Author: nagachika $ + created at: Fri Aug 6 09:46:12 JST 1993 + + Copyright (C) 1993-2007 Yukihiro Matsumoto + Copyright (C) 2000 Network Applied Communication Laboratory, Inc. + Copyright (C) 2000 Information-technology Promotion Agency, Japan + +**********************************************************************/ + +#include "internal.h" +#include "ruby/util.h" +#include "ruby/st.h" +#include "probes.h" +#include "id.h" + +#ifndef ARRAY_DEBUG +# define NDEBUG +#endif +#include + +VALUE rb_cArray; + +static ID id_cmp, id_div, id_power; + +#define ARY_DEFAULT_SIZE 16 +#define ARY_MAX_SIZE (LONG_MAX / (int)sizeof(VALUE)) + +# define ARY_SHARED_P(ary) \ + (assert(!FL_TEST((ary), ELTS_SHARED) || !FL_TEST((ary), RARRAY_EMBED_FLAG)), \ + FL_TEST((ary),ELTS_SHARED)!=0) +# define ARY_EMBED_P(ary) \ + (assert(!FL_TEST((ary), ELTS_SHARED) || !FL_TEST((ary), RARRAY_EMBED_FLAG)), \ + FL_TEST((ary), RARRAY_EMBED_FLAG)!=0) + +#define ARY_HEAP_PTR(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.ptr) +#define ARY_HEAP_LEN(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.len) +#define ARY_EMBED_PTR(a) (assert(ARY_EMBED_P(a)), RARRAY(a)->as.ary) +#define ARY_EMBED_LEN(a) \ + (assert(ARY_EMBED_P(a)), \ + (long)((RBASIC(a)->flags >> RARRAY_EMBED_LEN_SHIFT) & \ + (RARRAY_EMBED_LEN_MASK >> RARRAY_EMBED_LEN_SHIFT))) +#define ARY_HEAP_SIZE(a) (assert(!ARY_EMBED_P(a)), assert(ARY_OWNS_HEAP_P(a)), RARRAY(a)->as.heap.aux.capa * sizeof(VALUE)) + +#define ARY_OWNS_HEAP_P(a) (!FL_TEST((a), ELTS_SHARED|RARRAY_EMBED_FLAG)) +#define FL_SET_EMBED(a) do { \ + assert(!ARY_SHARED_P(a)); \ + FL_SET((a), RARRAY_EMBED_FLAG); \ +} while (0) +#define FL_UNSET_EMBED(ary) FL_UNSET((ary), RARRAY_EMBED_FLAG|RARRAY_EMBED_LEN_MASK) +#define FL_SET_SHARED(ary) do { \ + assert(!ARY_EMBED_P(ary)); \ + FL_SET((ary), ELTS_SHARED); \ +} while (0) +#define FL_UNSET_SHARED(ary) FL_UNSET((ary), ELTS_SHARED) + +#define ARY_SET_PTR(ary, p) do { \ + assert(!ARY_EMBED_P(ary)); \ + assert(!OBJ_FROZEN(ary)); \ + RARRAY(ary)->as.heap.ptr = (p); \ +} while (0) +#define ARY_SET_EMBED_LEN(ary, n) do { \ + long tmp_n = (n); \ + assert(ARY_EMBED_P(ary)); \ + assert(!OBJ_FROZEN(ary)); \ + RBASIC(ary)->flags &= ~RARRAY_EMBED_LEN_MASK; \ + RBASIC(ary)->flags |= (tmp_n) << RARRAY_EMBED_LEN_SHIFT; \ +} while (0) +#define ARY_SET_HEAP_LEN(ary, n) do { \ + assert(!ARY_EMBED_P(ary)); \ + RARRAY(ary)->as.heap.len = (n); \ +} while (0) +#define ARY_SET_LEN(ary, n) do { \ + if (ARY_EMBED_P(ary)) { \ + ARY_SET_EMBED_LEN((ary), (n)); \ + } \ + else { \ + ARY_SET_HEAP_LEN((ary), (n)); \ + } \ + assert(RARRAY_LEN(ary) == (n)); \ +} while (0) +#define ARY_INCREASE_PTR(ary, n) do { \ + assert(!ARY_EMBED_P(ary)); \ + assert(!OBJ_FROZEN(ary)); \ + RARRAY(ary)->as.heap.ptr += (n); \ +} while (0) +#define ARY_INCREASE_LEN(ary, n) do { \ + assert(!OBJ_FROZEN(ary)); \ + if (ARY_EMBED_P(ary)) { \ + ARY_SET_EMBED_LEN((ary), RARRAY_LEN(ary)+(n)); \ + } \ + else { \ + RARRAY(ary)->as.heap.len += (n); \ + } \ +} while (0) + +#define ARY_CAPA(ary) (ARY_EMBED_P(ary) ? RARRAY_EMBED_LEN_MAX : \ + ARY_SHARED_ROOT_P(ary) ? RARRAY_LEN(ary) : RARRAY(ary)->as.heap.aux.capa) +#define ARY_SET_CAPA(ary, n) do { \ + assert(!ARY_EMBED_P(ary)); \ + assert(!ARY_SHARED_P(ary)); \ + assert(!OBJ_FROZEN(ary)); \ + RARRAY(ary)->as.heap.aux.capa = (n); \ +} while (0) + +#define ARY_SHARED(ary) (assert(ARY_SHARED_P(ary)), RARRAY(ary)->as.heap.aux.shared) +#define ARY_SET_SHARED(ary, value) do { \ + const VALUE _ary_ = (ary); \ + const VALUE _value_ = (value); \ + assert(!ARY_EMBED_P(_ary_)); \ + assert(ARY_SHARED_P(_ary_)); \ + assert(ARY_SHARED_ROOT_P(_value_)); \ + RB_OBJ_WRITE(_ary_, &RARRAY(_ary_)->as.heap.aux.shared, _value_); \ +} while (0) +#define RARRAY_SHARED_ROOT_FLAG FL_USER5 +#define ARY_SHARED_ROOT_P(ary) (FL_TEST((ary), RARRAY_SHARED_ROOT_FLAG)) +#define ARY_SHARED_NUM(ary) \ + (assert(ARY_SHARED_ROOT_P(ary)), RARRAY(ary)->as.heap.aux.capa) +#define ARY_SHARED_OCCUPIED(ary) (ARY_SHARED_NUM(ary) == 1) +#define ARY_SET_SHARED_NUM(ary, value) do { \ + assert(ARY_SHARED_ROOT_P(ary)); \ + RARRAY(ary)->as.heap.aux.capa = (value); \ +} while (0) +#define FL_SET_SHARED_ROOT(ary) do { \ + assert(!ARY_EMBED_P(ary)); \ + FL_SET((ary), RARRAY_SHARED_ROOT_FLAG); \ +} while (0) + +#define ARY_SET(a, i, v) RARRAY_ASET((assert(!ARY_SHARED_P(a)), (a)), (i), (v)) + +void +rb_mem_clear(register VALUE *mem, register long size) +{ + while (size--) { + *mem++ = Qnil; + } +} + +static void +ary_mem_clear(VALUE ary, long beg, long size) +{ + RARRAY_PTR_USE(ary, ptr, { + rb_mem_clear(ptr + beg, size); + }); +} + +static inline void +memfill(register VALUE *mem, register long size, register VALUE val) +{ + while (size--) { + *mem++ = val; + } +} + +static void +ary_memfill(VALUE ary, long beg, long size, VALUE val) +{ + RARRAY_PTR_USE(ary, ptr, { + memfill(ptr + beg, size, val); + RB_OBJ_WRITTEN(ary, Qundef, val); + }); +} + +static void +ary_memcpy0(VALUE ary, long beg, long argc, const VALUE *argv, VALUE buff_owner_ary) +{ +#if 1 + assert(!ARY_SHARED_P(buff_owner_ary)); + + if (argc > (int)(128/sizeof(VALUE)) /* is magic number (cache line size) */) { + rb_gc_writebarrier_remember(buff_owner_ary); + RARRAY_PTR_USE(ary, ptr, { + MEMCPY(ptr+beg, argv, VALUE, argc); + }); + } + else { + int i; + RARRAY_PTR_USE(ary, ptr, { + for (i=0; i RARRAY_EMBED_LEN_MAX) { + if (ARY_EMBED_P(ary)) { + long len = ARY_EMBED_LEN(ary); + VALUE *ptr = ALLOC_N(VALUE, (capacity)); + MEMCPY(ptr, ARY_EMBED_PTR(ary), VALUE, len); + FL_UNSET_EMBED(ary); + ARY_SET_PTR(ary, ptr); + ARY_SET_HEAP_LEN(ary, len); + } + else { + SIZED_REALLOC_N(RARRAY(ary)->as.heap.ptr, VALUE, capacity, RARRAY(ary)->as.heap.aux.capa); + } + ARY_SET_CAPA(ary, (capacity)); + } + else { + if (!ARY_EMBED_P(ary)) { + long len = RARRAY_LEN(ary); + const VALUE *ptr = RARRAY_CONST_PTR(ary); + + if (len > capacity) len = capacity; + MEMCPY((VALUE *)RARRAY(ary)->as.ary, ptr, VALUE, len); + FL_SET_EMBED(ary); + ARY_SET_LEN(ary, len); + ruby_xfree((VALUE *)ptr); + } + } +} + +static inline void +ary_shrink_capa(VALUE ary) +{ + long capacity = ARY_HEAP_LEN(ary); + long old_capa = RARRAY(ary)->as.heap.aux.capa; + assert(!ARY_SHARED_P(ary)); + assert(old_capa >= capacity); + if (old_capa > capacity) + REALLOC_N(RARRAY(ary)->as.heap.ptr, VALUE, capacity); +} + +static void +ary_double_capa(VALUE ary, long min) +{ + long new_capa = ARY_CAPA(ary) / 2; + + if (new_capa < ARY_DEFAULT_SIZE) { + new_capa = ARY_DEFAULT_SIZE; + } + if (new_capa >= ARY_MAX_SIZE - min) { + new_capa = (ARY_MAX_SIZE - min) / 2; + } + new_capa += min; + ary_resize_capa(ary, new_capa); +} + +static void +rb_ary_decrement_share(VALUE shared) +{ + if (shared) { + long num = ARY_SHARED_NUM(shared) - 1; + if (num == 0) { + rb_ary_free(shared); + rb_gc_force_recycle(shared); + } + else if (num > 0) { + ARY_SET_SHARED_NUM(shared, num); + } + } +} + +static void +rb_ary_unshare(VALUE ary) +{ + VALUE shared = RARRAY(ary)->as.heap.aux.shared; + rb_ary_decrement_share(shared); + FL_UNSET_SHARED(ary); +} + +static inline void +rb_ary_unshare_safe(VALUE ary) +{ + if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) { + rb_ary_unshare(ary); + } +} + +static VALUE +rb_ary_increment_share(VALUE shared) +{ + long num = ARY_SHARED_NUM(shared); + if (num >= 0) { + ARY_SET_SHARED_NUM(shared, num + 1); + } + return shared; +} + +static void +rb_ary_set_shared(VALUE ary, VALUE shared) +{ + rb_ary_increment_share(shared); + FL_SET_SHARED(ary); + ARY_SET_SHARED(ary, shared); +} + +static inline void +rb_ary_modify_check(VALUE ary) +{ + rb_check_frozen(ary); +} + +void +rb_ary_modify(VALUE ary) +{ + rb_ary_modify_check(ary); + if (ARY_SHARED_P(ary)) { + long shared_len, len = RARRAY_LEN(ary); + VALUE shared = ARY_SHARED(ary); + if (len <= RARRAY_EMBED_LEN_MAX) { + const VALUE *ptr = ARY_HEAP_PTR(ary); + FL_UNSET_SHARED(ary); + FL_SET_EMBED(ary); + MEMCPY((VALUE *)ARY_EMBED_PTR(ary), ptr, VALUE, len); + rb_ary_decrement_share(shared); + ARY_SET_EMBED_LEN(ary, len); + } + else if (ARY_SHARED_OCCUPIED(shared) && len > ((shared_len = RARRAY_LEN(shared))>>1)) { + long shift = RARRAY_CONST_PTR(ary) - RARRAY_CONST_PTR(shared); + FL_UNSET_SHARED(ary); + ARY_SET_PTR(ary, RARRAY_CONST_PTR(shared)); + ARY_SET_CAPA(ary, shared_len); + RARRAY_PTR_USE(ary, ptr, { + MEMMOVE(ptr, ptr+shift, VALUE, len); + }); + FL_SET_EMBED(shared); + rb_ary_decrement_share(shared); + } + else { + VALUE *ptr = ALLOC_N(VALUE, len); + MEMCPY(ptr, RARRAY_CONST_PTR(ary), VALUE, len); + rb_ary_unshare(ary); + ARY_SET_CAPA(ary, len); + ARY_SET_PTR(ary, ptr); + } + + rb_gc_writebarrier_remember(ary); + } +} + +static VALUE +ary_ensure_room_for_push(VALUE ary, long add_len) +{ + long old_len = RARRAY_LEN(ary); + long new_len = old_len + add_len; + long capa; + + if (old_len > ARY_MAX_SIZE - add_len) { + rb_raise(rb_eIndexError, "index %ld too big", new_len); + } + if (ARY_SHARED_P(ary)) { + if (new_len > RARRAY_EMBED_LEN_MAX) { + VALUE shared = ARY_SHARED(ary); + if (ARY_SHARED_OCCUPIED(shared)) { + if (RARRAY_CONST_PTR(ary) - RARRAY_CONST_PTR(shared) + new_len <= RARRAY_LEN(shared)) { + rb_ary_modify_check(ary); + return shared; + } + else { + /* if array is shared, then it is likely it participate in push/shift pattern */ + rb_ary_modify(ary); + capa = ARY_CAPA(ary); + if (new_len > capa - (capa >> 6)) { + ary_double_capa(ary, new_len); + } + return ary; + } + } + } + } + rb_ary_modify(ary); + capa = ARY_CAPA(ary); + if (new_len > capa) { + ary_double_capa(ary, new_len); + } + + return ary; +} + +/* + * call-seq: + * ary.freeze -> ary + * + * Calls Object#freeze on +ary+ to prevent any further + * modification. A RuntimeError will be raised if a modification + * attempt is made. + * + */ + +VALUE +rb_ary_freeze(VALUE ary) +{ + return rb_obj_freeze(ary); +} + +/* + * call-seq: + * ary.frozen? -> true or false + * + * Return +true+ if this array is frozen (or temporarily frozen + * while being sorted). See also Object#frozen? + */ + +static VALUE +rb_ary_frozen_p(VALUE ary) +{ + if (OBJ_FROZEN(ary)) return Qtrue; + return Qfalse; +} + +/* This can be used to take a snapshot of an array (with + e.g. rb_ary_replace) and check later whether the array has been + modified from the snapshot. The snapshot is cheap, though if + something does modify the array it will pay the cost of copying + it. If Array#pop or Array#shift has been called, the array will + be still shared with the snapshot, but the array length will + differ. */ +VALUE +rb_ary_shared_with_p(VALUE ary1, VALUE ary2) +{ + if (!ARY_EMBED_P(ary1) && ARY_SHARED_P(ary1) && + !ARY_EMBED_P(ary2) && ARY_SHARED_P(ary2) && + RARRAY(ary1)->as.heap.aux.shared == RARRAY(ary2)->as.heap.aux.shared && + RARRAY(ary1)->as.heap.len == RARRAY(ary2)->as.heap.len) { + return Qtrue; + } + return Qfalse; +} + +static VALUE +ary_alloc(VALUE klass) +{ + NEWOBJ_OF(ary, struct RArray, klass, T_ARRAY | RARRAY_EMBED_FLAG | (RGENGC_WB_PROTECTED_ARRAY ? FL_WB_PROTECTED : 0)); + /* Created array is: + * FL_SET_EMBED((VALUE)ary); + * ARY_SET_EMBED_LEN((VALUE)ary, 0); + */ + return (VALUE)ary; +} + +static VALUE +empty_ary_alloc(VALUE klass) +{ + if (RUBY_DTRACE_ARRAY_CREATE_ENABLED()) { + RUBY_DTRACE_ARRAY_CREATE(0, rb_sourcefile(), rb_sourceline()); + } + + return ary_alloc(klass); +} + +static VALUE +ary_new(VALUE klass, long capa) +{ + VALUE ary,*ptr; + + if (capa < 0) { + rb_raise(rb_eArgError, "negative array size (or size too big)"); + } + if (capa > ARY_MAX_SIZE) { + rb_raise(rb_eArgError, "array size too big"); + } + + if (RUBY_DTRACE_ARRAY_CREATE_ENABLED()) { + RUBY_DTRACE_ARRAY_CREATE(capa, rb_sourcefile(), rb_sourceline()); + } + + ary = ary_alloc(klass); + if (capa > RARRAY_EMBED_LEN_MAX) { + ptr = ALLOC_N(VALUE, capa); + FL_UNSET_EMBED(ary); + ARY_SET_PTR(ary, ptr); + ARY_SET_CAPA(ary, capa); + ARY_SET_HEAP_LEN(ary, 0); + } + + return ary; +} + +VALUE +rb_ary_new_capa(long capa) +{ + return ary_new(rb_cArray, capa); +} + +VALUE +rb_ary_new(void) +{ + return rb_ary_new2(RARRAY_EMBED_LEN_MAX); +} + +VALUE +(rb_ary_new_from_args)(long n, ...) +{ + va_list ar; + VALUE ary; + long i; + + ary = rb_ary_new2(n); + + va_start(ar, n); + for (i=0; i 0 && elts) { + ary_memcpy(ary, 0, n, elts); + ARY_SET_LEN(ary, n); + } + + return ary; +} + +VALUE +rb_ary_tmp_new(long capa) +{ + return ary_new(0, capa); +} + +VALUE +rb_ary_tmp_new_fill(long capa) +{ + VALUE ary = ary_new(0, capa); + ary_memfill(ary, 0, capa, Qnil); + ARY_SET_LEN(ary, capa); + return ary; +} + +void +rb_ary_free(VALUE ary) +{ + if (ARY_OWNS_HEAP_P(ary)) { + ruby_sized_xfree((void *)ARY_HEAP_PTR(ary), ARY_HEAP_SIZE(ary)); + } +} + +RUBY_FUNC_EXPORTED size_t +rb_ary_memsize(VALUE ary) +{ + if (ARY_OWNS_HEAP_P(ary)) { + return RARRAY(ary)->as.heap.aux.capa * sizeof(VALUE); + } + else { + return 0; + } +} + +static inline void +ary_discard(VALUE ary) +{ + rb_ary_free(ary); + RBASIC(ary)->flags |= RARRAY_EMBED_FLAG; + RBASIC(ary)->flags &= ~RARRAY_EMBED_LEN_MASK; +} + +static VALUE +ary_make_shared(VALUE ary) +{ + assert(!ARY_EMBED_P(ary)); + if (ARY_SHARED_P(ary)) { + return ARY_SHARED(ary); + } + else if (ARY_SHARED_ROOT_P(ary)) { + return ary; + } + else if (OBJ_FROZEN(ary)) { + ary_shrink_capa(ary); + FL_SET_SHARED_ROOT(ary); + ARY_SET_SHARED_NUM(ary, 1); + return ary; + } + else { + long capa = ARY_CAPA(ary), len = RARRAY_LEN(ary); + NEWOBJ_OF(shared, struct RArray, 0, T_ARRAY | (RGENGC_WB_PROTECTED_ARRAY ? FL_WB_PROTECTED : 0)); + FL_UNSET_EMBED(shared); + + ARY_SET_LEN((VALUE)shared, capa); + ARY_SET_PTR((VALUE)shared, RARRAY_CONST_PTR(ary)); + ary_mem_clear((VALUE)shared, len, capa - len); + FL_SET_SHARED_ROOT(shared); + ARY_SET_SHARED_NUM((VALUE)shared, 1); + FL_SET_SHARED(ary); + ARY_SET_SHARED(ary, (VALUE)shared); + OBJ_FREEZE(shared); + return (VALUE)shared; + } +} + +static VALUE +ary_make_substitution(VALUE ary) +{ + long len = RARRAY_LEN(ary); + + if (len <= RARRAY_EMBED_LEN_MAX) { + VALUE subst = rb_ary_new2(len); + ary_memcpy(subst, 0, len, RARRAY_CONST_PTR(ary)); + ARY_SET_EMBED_LEN(subst, len); + return subst; + } + else { + return rb_ary_increment_share(ary_make_shared(ary)); + } +} + +VALUE +rb_assoc_new(VALUE car, VALUE cdr) +{ + return rb_ary_new3(2, car, cdr); +} + +static VALUE +to_ary(VALUE ary) +{ + return rb_convert_type(ary, T_ARRAY, "Array", "to_ary"); +} + +VALUE +rb_check_array_type(VALUE ary) +{ + return rb_check_convert_type(ary, T_ARRAY, "Array", "to_ary"); +} + +/* + * call-seq: + * Array.try_convert(obj) -> array or nil + * + * Tries to convert +obj+ into an array, using +to_ary+ method. Returns the + * converted array or +nil+ if +obj+ cannot be converted for any reason. + * This method can be used to check if an argument is an array. + * + * Array.try_convert([1]) #=> [1] + * Array.try_convert("1") #=> nil + * + * if tmp = Array.try_convert(arg) + * # the argument is an array + * elsif tmp = String.try_convert(arg) + * # the argument is a string + * end + * + */ + +static VALUE +rb_ary_s_try_convert(VALUE dummy, VALUE ary) +{ + return rb_check_array_type(ary); +} + +/* + * call-seq: + * Array.new(size=0, default=nil) + * Array.new(array) + * Array.new(size) {|index| block } + * + * Returns a new array. + * + * In the first form, if no arguments are sent, the new array will be empty. + * When a +size+ and an optional +default+ are sent, an array is created with + * +size+ copies of +default+. Take notice that all elements will reference the + * same object +default+. + * + * The second form creates a copy of the array passed as a parameter (the + * array is generated by calling to_ary on the parameter). + * + * first_array = ["Matz", "Guido"] + * + * second_array = Array.new(first_array) #=> ["Matz", "Guido"] + * + * first_array.equal? second_array #=> false + * + * In the last form, an array of the given size is created. Each element in + * this array is created by passing the element's index to the given block + * and storing the return value. + * + * Array.new(3){ |index| index ** 2 } + * # => [0, 1, 4] + * + * == Common gotchas + * + * When sending the second parameter, the same object will be used as the + * value for all the array elements: + * + * a = Array.new(2, Hash.new) + * # => [{}, {}] + * + * a[0]['cat'] = 'feline' + * a # => [{"cat"=>"feline"}, {"cat"=>"feline"}] + * + * a[1]['cat'] = 'Felix' + * a # => [{"cat"=>"Felix"}, {"cat"=>"Felix"}] + * + * Since all the Array elements store the same hash, changes to one of them + * will affect them all. + * + * If multiple copies are what you want, you should use the block + * version which uses the result of that block each time an element + * of the array needs to be initialized: + * + * a = Array.new(2) { Hash.new } + * a[0]['cat'] = 'feline' + * a # => [{"cat"=>"feline"}, {}] + * + */ + +static VALUE +rb_ary_initialize(int argc, VALUE *argv, VALUE ary) +{ + long len; + VALUE size, val; + + rb_ary_modify(ary); + if (argc == 0) { + if (ARY_OWNS_HEAP_P(ary) && RARRAY_CONST_PTR(ary) != 0) { + ruby_sized_xfree((void *)RARRAY_CONST_PTR(ary), ARY_HEAP_SIZE(ary)); + } + rb_ary_unshare_safe(ary); + FL_SET_EMBED(ary); + ARY_SET_EMBED_LEN(ary, 0); + if (rb_block_given_p()) { + rb_warning("given block not used"); + } + return ary; + } + rb_scan_args(argc, argv, "02", &size, &val); + if (argc == 1 && !FIXNUM_P(size)) { + val = rb_check_array_type(size); + if (!NIL_P(val)) { + rb_ary_replace(ary, val); + return ary; + } + } + + len = NUM2LONG(size); + /* NUM2LONG() may call size.to_int, ary can be frozen, modified, etc */ + if (len < 0) { + rb_raise(rb_eArgError, "negative array size"); + } + if (len > ARY_MAX_SIZE) { + rb_raise(rb_eArgError, "array size too big"); + } + /* recheck after argument conversion */ + rb_ary_modify(ary); + ary_resize_capa(ary, len); + if (rb_block_given_p()) { + long i; + + if (argc == 2) { + rb_warn("block supersedes default value argument"); + } + for (i=0; i [1, "a", /^A/] + * Array[ 1, 'a', /^A/ ] # => [1, "a", /^A/] + * [ 1, 'a', /^A/ ] # => [1, "a", /^A/] + */ + +static VALUE +rb_ary_s_create(int argc, VALUE *argv, VALUE klass) +{ + VALUE ary = ary_new(klass, argc); + if (argc > 0 && argv) { + ary_memcpy(ary, 0, argc, argv); + ARY_SET_LEN(ary, argc); + } + + return ary; +} + +void +rb_ary_store(VALUE ary, long idx, VALUE val) +{ + long len = RARRAY_LEN(ary); + + if (idx < 0) { + idx += len; + if (idx < 0) { + rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld", + idx - len, -len); + } + } + else if (idx >= ARY_MAX_SIZE) { + rb_raise(rb_eIndexError, "index %ld too big", idx); + } + + rb_ary_modify(ary); + if (idx >= ARY_CAPA(ary)) { + ary_double_capa(ary, idx); + } + if (idx > len) { + ary_mem_clear(ary, len, idx - len + 1); + } + + if (idx >= len) { + ARY_SET_LEN(ary, idx + 1); + } + ARY_SET(ary, idx, val); +} + +static VALUE +ary_make_partial(VALUE ary, VALUE klass, long offset, long len) +{ + assert(offset >= 0); + assert(len >= 0); + assert(offset+len <= RARRAY_LEN(ary)); + + if (len <= RARRAY_EMBED_LEN_MAX) { + VALUE result = ary_alloc(klass); + ary_memcpy(result, 0, len, RARRAY_CONST_PTR(ary) + offset); + ARY_SET_EMBED_LEN(result, len); + return result; + } + else { + VALUE shared, result = ary_alloc(klass); + FL_UNSET_EMBED(result); + + shared = ary_make_shared(ary); + ARY_SET_PTR(result, RARRAY_CONST_PTR(ary)); + ARY_SET_LEN(result, RARRAY_LEN(ary)); + rb_ary_set_shared(result, shared); + + ARY_INCREASE_PTR(result, offset); + ARY_SET_LEN(result, len); + return result; + } +} + +static VALUE +ary_make_shared_copy(VALUE ary) +{ + return ary_make_partial(ary, rb_obj_class(ary), 0, RARRAY_LEN(ary)); +} + +enum ary_take_pos_flags +{ + ARY_TAKE_FIRST = 0, + ARY_TAKE_LAST = 1 +}; + +static VALUE +ary_take_first_or_last(int argc, const VALUE *argv, VALUE ary, enum ary_take_pos_flags last) +{ + VALUE nv; + long n; + long len; + long offset = 0; + + rb_scan_args(argc, argv, "1", &nv); + n = NUM2LONG(nv); + len = RARRAY_LEN(ary); + if (n > len) { + n = len; + } + else if (n < 0) { + rb_raise(rb_eArgError, "negative array size"); + } + if (last) { + offset = len - n; + } + return ary_make_partial(ary, rb_cArray, offset, n); +} + +/* + * call-seq: + * ary << obj -> ary + * + * Append---Pushes the given object on to the end of this array. This + * expression returns the array itself, so several appends + * may be chained together. + * + * [ 1, 2 ] << "c" << "d" << [ 3, 4 ] + * #=> [ 1, 2, "c", "d", [ 3, 4 ] ] + * + */ + +VALUE +rb_ary_push(VALUE ary, VALUE item) +{ + long idx = RARRAY_LEN(ary); + VALUE target_ary = ary_ensure_room_for_push(ary, 1); + RARRAY_PTR_USE(ary, ptr, { + RB_OBJ_WRITE(target_ary, &ptr[idx], item); + }); + ARY_SET_LEN(ary, idx + 1); + return ary; +} + +VALUE +rb_ary_cat(VALUE ary, const VALUE *argv, long len) +{ + long oldlen = RARRAY_LEN(ary); + VALUE target_ary = ary_ensure_room_for_push(ary, len); + ary_memcpy0(ary, oldlen, len, argv, target_ary); + ARY_SET_LEN(ary, oldlen + len); + return ary; +} + +/* + * call-seq: + * ary.push(obj, ... ) -> ary + * + * Append --- Pushes the given object(s) on to the end of this array. This + * expression returns the array itself, so several appends + * may be chained together. See also Array#pop for the opposite + * effect. + * + * a = [ "a", "b", "c" ] + * a.push("d", "e", "f") + * #=> ["a", "b", "c", "d", "e", "f"] + * [1, 2, 3,].push(4).push(5) + * #=> [1, 2, 3, 4, 5] + */ + +static VALUE +rb_ary_push_m(int argc, VALUE *argv, VALUE ary) +{ + return rb_ary_cat(ary, argv, argc); +} + +VALUE +rb_ary_pop(VALUE ary) +{ + long n; + rb_ary_modify_check(ary); + n = RARRAY_LEN(ary); + if (n == 0) return Qnil; + if (ARY_OWNS_HEAP_P(ary) && + n * 3 < ARY_CAPA(ary) && + ARY_CAPA(ary) > ARY_DEFAULT_SIZE) + { + ary_resize_capa(ary, n * 2); + } + --n; + ARY_SET_LEN(ary, n); + return RARRAY_AREF(ary, n); +} + +/* + * call-seq: + * ary.pop -> obj or nil + * ary.pop(n) -> new_ary + * + * Removes the last element from +self+ and returns it, or + * +nil+ if the array is empty. + * + * If a number +n+ is given, returns an array of the last +n+ elements + * (or less) just like array.slice!(-n, n) does. See also + * Array#push for the opposite effect. + * + * a = [ "a", "b", "c", "d" ] + * a.pop #=> "d" + * a.pop(2) #=> ["b", "c"] + * a #=> ["a"] + */ + +static VALUE +rb_ary_pop_m(int argc, VALUE *argv, VALUE ary) +{ + VALUE result; + + if (argc == 0) { + return rb_ary_pop(ary); + } + + rb_ary_modify_check(ary); + result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST); + ARY_INCREASE_LEN(ary, -RARRAY_LEN(result)); + return result; +} + +VALUE +rb_ary_shift(VALUE ary) +{ + VALUE top; + long len = RARRAY_LEN(ary); + + rb_ary_modify_check(ary); + if (len == 0) return Qnil; + top = RARRAY_AREF(ary, 0); + if (!ARY_SHARED_P(ary)) { + if (len < ARY_DEFAULT_SIZE) { + RARRAY_PTR_USE(ary, ptr, { + MEMMOVE(ptr, ptr+1, VALUE, len-1); + }); /* WB: no new reference */ + ARY_INCREASE_LEN(ary, -1); + return top; + } + assert(!ARY_EMBED_P(ary)); /* ARY_EMBED_LEN_MAX < ARY_DEFAULT_SIZE */ + + ARY_SET(ary, 0, Qnil); + ary_make_shared(ary); + } + else if (ARY_SHARED_OCCUPIED(ARY_SHARED(ary))) { + RARRAY_PTR_USE(ary, ptr, ptr[0] = Qnil); + } + ARY_INCREASE_PTR(ary, 1); /* shift ptr */ + ARY_INCREASE_LEN(ary, -1); + + return top; +} + +/* + * call-seq: + * ary.shift -> obj or nil + * ary.shift(n) -> new_ary + * + * Removes the first element of +self+ and returns it (shifting all + * other elements down by one). Returns +nil+ if the array + * is empty. + * + * If a number +n+ is given, returns an array of the first +n+ elements + * (or less) just like array.slice!(0, n) does. With +ary+ + * containing only the remainder elements, not including what was shifted to + * +new_ary+. See also Array#unshift for the opposite effect. + * + * args = [ "-m", "-q", "filename" ] + * args.shift #=> "-m" + * args #=> ["-q", "filename"] + * + * args = [ "-m", "-q", "filename" ] + * args.shift(2) #=> ["-m", "-q"] + * args #=> ["filename"] + */ + +static VALUE +rb_ary_shift_m(int argc, VALUE *argv, VALUE ary) +{ + VALUE result; + long n; + + if (argc == 0) { + return rb_ary_shift(ary); + } + + rb_ary_modify_check(ary); + result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST); + n = RARRAY_LEN(result); + if (ARY_SHARED_P(ary)) { + if (ARY_SHARED_OCCUPIED(ARY_SHARED(ary))) { + ary_mem_clear(ary, 0, n); + } + ARY_INCREASE_PTR(ary, n); + } + else { + RARRAY_PTR_USE(ary, ptr, { + MEMMOVE(ptr, ptr + n, VALUE, RARRAY_LEN(ary)-n); + }); /* WB: no new reference */ + } + ARY_INCREASE_LEN(ary, -n); + + return result; +} + +static VALUE +ary_ensure_room_for_unshift(VALUE ary, int argc) +{ + long len = RARRAY_LEN(ary); + long new_len = len + argc; + long capa; + const VALUE *head, *sharedp; + + if (len > ARY_MAX_SIZE - argc) { + rb_raise(rb_eIndexError, "index %ld too big", new_len); + } + + if (ARY_SHARED_P(ary)) { + VALUE shared = ARY_SHARED(ary); + capa = RARRAY_LEN(shared); + if (ARY_SHARED_OCCUPIED(shared) && capa > new_len) { + head = RARRAY_CONST_PTR(ary); + sharedp = RARRAY_CONST_PTR(shared); + goto makeroom_if_need; + } + } + + rb_ary_modify(ary); + capa = ARY_CAPA(ary); + if (capa - (capa >> 6) <= new_len) { + ary_double_capa(ary, new_len); + } + + /* use shared array for big "queues" */ + if (new_len > ARY_DEFAULT_SIZE * 4) { + /* make a room for unshifted items */ + capa = ARY_CAPA(ary); + ary_make_shared(ary); + + head = sharedp = RARRAY_CONST_PTR(ary); + goto makeroom; + makeroom_if_need: + if (head - sharedp < argc) { + long room; + makeroom: + room = capa - new_len; + room -= room >> 4; + MEMMOVE((VALUE *)sharedp + argc + room, head, VALUE, len); + head = sharedp + argc + room; + } + ARY_SET_PTR(ary, head - argc); + assert(ARY_SHARED_OCCUPIED(ARY_SHARED(ary))); + return ARY_SHARED(ary); + } + else { + /* sliding items */ + RARRAY_PTR_USE(ary, ptr, { + MEMMOVE(ptr + argc, ptr, VALUE, len); + }); + + return ary; + } +} + +/* + * call-seq: + * ary.unshift(obj, ...) -> ary + * + * Prepends objects to the front of +self+, moving other elements upwards. + * See also Array#shift for the opposite effect. + * + * a = [ "b", "c", "d" ] + * a.unshift("a") #=> ["a", "b", "c", "d"] + * a.unshift(1, 2) #=> [ 1, 2, "a", "b", "c", "d"] + */ + +static VALUE +rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary) +{ + long len = RARRAY_LEN(ary); + VALUE target_ary; + + if (argc == 0) { + rb_ary_modify_check(ary); + return ary; + } + + target_ary = ary_ensure_room_for_unshift(ary, argc); + ary_memcpy0(ary, 0, argc, argv, target_ary); + ARY_SET_LEN(ary, len + argc); + return ary; +} + +VALUE +rb_ary_unshift(VALUE ary, VALUE item) +{ + return rb_ary_unshift_m(1,&item,ary); +} + +/* faster version - use this if you don't need to treat negative offset */ +static inline VALUE +rb_ary_elt(VALUE ary, long offset) +{ + long len = RARRAY_LEN(ary); + if (len == 0) return Qnil; + if (offset < 0 || len <= offset) { + return Qnil; + } + return RARRAY_AREF(ary, offset); +} + +VALUE +rb_ary_entry(VALUE ary, long offset) +{ + if (offset < 0) { + offset += RARRAY_LEN(ary); + } + return rb_ary_elt(ary, offset); +} + +VALUE +rb_ary_subseq(VALUE ary, long beg, long len) +{ + VALUE klass; + long alen = RARRAY_LEN(ary); + + if (beg > alen) return Qnil; + if (beg < 0 || len < 0) return Qnil; + + if (alen < len || alen < beg + len) { + len = alen - beg; + } + klass = rb_obj_class(ary); + if (len == 0) return ary_new(klass, 0); + + return ary_make_partial(ary, klass, beg, len); +} + +/* + * call-seq: + * ary[index] -> obj or nil + * ary[start, length] -> new_ary or nil + * ary[range] -> new_ary or nil + * ary.slice(index) -> obj or nil + * ary.slice(start, length) -> new_ary or nil + * ary.slice(range) -> new_ary or nil + * + * Element Reference --- Returns the element at +index+, or returns a + * subarray starting at the +start+ index and continuing for +length+ + * elements, or returns a subarray specified by +range+ of indices. + * + * Negative indices count backward from the end of the array (-1 is the last + * element). For +start+ and +range+ cases the starting index is just before + * an element. Additionally, an empty array is returned when the starting + * index for an element range is at the end of the array. + * + * Returns +nil+ if the index (or starting index) are out of range. + * + * a = [ "a", "b", "c", "d", "e" ] + * a[2] + a[0] + a[1] #=> "cab" + * a[6] #=> nil + * a[1, 2] #=> [ "b", "c" ] + * a[1..3] #=> [ "b", "c", "d" ] + * a[4..7] #=> [ "e" ] + * a[6..10] #=> nil + * a[-3, 3] #=> [ "c", "d", "e" ] + * # special cases + * a[5] #=> nil + * a[6, 1] #=> nil + * a[5, 1] #=> [] + * a[5..10] #=> [] + * + */ + +VALUE +rb_ary_aref(int argc, const VALUE *argv, VALUE ary) +{ + VALUE arg; + long beg, len; + + if (argc == 2) { + beg = NUM2LONG(argv[0]); + len = NUM2LONG(argv[1]); + if (beg < 0) { + beg += RARRAY_LEN(ary); + } + return rb_ary_subseq(ary, beg, len); + } + if (argc != 1) { + rb_scan_args(argc, argv, "11", NULL, NULL); + } + arg = argv[0]; + /* special case - speeding up */ + if (FIXNUM_P(arg)) { + return rb_ary_entry(ary, FIX2LONG(arg)); + } + /* check if idx is Range */ + switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) { + case Qfalse: + break; + case Qnil: + return Qnil; + default: + return rb_ary_subseq(ary, beg, len); + } + return rb_ary_entry(ary, NUM2LONG(arg)); +} + +/* + * call-seq: + * ary.at(index) -> obj or nil + * + * Returns the element at +index+. A negative index counts from the end of + * +self+. Returns +nil+ if the index is out of range. See also + * Array#[]. + * + * a = [ "a", "b", "c", "d", "e" ] + * a.at(0) #=> "a" + * a.at(-1) #=> "e" + */ + +static VALUE +rb_ary_at(VALUE ary, VALUE pos) +{ + return rb_ary_entry(ary, NUM2LONG(pos)); +} + +/* + * call-seq: + * ary.first -> obj or nil + * ary.first(n) -> new_ary + * + * Returns the first element, or the first +n+ elements, of the array. + * If the array is empty, the first form returns +nil+, and the + * second form returns an empty array. See also Array#last for + * the opposite effect. + * + * a = [ "q", "r", "s", "t" ] + * a.first #=> "q" + * a.first(2) #=> ["q", "r"] + */ + +static VALUE +rb_ary_first(int argc, VALUE *argv, VALUE ary) +{ + if (argc == 0) { + if (RARRAY_LEN(ary) == 0) return Qnil; + return RARRAY_AREF(ary, 0); + } + else { + return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST); + } +} + +/* + * call-seq: + * ary.last -> obj or nil + * ary.last(n) -> new_ary + * + * Returns the last element(s) of +self+. If the array is empty, + * the first form returns +nil+. + * + * See also Array#first for the opposite effect. + * + * a = [ "w", "x", "y", "z" ] + * a.last #=> "z" + * a.last(2) #=> ["y", "z"] + */ + +VALUE +rb_ary_last(int argc, const VALUE *argv, VALUE ary) +{ + if (argc == 0) { + long len = RARRAY_LEN(ary); + if (len == 0) return Qnil; + return RARRAY_AREF(ary, len-1); + } + else { + return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST); + } +} + +/* + * call-seq: + * ary.fetch(index) -> obj + * ary.fetch(index, default) -> obj + * ary.fetch(index) { |index| block } -> obj + * + * Tries to return the element at position +index+, but throws an IndexError + * exception if the referenced +index+ lies outside of the array bounds. This + * error can be prevented by supplying a second argument, which will act as a + * +default+ value. + * + * Alternatively, if a block is given it will only be executed when an + * invalid +index+ is referenced. Negative values of +index+ count from the + * end of the array. + * + * a = [ 11, 22, 33, 44 ] + * a.fetch(1) #=> 22 + * a.fetch(-1) #=> 44 + * a.fetch(4, 'cat') #=> "cat" + * a.fetch(100) { |i| puts "#{i} is out of bounds" } + * #=> "100 is out of bounds" + */ + +static VALUE +rb_ary_fetch(int argc, VALUE *argv, VALUE ary) +{ + VALUE pos, ifnone; + long block_given; + long idx; + + rb_scan_args(argc, argv, "11", &pos, &ifnone); + block_given = rb_block_given_p(); + if (block_given && argc == 2) { + rb_warn("block supersedes default value argument"); + } + idx = NUM2LONG(pos); + + if (idx < 0) { + idx += RARRAY_LEN(ary); + } + if (idx < 0 || RARRAY_LEN(ary) <= idx) { + if (block_given) return rb_yield(pos); + if (argc == 1) { + rb_raise(rb_eIndexError, "index %ld outside of array bounds: %ld...%ld", + idx - (idx < 0 ? RARRAY_LEN(ary) : 0), -RARRAY_LEN(ary), RARRAY_LEN(ary)); + } + return ifnone; + } + return RARRAY_AREF(ary, idx); +} + +/* + * call-seq: + * ary.find_index(obj) -> int or nil + * ary.find_index { |item| block } -> int or nil + * ary.find_index -> Enumerator + * ary.index(obj) -> int or nil + * ary.index { |item| block } -> int or nil + * ary.index -> Enumerator + * + * Returns the _index_ of the first object in +ary+ such that the object is + * == to +obj+. + * + * If a block is given instead of an argument, returns the _index_ of the + * first object for which the block returns +true+. Returns +nil+ if no + * match is found. + * + * See also Array#rindex. + * + * An Enumerator is returned if neither a block nor argument is given. + * + * a = [ "a", "b", "c" ] + * a.index("b") #=> 1 + * a.index("z") #=> nil + * a.index { |x| x == "b" } #=> 1 + */ + +static VALUE +rb_ary_index(int argc, VALUE *argv, VALUE ary) +{ + const VALUE *ptr; + VALUE val; + long i, len; + + if (argc == 0) { + RETURN_ENUMERATOR(ary, 0, 0); + for (i=0; i int or nil + * ary.rindex { |item| block } -> int or nil + * ary.rindex -> Enumerator + * + * Returns the _index_ of the last object in +self+ == to +obj+. + * + * If a block is given instead of an argument, returns the _index_ of the + * first object for which the block returns +true+, starting from the last + * object. + * + * Returns +nil+ if no match is found. + * + * See also Array#index. + * + * If neither block nor argument is given, an Enumerator is returned instead. + * + * a = [ "a", "b", "b", "b", "c" ] + * a.rindex("b") #=> 3 + * a.rindex("z") #=> nil + * a.rindex { |x| x == "b" } #=> 3 + */ + +static VALUE +rb_ary_rindex(int argc, VALUE *argv, VALUE ary) +{ + const VALUE *ptr; + VALUE val; + long i = RARRAY_LEN(ary), len; + + if (argc == 0) { + RETURN_ENUMERATOR(ary, 0, 0); + while (i--) { + if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) + return LONG2NUM(i); + if (i > (len = RARRAY_LEN(ary))) { + i = len; + } + } + return Qnil; + } + rb_check_arity(argc, 0, 1); + val = argv[0]; + if (rb_block_given_p()) + rb_warn("given block not used"); + ptr = RARRAY_CONST_PTR(ary); + while (i--) { + VALUE e = ptr[i]; + switch (rb_equal_opt(e, val)) { + case Qundef: + if (!rb_equal(e, val)) break; + case Qtrue: + return LONG2NUM(i); + case Qfalse: + continue; + } + if (i > (len = RARRAY_LEN(ary))) { + i = len; + } + ptr = RARRAY_CONST_PTR(ary); + } + return Qnil; +} + +VALUE +rb_ary_to_ary(VALUE obj) +{ + VALUE tmp = rb_check_array_type(obj); + + if (!NIL_P(tmp)) return tmp; + return rb_ary_new3(1, obj); +} + +static void +rb_ary_splice(VALUE ary, long beg, long len, VALUE rpl) +{ + long rlen; + long olen; + + if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len); + olen = RARRAY_LEN(ary); + if (beg < 0) { + beg += olen; + if (beg < 0) { + rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld", + beg - olen, -olen); + } + } + if (olen < len || olen < beg + len) { + len = olen - beg; + } + + if (rpl == Qundef) { + rlen = 0; + } + else { + rpl = rb_ary_to_ary(rpl); + rlen = RARRAY_LEN(rpl); + olen = RARRAY_LEN(ary); /* ary may be resized in rpl.to_ary too */ + } + if (beg >= olen) { + VALUE target_ary; + if (beg > ARY_MAX_SIZE - rlen) { + rb_raise(rb_eIndexError, "index %ld too big", beg); + } + target_ary = ary_ensure_room_for_push(ary, rlen-len); /* len is 0 or negative */ + len = beg + rlen; + ary_mem_clear(ary, olen, beg - olen); + if (rlen > 0) { + ary_memcpy0(ary, beg, rlen, RARRAY_CONST_PTR(rpl), target_ary); + } + ARY_SET_LEN(ary, len); + } + else { + long alen; + + if (olen - len > ARY_MAX_SIZE - rlen) { + rb_raise(rb_eIndexError, "index %ld too big", olen + rlen - len); + } + rb_ary_modify(ary); + alen = olen + rlen - len; + if (alen >= ARY_CAPA(ary)) { + ary_double_capa(ary, alen); + } + + if (len != rlen) { + RARRAY_PTR_USE(ary, ptr, + MEMMOVE(ptr + beg + rlen, ptr + beg + len, + VALUE, olen - (beg + len))); + ARY_SET_LEN(ary, alen); + } + if (rlen > 0) { + MEMMOVE(RARRAY_PTR(ary) + beg, RARRAY_CONST_PTR(rpl), VALUE, rlen); + } + } + RB_GC_GUARD(rpl); +} + +void +rb_ary_set_len(VALUE ary, long len) +{ + long capa; + + rb_ary_modify_check(ary); + if (ARY_SHARED_P(ary)) { + rb_raise(rb_eRuntimeError, "can't set length of shared "); + } + if (len > (capa = (long)ARY_CAPA(ary))) { + rb_bug("probable buffer overflow: %ld for %ld", len, capa); + } + ARY_SET_LEN(ary, len); +} + +/*! + * expands or shrinks \a ary to \a len elements. + * expanded region will be filled with Qnil. + * \param ary an array + * \param len new size + * \return \a ary + * \post the size of \a ary is \a len. + */ +VALUE +rb_ary_resize(VALUE ary, long len) +{ + long olen; + + rb_ary_modify(ary); + olen = RARRAY_LEN(ary); + if (len == olen) return ary; + if (len > ARY_MAX_SIZE) { + rb_raise(rb_eIndexError, "index %ld too big", len); + } + if (len > olen) { + if (len >= ARY_CAPA(ary)) { + ary_double_capa(ary, len); + } + ary_mem_clear(ary, olen, len - olen); + ARY_SET_LEN(ary, len); + } + else if (ARY_EMBED_P(ary)) { + ARY_SET_EMBED_LEN(ary, len); + } + else if (len <= RARRAY_EMBED_LEN_MAX) { + VALUE tmp[RARRAY_EMBED_LEN_MAX]; + MEMCPY(tmp, ARY_HEAP_PTR(ary), VALUE, len); + ary_discard(ary); + MEMCPY((VALUE *)ARY_EMBED_PTR(ary), tmp, VALUE, len); /* WB: no new reference */ + ARY_SET_EMBED_LEN(ary, len); + } + else { + if (olen > len + ARY_DEFAULT_SIZE) { + SIZED_REALLOC_N(RARRAY(ary)->as.heap.ptr, VALUE, len, RARRAY(ary)->as.heap.aux.capa); + ARY_SET_CAPA(ary, len); + } + ARY_SET_HEAP_LEN(ary, len); + } + return ary; +} + +/* + * call-seq: + * ary[index] = obj -> obj + * ary[start, length] = obj or other_ary or nil -> obj or other_ary or nil + * ary[range] = obj or other_ary or nil -> obj or other_ary or nil + * + * Element Assignment --- Sets the element at +index+, or replaces a subarray + * from the +start+ index for +length+ elements, or replaces a subarray + * specified by the +range+ of indices. + * + * If indices are greater than the current capacity of the array, the array + * grows automatically. Elements are inserted into the array at +start+ if + * +length+ is zero. + * + * Negative indices will count backward from the end of the array. For + * +start+ and +range+ cases the starting index is just before an element. + * + * An IndexError is raised if a negative index points past the beginning of + * the array. + * + * See also Array#push, and Array#unshift. + * + * a = Array.new + * a[4] = "4"; #=> [nil, nil, nil, nil, "4"] + * a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"] + * a[1..2] = [ 1, 2 ] #=> ["a", 1, 2, nil, "4"] + * a[0, 2] = "?" #=> ["?", 2, nil, "4"] + * a[0..2] = "A" #=> ["A", "4"] + * a[-1] = "Z" #=> ["A", "Z"] + * a[1..-1] = nil #=> ["A", nil] + * a[1..-1] = [] #=> ["A"] + * a[0, 0] = [ 1, 2 ] #=> [1, 2, "A"] + * a[3, 0] = "B" #=> [1, 2, "A", "B"] + */ + +static VALUE +rb_ary_aset(int argc, VALUE *argv, VALUE ary) +{ + long offset, beg, len; + + if (argc == 3) { + rb_ary_modify_check(ary); + beg = NUM2LONG(argv[0]); + len = NUM2LONG(argv[1]); + rb_ary_splice(ary, beg, len, argv[2]); + return argv[2]; + } + rb_check_arity(argc, 2, 2); + rb_ary_modify_check(ary); + if (FIXNUM_P(argv[0])) { + offset = FIX2LONG(argv[0]); + goto fixnum; + } + if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) { + /* check if idx is Range */ + rb_ary_splice(ary, beg, len, argv[1]); + return argv[1]; + } + + offset = NUM2LONG(argv[0]); +fixnum: + rb_ary_store(ary, offset, argv[1]); + return argv[1]; +} + +/* + * call-seq: + * ary.insert(index, obj...) -> ary + * + * Inserts the given values before the element with the given +index+. + * + * Negative indices count backwards from the end of the array, where +-1+ is + * the last element. If a negative index is used, the given values will be + * inserted after that element, so using an index of +-1+ will insert the + * values at the end of the array. + * + * a = %w{ a b c d } + * a.insert(2, 99) #=> ["a", "b", 99, "c", "d"] + * a.insert(-2, 1, 2, 3) #=> ["a", "b", 99, "c", 1, 2, 3, "d"] + */ + +static VALUE +rb_ary_insert(int argc, VALUE *argv, VALUE ary) +{ + long pos; + + rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS); + rb_ary_modify_check(ary); + if (argc == 1) return ary; + pos = NUM2LONG(argv[0]); + if (pos == -1) { + pos = RARRAY_LEN(ary); + } + if (pos < 0) { + pos++; + } + rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1)); + return ary; +} + +static VALUE +rb_ary_length(VALUE ary); + +static VALUE +ary_enum_length(VALUE ary, VALUE args, VALUE eobj) +{ + return rb_ary_length(ary); +} + +/* + * call-seq: + * ary.each { |item| block } -> ary + * ary.each -> Enumerator + * + * Calls the given block once for each element in +self+, passing that element + * as a parameter. + * + * An Enumerator is returned if no block is given. + * + * a = [ "a", "b", "c" ] + * a.each {|x| print x, " -- " } + * + * produces: + * + * a -- b -- c -- + */ + +VALUE +rb_ary_each(VALUE array) +{ + long i; + volatile VALUE ary = array; + + RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); + for (i=0; i ary + * ary.each_index -> Enumerator + * + * Same as Array#each, but passes the +index+ of the element instead of the + * element itself. + * + * An Enumerator is returned if no block is given. + * + * a = [ "a", "b", "c" ] + * a.each_index {|x| print x, " -- " } + * + * produces: + * + * 0 -- 1 -- 2 -- + */ + +static VALUE +rb_ary_each_index(VALUE ary) +{ + long i; + RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); + + for (i=0; i ary + * ary.reverse_each -> Enumerator + * + * Same as Array#each, but traverses +self+ in reverse order. + * + * a = [ "a", "b", "c" ] + * a.reverse_each {|x| print x, " " } + * + * produces: + * + * c b a + */ + +static VALUE +rb_ary_reverse_each(VALUE ary) +{ + long len; + + RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); + len = RARRAY_LEN(ary); + while (len--) { + long nlen; + rb_yield(RARRAY_AREF(ary, len)); + nlen = RARRAY_LEN(ary); + if (nlen < len) { + len = nlen; + } + } + return ary; +} + +/* + * call-seq: + * ary.length -> int + * + * Returns the number of elements in +self+. May be zero. + * + * [ 1, 2, 3, 4, 5 ].length #=> 5 + * [].length #=> 0 + */ + +static VALUE +rb_ary_length(VALUE ary) +{ + long len = RARRAY_LEN(ary); + return LONG2NUM(len); +} + +/* + * call-seq: + * ary.empty? -> true or false + * + * Returns +true+ if +self+ contains no elements. + * + * [].empty? #=> true + */ + +static VALUE +rb_ary_empty_p(VALUE ary) +{ + if (RARRAY_LEN(ary) == 0) + return Qtrue; + return Qfalse; +} + +VALUE +rb_ary_dup(VALUE ary) +{ + long len = RARRAY_LEN(ary); + VALUE dup = rb_ary_new2(len); + ary_memcpy(dup, 0, len, RARRAY_CONST_PTR(ary)); + ARY_SET_LEN(dup, len); + return dup; +} + +VALUE +rb_ary_resurrect(VALUE ary) +{ + return rb_ary_new4(RARRAY_LEN(ary), RARRAY_CONST_PTR(ary)); +} + +extern VALUE rb_output_fs; + +static void ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result, int *first); + +static VALUE +recursive_join(VALUE obj, VALUE argp, int recur) +{ + VALUE *arg = (VALUE *)argp; + VALUE ary = arg[0]; + VALUE sep = arg[1]; + VALUE result = arg[2]; + int *first = (int *)arg[3]; + + if (recur) { + rb_raise(rb_eArgError, "recursive array join"); + } + else { + ary_join_1(obj, ary, sep, 0, result, first); + } + return Qnil; +} + +static void +ary_join_0(VALUE ary, VALUE sep, long max, VALUE result) +{ + long i; + VALUE val; + + if (max > 0) rb_enc_copy(result, RARRAY_AREF(ary, 0)); + for (i=0; i 0 && !NIL_P(sep)) + rb_str_buf_append(result, sep); + rb_str_buf_append(result, val); + if (OBJ_TAINTED(val)) OBJ_TAINT(result); + } +} + +static void +ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result, int *first) +{ + VALUE val, tmp; + + for (; i 0 && !NIL_P(sep)) + rb_str_buf_append(result, sep); + + val = RARRAY_AREF(ary, i); + if (RB_TYPE_P(val, T_STRING)) { + str_join: + rb_str_buf_append(result, val); + *first = FALSE; + } + else if (RB_TYPE_P(val, T_ARRAY)) { + obj = val; + ary_join: + if (val == ary) { + rb_raise(rb_eArgError, "recursive array join"); + } + else { + VALUE args[4]; + + args[0] = val; + args[1] = sep; + args[2] = result; + args[3] = (VALUE)first; + rb_exec_recursive(recursive_join, obj, (VALUE)args); + } + } + else { + tmp = rb_check_string_type(val); + if (!NIL_P(tmp)) { + val = tmp; + goto str_join; + } + tmp = rb_check_convert_type(val, T_ARRAY, "Array", "to_ary"); + if (!NIL_P(tmp)) { + obj = val; + val = tmp; + goto ary_join; + } + val = rb_obj_as_string(val); + if (*first) { + rb_enc_copy(result, val); + *first = FALSE; + } + goto str_join; + } + } +} + +VALUE +rb_ary_join(VALUE ary, VALUE sep) +{ + long len = 1, i; + int taint = FALSE; + VALUE val, tmp, result; + + if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new(0, 0); + if (OBJ_TAINTED(ary)) taint = TRUE; + + if (!NIL_P(sep)) { + StringValue(sep); + len += RSTRING_LEN(sep) * (RARRAY_LEN(ary) - 1); + } + for (i=0; i str + * + * Returns a string created by converting each element of the array to + * a string, separated by the given +separator+. + * If the +separator+ is +nil+, it uses current $,. + * If both the +separator+ and $, are nil, it uses empty string. + * + * [ "a", "b", "c" ].join #=> "abc" + * [ "a", "b", "c" ].join("-") #=> "a-b-c" + */ + +static VALUE +rb_ary_join_m(int argc, VALUE *argv, VALUE ary) +{ + VALUE sep; + + rb_scan_args(argc, argv, "01", &sep); + if (NIL_P(sep)) sep = rb_output_fs; + + return rb_ary_join(ary, sep); +} + +static VALUE +inspect_ary(VALUE ary, VALUE dummy, int recur) +{ + int tainted = OBJ_TAINTED(ary); + long i; + VALUE s, str; + + if (recur) return rb_usascii_str_new_cstr("[...]"); + str = rb_str_buf_new2("["); + for (i=0; i 0) rb_str_buf_cat2(str, ", "); + else rb_enc_copy(str, s); + rb_str_buf_append(str, s); + } + rb_str_buf_cat2(str, "]"); + if (tainted) OBJ_TAINT(str); + return str; +} + +/* + * call-seq: + * ary.inspect -> string + * ary.to_s -> string + * + * Creates a string representation of +self+. + * + * [ "a", "b", "c" ].to_s #=> "[\"a\", \"b\", \"c\"]" + */ + +static VALUE +rb_ary_inspect(VALUE ary) +{ + if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]"); + return rb_exec_recursive(inspect_ary, ary, 0); +} + +VALUE +rb_ary_to_s(VALUE ary) +{ + return rb_ary_inspect(ary); +} + +/* + * call-seq: + * ary.to_a -> ary + * + * Returns +self+. + * + * If called on a subclass of Array, converts the receiver to an Array object. + */ + +static VALUE +rb_ary_to_a(VALUE ary) +{ + if (rb_obj_class(ary) != rb_cArray) { + VALUE dup = rb_ary_new2(RARRAY_LEN(ary)); + rb_ary_replace(dup, ary); + return dup; + } + return ary; +} + +/* + * call-seq: + * ary.to_h -> hash + * + * Returns the result of interpreting ary as an array of + * [key, value] pairs. + * + * [[:foo, :bar], [1, 2]].to_h + * # => {:foo => :bar, 1 => 2} + */ + +static VALUE +rb_ary_to_h(VALUE ary) +{ + long i; + VALUE hash = rb_hash_new(); + for (i=0; i ary + * + * Returns +self+. + */ + +static VALUE +rb_ary_to_ary_m(VALUE ary) +{ + return ary; +} + +static void +ary_reverse(VALUE *p1, VALUE *p2) +{ + while (p1 < p2) { + VALUE tmp = *p1; + *p1++ = *p2; + *p2-- = tmp; + } +} + +VALUE +rb_ary_reverse(VALUE ary) +{ + VALUE *p2; + long len = RARRAY_LEN(ary); + + rb_ary_modify(ary); + if (len > 1) { + RARRAY_PTR_USE(ary, p1, { + p2 = p1 + len - 1; /* points last item */ + ary_reverse(p1, p2); + }); /* WB: no new reference */ + } + return ary; +} + +/* + * call-seq: + * ary.reverse! -> ary + * + * Reverses +self+ in place. + * + * a = [ "a", "b", "c" ] + * a.reverse! #=> ["c", "b", "a"] + * a #=> ["c", "b", "a"] + */ + +static VALUE +rb_ary_reverse_bang(VALUE ary) +{ + return rb_ary_reverse(ary); +} + +/* + * call-seq: + * ary.reverse -> new_ary + * + * Returns a new array containing +self+'s elements in reverse order. + * + * [ "a", "b", "c" ].reverse #=> ["c", "b", "a"] + * [ 1 ].reverse #=> [1] + */ + +static VALUE +rb_ary_reverse_m(VALUE ary) +{ + long len = RARRAY_LEN(ary); + VALUE dup = rb_ary_new2(len); + + if (len > 0) { + const VALUE *p1 = RARRAY_CONST_PTR(ary); + VALUE *p2 = (VALUE *)RARRAY_CONST_PTR(dup) + len - 1; + do *p2-- = *p1++; while (--len > 0); + } + ARY_SET_LEN(dup, RARRAY_LEN(ary)); + return dup; +} + +static inline long +rotate_count(long cnt, long len) +{ + return (cnt < 0) ? (len - (~cnt % len) - 1) : (cnt % len); +} + +VALUE +rb_ary_rotate(VALUE ary, long cnt) +{ + rb_ary_modify(ary); + + if (cnt != 0) { + VALUE *ptr = RARRAY_PTR(ary); + long len = RARRAY_LEN(ary); + + if (len > 0 && (cnt = rotate_count(cnt, len)) > 0) { + --len; + if (cnt < len) ary_reverse(ptr + cnt, ptr + len); + if (--cnt > 0) ary_reverse(ptr, ptr + cnt); + if (len > 0) ary_reverse(ptr, ptr + len); + return ary; + } + } + + return Qnil; +} + +/* + * call-seq: + * ary.rotate!(count=1) -> ary + * + * Rotates +self+ in place so that the element at +count+ comes first, and + * returns +self+. + * + * If +count+ is negative then it rotates in the opposite direction, starting + * from the end of the array where +-1+ is the last element. + * + * a = [ "a", "b", "c", "d" ] + * a.rotate! #=> ["b", "c", "d", "a"] + * a #=> ["b", "c", "d", "a"] + * a.rotate!(2) #=> ["d", "a", "b", "c"] + * a.rotate!(-3) #=> ["a", "b", "c", "d"] + */ + +static VALUE +rb_ary_rotate_bang(int argc, VALUE *argv, VALUE ary) +{ + long n = 1; + + switch (argc) { + case 1: n = NUM2LONG(argv[0]); + case 0: break; + default: rb_scan_args(argc, argv, "01", NULL); + } + rb_ary_rotate(ary, n); + return ary; +} + +/* + * call-seq: + * ary.rotate(count=1) -> new_ary + * + * Returns a new array by rotating +self+ so that the element at +count+ is + * the first element of the new array. + * + * If +count+ is negative then it rotates in the opposite direction, starting + * from the end of +self+ where +-1+ is the last element. + * + * a = [ "a", "b", "c", "d" ] + * a.rotate #=> ["b", "c", "d", "a"] + * a #=> ["a", "b", "c", "d"] + * a.rotate(2) #=> ["c", "d", "a", "b"] + * a.rotate(-3) #=> ["b", "c", "d", "a"] + */ + +static VALUE +rb_ary_rotate_m(int argc, VALUE *argv, VALUE ary) +{ + VALUE rotated; + const VALUE *ptr; + long len, cnt = 1; + + switch (argc) { + case 1: cnt = NUM2LONG(argv[0]); + case 0: break; + default: rb_scan_args(argc, argv, "01", NULL); + } + + len = RARRAY_LEN(ary); + rotated = rb_ary_new2(len); + if (len > 0) { + cnt = rotate_count(cnt, len); + ptr = RARRAY_CONST_PTR(ary); + len -= cnt; + ary_memcpy(rotated, 0, len, ptr + cnt); + ary_memcpy(rotated, len, cnt, ptr); + } + ARY_SET_LEN(rotated, RARRAY_LEN(ary)); + return rotated; +} + +struct ary_sort_data { + VALUE ary; + int opt_methods; + int opt_inited; +}; + +enum { + sort_opt_Fixnum, + sort_opt_String, + sort_optimizable_count +}; + +#define STRING_P(s) (RB_TYPE_P((s), T_STRING) && CLASS_OF(s) == rb_cString) + +#define SORT_OPTIMIZABLE_BIT(type) (1U << TOKEN_PASTE(sort_opt_,type)) +#define SORT_OPTIMIZABLE(data, type) \ + (((data)->opt_inited & SORT_OPTIMIZABLE_BIT(type)) ? \ + ((data)->opt_methods & SORT_OPTIMIZABLE_BIT(type)) : \ + (((data)->opt_inited |= SORT_OPTIMIZABLE_BIT(type)), \ + rb_method_basic_definition_p(TOKEN_PASTE(rb_c,type), id_cmp) && \ + ((data)->opt_methods |= SORT_OPTIMIZABLE_BIT(type)))) + +static VALUE +sort_reentered(VALUE ary) +{ + if (RBASIC(ary)->klass) { + rb_raise(rb_eRuntimeError, "sort reentered"); + } + return Qnil; +} + +static int +sort_1(const void *ap, const void *bp, void *dummy) +{ + struct ary_sort_data *data = dummy; + VALUE retval = sort_reentered(data->ary); + VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp; + int n; + + retval = rb_yield_values(2, a, b); + n = rb_cmpint(retval, a, b); + sort_reentered(data->ary); + return n; +} + +static int +sort_2(const void *ap, const void *bp, void *dummy) +{ + struct ary_sort_data *data = dummy; + VALUE retval = sort_reentered(data->ary); + VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp; + int n; + + if (FIXNUM_P(a) && FIXNUM_P(b) && SORT_OPTIMIZABLE(data, Fixnum)) { + if ((long)a > (long)b) return 1; + if ((long)a < (long)b) return -1; + return 0; + } + if (STRING_P(a) && STRING_P(b) && SORT_OPTIMIZABLE(data, String)) { + return rb_str_cmp(a, b); + } + + retval = rb_funcallv(a, id_cmp, 1, &b); + n = rb_cmpint(retval, a, b); + sort_reentered(data->ary); + + return n; +} + +/* + * call-seq: + * ary.sort! -> ary + * ary.sort! { |a, b| block } -> ary + * + * Sorts +self+ in place. + * + * Comparisons for the sort will be done using the <=> operator + * or using an optional code block. + * + * The block must implement a comparison between +a+ and +b+, and return + * +-1+, when +a+ follows +b+, +0+ when +a+ and +b+ are equivalent, or ++1+ + * if +b+ follows +a+. + * + * See also Enumerable#sort_by. + * + * a = [ "d", "a", "e", "c", "b" ] + * a.sort! #=> ["a", "b", "c", "d", "e"] + * a.sort! { |x,y| y <=> x } #=> ["e", "d", "c", "b", "a"] + */ + +VALUE +rb_ary_sort_bang(VALUE ary) +{ + rb_ary_modify(ary); + assert(!ARY_SHARED_P(ary)); + if (RARRAY_LEN(ary) > 1) { + VALUE tmp = ary_make_substitution(ary); /* only ary refers tmp */ + struct ary_sort_data data; + long len = RARRAY_LEN(ary); + + RBASIC_CLEAR_CLASS(tmp); + data.ary = tmp; + data.opt_methods = 0; + data.opt_inited = 0; + RARRAY_PTR_USE(tmp, ptr, { + ruby_qsort(ptr, len, sizeof(VALUE), + rb_block_given_p()?sort_1:sort_2, &data); + }); /* WB: no new reference */ + rb_ary_modify(ary); + if (ARY_EMBED_P(tmp)) { + if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */ + rb_ary_unshare(ary); + } + FL_SET_EMBED(ary); + ary_memcpy(ary, 0, ARY_EMBED_LEN(tmp), ARY_EMBED_PTR(tmp)); + ARY_SET_LEN(ary, ARY_EMBED_LEN(tmp)); + } + else { + if (!ARY_EMBED_P(ary) && ARY_HEAP_PTR(ary) == ARY_HEAP_PTR(tmp)) { + FL_UNSET_SHARED(ary); + ARY_SET_CAPA(ary, RARRAY_LEN(tmp)); + } + else { + assert(!ARY_SHARED_P(tmp)); + if (ARY_EMBED_P(ary)) { + FL_UNSET_EMBED(ary); + } + else if (ARY_SHARED_P(ary)) { + /* ary might be destructively operated in the given block */ + rb_ary_unshare(ary); + } + else { + ruby_sized_xfree((void *)ARY_HEAP_PTR(ary), ARY_HEAP_SIZE(ary)); + } + ARY_SET_PTR(ary, RARRAY_CONST_PTR(tmp)); + ARY_SET_HEAP_LEN(ary, len); + ARY_SET_CAPA(ary, RARRAY_LEN(tmp)); + } + /* tmp was lost ownership for the ptr */ + FL_UNSET(tmp, FL_FREEZE); + FL_SET_EMBED(tmp); + ARY_SET_EMBED_LEN(tmp, 0); + FL_SET(tmp, FL_FREEZE); + } + /* tmp will be GC'ed. */ + RBASIC_SET_CLASS_RAW(tmp, rb_cArray); /* rb_cArray must be marked */ + } + return ary; +} + +/* + * call-seq: + * ary.sort -> new_ary + * ary.sort { |a, b| block } -> new_ary + * + * Returns a new array created by sorting +self+. + * + * Comparisons for the sort will be done using the <=> operator + * or using an optional code block. + * + * The block must implement a comparison between +a+ and +b+, and return + * +-1+, when +a+ follows +b+, +0+ when +a+ and +b+ are equivalent, or ++1+ + * if +b+ follows +a+. + * + * + * See also Enumerable#sort_by. + * + * a = [ "d", "a", "e", "c", "b" ] + * a.sort #=> ["a", "b", "c", "d", "e"] + * a.sort { |x,y| y <=> x } #=> ["e", "d", "c", "b", "a"] + */ + +VALUE +rb_ary_sort(VALUE ary) +{ + ary = rb_ary_dup(ary); + rb_ary_sort_bang(ary); + return ary; +} + +/* + * call-seq: + * ary.bsearch {|x| block } -> elem + * + * By using binary search, finds a value from this array which meets + * the given condition in O(log n) where n is the size of the array. + * + * You can use this method in two use cases: a find-minimum mode and + * a find-any mode. In either case, the elements of the array must be + * monotone (or sorted) with respect to the block. + * + * In find-minimum mode (this is a good choice for typical use case), + * the block must return true or false, and there must be an index i + * (0 <= i <= ary.size) so that: + * + * - the block returns false for any element whose index is less than + * i, and + * - the block returns true for any element whose index is greater + * than or equal to i. + * + * This method returns the i-th element. If i is equal to ary.size, + * it returns nil. + * + * ary = [0, 4, 7, 10, 12] + * ary.bsearch {|x| x >= 4 } #=> 4 + * ary.bsearch {|x| x >= 6 } #=> 7 + * ary.bsearch {|x| x >= -1 } #=> 0 + * ary.bsearch {|x| x >= 100 } #=> nil + * + * In find-any mode (this behaves like libc's bsearch(3)), the block + * must return a number, and there must be two indices i and j + * (0 <= i <= j <= ary.size) so that: + * + * - the block returns a positive number for ary[k] if 0 <= k < i, + * - the block returns zero for ary[k] if i <= k < j, and + * - the block returns a negative number for ary[k] if + * j <= k < ary.size. + * + * Under this condition, this method returns any element whose index + * is within i...j. If i is equal to j (i.e., there is no element + * that satisfies the block), this method returns nil. + * + * ary = [0, 4, 7, 10, 12] + * # try to find v such that 4 <= v < 8 + * ary.bsearch {|x| 1 - x / 4 } #=> 4 or 7 + * # try to find v such that 8 <= v < 10 + * ary.bsearch {|x| 4 - x / 2 } #=> nil + * + * You must not mix the two modes at a time; the block must always + * return either true/false, or always return a number. It is + * undefined which value is actually picked up at each iteration. + */ + +static VALUE +rb_ary_bsearch(VALUE ary) +{ + long low = 0, high = RARRAY_LEN(ary), mid; + int smaller = 0, satisfied = 0; + VALUE v, val; + + RETURN_ENUMERATOR(ary, 0, 0); + while (low < high) { + mid = low + ((high - low) / 2); + val = rb_ary_entry(ary, mid); + v = rb_yield(val); + if (FIXNUM_P(v)) { + if (FIX2INT(v) == 0) return val; + smaller = FIX2INT(v) < 0; + } + else if (v == Qtrue) { + satisfied = 1; + smaller = 1; + } + else if (v == Qfalse || v == Qnil) { + smaller = 0; + } + else if (rb_obj_is_kind_of(v, rb_cNumeric)) { + const VALUE zero = INT2FIX(0); + switch (rb_cmpint(rb_funcallv(v, id_cmp, 1, &zero), v, INT2FIX(0))) { + case 0: return val; + case 1: smaller = 1; break; + case -1: smaller = 0; + } + } + else { + rb_raise(rb_eTypeError, "wrong argument type %s" + " (must be numeric, true, false or nil)", + rb_obj_classname(v)); + } + if (smaller) { + high = mid; + } + else { + low = mid + 1; + } + } + if (low == RARRAY_LEN(ary)) return Qnil; + if (!satisfied) return Qnil; + return rb_ary_entry(ary, low); +} + + +static VALUE +sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, dummy)) +{ + return rb_yield(i); +} + +/* + * call-seq: + * ary.sort_by! { |obj| block } -> ary + * ary.sort_by! -> Enumerator + * + * Sorts +self+ in place using a set of keys generated by mapping the + * values in +self+ through the given block. + * + * If no block is given, an Enumerator is returned instead. + * + */ + +static VALUE +rb_ary_sort_by_bang(VALUE ary) +{ + VALUE sorted; + + RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); + rb_ary_modify(ary); + sorted = rb_block_call(ary, rb_intern("sort_by"), 0, 0, sort_by_i, 0); + rb_ary_replace(ary, sorted); + return ary; +} + + +/* + * call-seq: + * ary.collect { |item| block } -> new_ary + * ary.map { |item| block } -> new_ary + * ary.collect -> Enumerator + * ary.map -> Enumerator + * + * Invokes the given block once for each element of +self+. + * + * Creates a new array containing the values returned by the block. + * + * See also Enumerable#collect. + * + * If no block is given, an Enumerator is returned instead. + * + * a = [ "a", "b", "c", "d" ] + * a.collect { |x| x + "!" } #=> ["a!", "b!", "c!", "d!"] + * a.map.with_index{ |x, i| x * i } #=> ["", "b", "cc", "ddd"] + * a #=> ["a", "b", "c", "d"] + */ + +static VALUE +rb_ary_collect(VALUE ary) +{ + long i; + VALUE collect; + + RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); + collect = rb_ary_new2(RARRAY_LEN(ary)); + for (i = 0; i < RARRAY_LEN(ary); i++) { + rb_ary_push(collect, rb_yield(RARRAY_AREF(ary, i))); + } + return collect; +} + + +/* + * call-seq: + * ary.collect! {|item| block } -> ary + * ary.map! {|item| block } -> ary + * ary.collect! -> Enumerator + * ary.map! -> Enumerator + * + * Invokes the given block once for each element of +self+, replacing the + * element with the value returned by the block. + * + * See also Enumerable#collect. + * + * If no block is given, an Enumerator is returned instead. + * + * a = [ "a", "b", "c", "d" ] + * a.map! {|x| x + "!" } + * a #=> [ "a!", "b!", "c!", "d!" ] + * a.collect!.with_index {|x, i| x[0...i] } + * a #=> ["", "b", "c!", "d!"] + */ + +static VALUE +rb_ary_collect_bang(VALUE ary) +{ + long i; + + RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); + rb_ary_modify(ary); + for (i = 0; i < RARRAY_LEN(ary); i++) { + rb_ary_store(ary, i, rb_yield(RARRAY_AREF(ary, i))); + } + return ary; +} + +VALUE +rb_get_values_at(VALUE obj, long olen, int argc, const VALUE *argv, VALUE (*func) (VALUE, long)) +{ + VALUE result = rb_ary_new2(argc); + long beg, len, i, j; + + for (i=0; i j) + rb_ary_resize(result, RARRAY_LEN(result) + (beg + len) - j); + continue; + } + rb_ary_push(result, (*func)(obj, NUM2LONG(argv[i]))); + } + return result; +} + +/* + * call-seq: + * ary.values_at(selector, ...) -> new_ary + * + * Returns an array containing the elements in +self+ corresponding to the + * given +selector+(s). + * + * The selectors may be either integer indices or ranges. + * + * See also Array#select. + * + * a = %w{ a b c d e f } + * a.values_at(1, 3, 5) # => ["b", "d", "f"] + * a.values_at(1, 3, 5, 7) # => ["b", "d", "f", nil] + * a.values_at(-1, -2, -2, -7) # => ["f", "e", "e", nil] + * a.values_at(4..6, 3...6) # => ["e", "f", nil, "d", "e", "f"] + */ + +static VALUE +rb_ary_values_at(int argc, VALUE *argv, VALUE ary) +{ + return rb_get_values_at(ary, RARRAY_LEN(ary), argc, argv, rb_ary_entry); +} + + +/* + * call-seq: + * ary.select { |item| block } -> new_ary + * ary.select -> Enumerator + * + * Returns a new array containing all elements of +ary+ + * for which the given +block+ returns a true value. + * + * If no block is given, an Enumerator is returned instead. + * + * [1,2,3,4,5].select { |num| num.even? } #=> [2, 4] + * + * a = %w{ a b c d e f } + * a.select { |v| v =~ /[aeiou]/ } #=> ["a", "e"] + * + * See also Enumerable#select. + */ + +static VALUE +rb_ary_select(VALUE ary) +{ + VALUE result; + long i; + + RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); + result = rb_ary_new2(RARRAY_LEN(ary)); + for (i = 0; i < RARRAY_LEN(ary); i++) { + if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) { + rb_ary_push(result, rb_ary_elt(ary, i)); + } + } + return result; +} + +/* + * call-seq: + * ary.select! {|item| block } -> ary or nil + * ary.select! -> Enumerator + * + * Invokes the given block passing in successive elements from +self+, + * deleting elements for which the block returns a +false+ value. + * + * If changes were made, it will return +self+, otherwise it returns +nil+. + * + * See also Array#keep_if + * + * If no block is given, an Enumerator is returned instead. + * + */ + +static VALUE +rb_ary_select_bang(VALUE ary) +{ + long i1, i2; + + RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); + rb_ary_modify(ary); + for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) { + VALUE v = RARRAY_AREF(ary, i1); + if (!RTEST(rb_yield(v))) continue; + if (i1 != i2) { + rb_ary_store(ary, i2, v); + } + i2++; + } + + if (i1 == i2) return Qnil; + if (i2 < i1) + ARY_SET_LEN(ary, i2); + return ary; +} + +/* + * call-seq: + * ary.keep_if { |item| block } -> ary + * ary.keep_if -> Enumerator + * + * Deletes every element of +self+ for which the given block evaluates to + * +false+. + * + * See also Array#select! + * + * If no block is given, an Enumerator is returned instead. + * + * a = %w{ a b c d e f } + * a.keep_if { |v| v =~ /[aeiou]/ } #=> ["a", "e"] + */ + +static VALUE +rb_ary_keep_if(VALUE ary) +{ + RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); + rb_ary_select_bang(ary); + return ary; +} + +static void +ary_resize_smaller(VALUE ary, long len) +{ + rb_ary_modify(ary); + if (RARRAY_LEN(ary) > len) { + ARY_SET_LEN(ary, len); + if (len * 2 < ARY_CAPA(ary) && + ARY_CAPA(ary) > ARY_DEFAULT_SIZE) { + ary_resize_capa(ary, len * 2); + } + } +} + +/* + * call-seq: + * ary.delete(obj) -> item or nil + * ary.delete(obj) { block } -> item or result of block + * + * Deletes all items from +self+ that are equal to +obj+. + * + * Returns the last deleted item, or +nil+ if no matching item is found. + * + * If the optional code block is given, the result of the block is returned if + * the item is not found. (To remove +nil+ elements and get an informative + * return value, use Array#compact!) + * + * a = [ "a", "b", "b", "b", "c" ] + * a.delete("b") #=> "b" + * a #=> ["a", "c"] + * a.delete("z") #=> nil + * a.delete("z") { "not found" } #=> "not found" + */ + +VALUE +rb_ary_delete(VALUE ary, VALUE item) +{ + VALUE v = item; + long i1, i2; + + for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) { + VALUE e = RARRAY_AREF(ary, i1); + + if (rb_equal(e, item)) { + v = e; + continue; + } + if (i1 != i2) { + rb_ary_store(ary, i2, e); + } + i2++; + } + if (RARRAY_LEN(ary) == i2) { + if (rb_block_given_p()) { + return rb_yield(item); + } + return Qnil; + } + + ary_resize_smaller(ary, i2); + + return v; +} + +void +rb_ary_delete_same(VALUE ary, VALUE item) +{ + long i1, i2; + + for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) { + VALUE e = RARRAY_AREF(ary, i1); + + if (e == item) { + continue; + } + if (i1 != i2) { + rb_ary_store(ary, i2, e); + } + i2++; + } + if (RARRAY_LEN(ary) == i2) { + return; + } + + ary_resize_smaller(ary, i2); +} + +VALUE +rb_ary_delete_at(VALUE ary, long pos) +{ + long len = RARRAY_LEN(ary); + VALUE del; + + if (pos >= len) return Qnil; + if (pos < 0) { + pos += len; + if (pos < 0) return Qnil; + } + + rb_ary_modify(ary); + del = RARRAY_AREF(ary, pos); + RARRAY_PTR_USE(ary, ptr, { + MEMMOVE(ptr+pos, ptr+pos+1, VALUE, len-pos-1); + }); + ARY_INCREASE_LEN(ary, -1); + + return del; +} + +/* + * call-seq: + * ary.delete_at(index) -> obj or nil + * + * Deletes the element at the specified +index+, returning that element, or + * +nil+ if the +index+ is out of range. + * + * See also Array#slice! + * + * a = ["ant", "bat", "cat", "dog"] + * a.delete_at(2) #=> "cat" + * a #=> ["ant", "bat", "dog"] + * a.delete_at(99) #=> nil + */ + +static VALUE +rb_ary_delete_at_m(VALUE ary, VALUE pos) +{ + return rb_ary_delete_at(ary, NUM2LONG(pos)); +} + +/* + * call-seq: + * ary.slice!(index) -> obj or nil + * ary.slice!(start, length) -> new_ary or nil + * ary.slice!(range) -> new_ary or nil + * + * Deletes the element(s) given by an +index+ (optionally up to +length+ + * elements) or by a +range+. + * + * Returns the deleted object (or objects), or +nil+ if the +index+ is out of + * range. + * + * a = [ "a", "b", "c" ] + * a.slice!(1) #=> "b" + * a #=> ["a", "c"] + * a.slice!(-1) #=> "c" + * a #=> ["a"] + * a.slice!(100) #=> nil + * a #=> ["a"] + */ + +static VALUE +rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary) +{ + VALUE arg1, arg2; + long pos, len, orig_len; + + rb_ary_modify_check(ary); + if (argc == 2) { + pos = NUM2LONG(argv[0]); + len = NUM2LONG(argv[1]); + delete_pos_len: + if (len < 0) return Qnil; + orig_len = RARRAY_LEN(ary); + if (pos < 0) { + pos += orig_len; + if (pos < 0) return Qnil; + } + else if (orig_len < pos) return Qnil; + if (orig_len < pos + len) { + len = orig_len - pos; + } + if (len == 0) return rb_ary_new2(0); + arg2 = rb_ary_new4(len, RARRAY_CONST_PTR(ary)+pos); + RBASIC_SET_CLASS(arg2, rb_obj_class(ary)); + rb_ary_splice(ary, pos, len, Qundef); + return arg2; + } + + if (argc != 1) { + /* error report */ + rb_scan_args(argc, argv, "11", NULL, NULL); + } + arg1 = argv[0]; + + if (!FIXNUM_P(arg1)) { + switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) { + case Qtrue: + /* valid range */ + goto delete_pos_len; + case Qnil: + /* invalid range */ + return Qnil; + default: + /* not a range */ + break; + } + } + + return rb_ary_delete_at(ary, NUM2LONG(arg1)); +} + +static VALUE +ary_reject(VALUE orig, VALUE result) +{ + long i; + + for (i = 0; i < RARRAY_LEN(orig); i++) { + VALUE v = RARRAY_AREF(orig, i); + if (!RTEST(rb_yield(v))) { + rb_ary_push(result, v); + } + } + return result; +} + +static VALUE +ary_reject_bang(VALUE ary) +{ + long i; + VALUE result = Qnil; + + rb_ary_modify_check(ary); + for (i = 0; i < RARRAY_LEN(ary); ) { + VALUE v = RARRAY_AREF(ary, i); + if (RTEST(rb_yield(v))) { + rb_ary_delete_at(ary, i); + result = ary; + } + else { + i++; + } + } + return result; +} + +/* + * call-seq: + * ary.reject! { |item| block } -> ary or nil + * ary.reject! -> Enumerator + * + * Equivalent to Array#delete_if, deleting elements from +self+ for which the + * block evaluates to +true+, but returns +nil+ if no changes were made. + * + * The array is changed instantly every time the block is called, not after + * the iteration is over. + * + * See also Enumerable#reject and Array#delete_if. + * + * If no block is given, an Enumerator is returned instead. + */ + +static VALUE +rb_ary_reject_bang(VALUE ary) +{ + RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); + return ary_reject_bang(ary); +} + +/* + * call-seq: + * ary.reject {|item| block } -> new_ary + * ary.reject -> Enumerator + * + * Returns a new array containing the items in +self+ for which the given + * block is not +true+. + * + * See also Array#delete_if + * + * If no block is given, an Enumerator is returned instead. + */ + +static VALUE +rb_ary_reject(VALUE ary) +{ + VALUE rejected_ary; + + RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); + rejected_ary = rb_ary_new(); + ary_reject(ary, rejected_ary); + return rejected_ary; +} + +/* + * call-seq: + * ary.delete_if { |item| block } -> ary + * ary.delete_if -> Enumerator + * + * Deletes every element of +self+ for which block evaluates to +true+. + * + * The array is changed instantly every time the block is called, not after + * the iteration is over. + * + * See also Array#reject! + * + * If no block is given, an Enumerator is returned instead. + * + * scores = [ 97, 42, 75 ] + * scores.delete_if {|score| score < 80 } #=> [97] + */ + +static VALUE +rb_ary_delete_if(VALUE ary) +{ + RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length); + ary_reject_bang(ary); + return ary; +} + +static VALUE +take_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, cbarg)) +{ + VALUE *args = (VALUE *)cbarg; + if (args[1]-- == 0) rb_iter_break(); + if (argc > 1) val = rb_ary_new4(argc, argv); + rb_ary_push(args[0], val); + return Qnil; +} + +static VALUE +take_items(VALUE obj, long n) +{ + VALUE result = rb_check_array_type(obj); + VALUE args[2]; + + if (!NIL_P(result)) return rb_ary_subseq(result, 0, n); + result = rb_ary_new2(n); + args[0] = result; args[1] = (VALUE)n; + if (rb_check_block_call(obj, idEach, 0, 0, take_i, (VALUE)args) == Qundef) + rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)", + rb_obj_class(obj)); + return result; +} + + +/* + * call-seq: + * ary.zip(arg, ...) -> new_ary + * ary.zip(arg, ...) { |arr| block } -> nil + * + * Converts any arguments to arrays, then merges elements of +self+ with + * corresponding elements from each argument. + * + * This generates a sequence of ary.size _n_-element arrays, + * where _n_ is one more than the count of arguments. + * + * If the size of any argument is less than the size of the initial array, + * +nil+ values are supplied. + * + * If a block is given, it is invoked for each output +array+, otherwise an + * array of arrays is returned. + * + * a = [ 4, 5, 6 ] + * b = [ 7, 8, 9 ] + * [1, 2, 3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]] + * [1, 2].zip(a, b) #=> [[1, 4, 7], [2, 5, 8]] + * a.zip([1, 2], [8]) #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]] + */ + +static VALUE +rb_ary_zip(int argc, VALUE *argv, VALUE ary) +{ + int i, j; + long len = RARRAY_LEN(ary); + VALUE result = Qnil; + + for (i=0; i 1) { + VALUE work, *tmp; + + tmp = ALLOCV_N(VALUE, work, argc+1); + + for (i=0; i new_ary + * + * Assumes that +self+ is an array of arrays and transposes the rows and + * columns. + * + * a = [[1,2], [3,4], [5,6]] + * a.transpose #=> [[1, 3, 5], [2, 4, 6]] + * + * If the length of the subarrays don't match, an IndexError is raised. + */ + +static VALUE +rb_ary_transpose(VALUE ary) +{ + long elen = -1, alen, i, j; + VALUE tmp, result = 0; + + alen = RARRAY_LEN(ary); + if (alen == 0) return rb_ary_dup(ary); + for (i=0; i ary + * ary.initialize_copy(other_ary) -> ary + * + * Replaces the contents of +self+ with the contents of +other_ary+, + * truncating or expanding if necessary. + * + * a = [ "a", "b", "c", "d", "e" ] + * a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"] + * a #=> ["x", "y", "z"] + */ + +VALUE +rb_ary_replace(VALUE copy, VALUE orig) +{ + rb_ary_modify_check(copy); + orig = to_ary(orig); + if (copy == orig) return copy; + + if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) { + VALUE shared = 0; + + if (ARY_OWNS_HEAP_P(copy)) { + RARRAY_PTR_USE(copy, ptr, ruby_sized_xfree(ptr, ARY_HEAP_SIZE(copy))); + } + else if (ARY_SHARED_P(copy)) { + shared = ARY_SHARED(copy); + FL_UNSET_SHARED(copy); + } + FL_SET_EMBED(copy); + ary_memcpy(copy, 0, RARRAY_LEN(orig), RARRAY_CONST_PTR(orig)); + if (shared) { + rb_ary_decrement_share(shared); + } + ARY_SET_LEN(copy, RARRAY_LEN(orig)); + } + else { + VALUE shared = ary_make_shared(orig); + if (ARY_OWNS_HEAP_P(copy)) { + RARRAY_PTR_USE(copy, ptr, ruby_sized_xfree(ptr, ARY_HEAP_SIZE(copy))); + } + else { + rb_ary_unshare_safe(copy); + } + FL_UNSET_EMBED(copy); + ARY_SET_PTR(copy, RARRAY_CONST_PTR(orig)); + ARY_SET_LEN(copy, RARRAY_LEN(orig)); + rb_ary_set_shared(copy, shared); + } + return copy; +} + +/* + * call-seq: + * ary.clear -> ary + * + * Removes all elements from +self+. + * + * a = [ "a", "b", "c", "d", "e" ] + * a.clear #=> [ ] + */ + +VALUE +rb_ary_clear(VALUE ary) +{ + rb_ary_modify_check(ary); + ARY_SET_LEN(ary, 0); + if (ARY_SHARED_P(ary)) { + if (!ARY_EMBED_P(ary)) { + rb_ary_unshare(ary); + FL_SET_EMBED(ary); + } + } + else if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) { + ary_resize_capa(ary, ARY_DEFAULT_SIZE * 2); + } + return ary; +} + +/* + * call-seq: + * ary.fill(obj) -> ary + * ary.fill(obj, start [, length]) -> ary + * ary.fill(obj, range ) -> ary + * ary.fill { |index| block } -> ary + * ary.fill(start [, length] ) { |index| block } -> ary + * ary.fill(range) { |index| block } -> ary + * + * The first three forms set the selected elements of +self+ (which + * may be the entire array) to +obj+. + * + * A +start+ of +nil+ is equivalent to zero. + * + * A +length+ of +nil+ is equivalent to the length of the array. + * + * The last three forms fill the array with the value of the given block, + * which is passed the absolute index of each element to be filled. + * + * Negative values of +start+ count from the end of the array, where +-1+ is + * the last element. + * + * a = [ "a", "b", "c", "d" ] + * a.fill("x") #=> ["x", "x", "x", "x"] + * a.fill("z", 2, 2) #=> ["x", "x", "z", "z"] + * a.fill("y", 0..1) #=> ["y", "y", "z", "z"] + * a.fill { |i| i*i } #=> [0, 1, 4, 9] + * a.fill(-2) { |i| i*i*i } #=> [0, 1, 8, 27] + */ + +static VALUE +rb_ary_fill(int argc, VALUE *argv, VALUE ary) +{ + VALUE item, arg1, arg2; + long beg = 0, end = 0, len = 0; + int block_p = FALSE; + + if (rb_block_given_p()) { + block_p = TRUE; + rb_scan_args(argc, argv, "02", &arg1, &arg2); + argc += 1; /* hackish */ + } + else { + rb_scan_args(argc, argv, "12", &item, &arg1, &arg2); + } + switch (argc) { + case 1: + beg = 0; + len = RARRAY_LEN(ary); + break; + case 2: + if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) { + break; + } + /* fall through */ + case 3: + beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1); + if (beg < 0) { + beg = RARRAY_LEN(ary) + beg; + if (beg < 0) beg = 0; + } + len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2); + break; + } + rb_ary_modify(ary); + if (len < 0) { + return ary; + } + if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) { + rb_raise(rb_eArgError, "argument too big"); + } + end = beg + len; + if (RARRAY_LEN(ary) < end) { + if (end >= ARY_CAPA(ary)) { + ary_resize_capa(ary, end); + } + ary_mem_clear(ary, RARRAY_LEN(ary), end - RARRAY_LEN(ary)); + ARY_SET_LEN(ary, end); + } + + if (block_p) { + VALUE v; + long i; + + for (i=beg; i=RARRAY_LEN(ary)) break; + ARY_SET(ary, i, v); + } + } + else { + ary_memfill(ary, beg, len, item); + } + return ary; +} + +/* + * call-seq: + * ary + other_ary -> new_ary + * + * Concatenation --- Returns a new array built by concatenating the + * two arrays together to produce a third array. + * + * [ 1, 2, 3 ] + [ 4, 5 ] #=> [ 1, 2, 3, 4, 5 ] + * a = [ "a", "b", "c" ] + * c = a + [ "d", "e", "f" ] + * c #=> [ "a", "b", "c", "d", "e", "f" ] + * a #=> [ "a", "b", "c" ] + * + * Note that + * x += y + * is the same as + * x = x + y + * This means that it produces a new array. As a consequence, + * repeated use of += on arrays can be quite inefficient. + * + * See also Array#concat. + */ + +VALUE +rb_ary_plus(VALUE x, VALUE y) +{ + VALUE z; + long len, xlen, ylen; + + y = to_ary(y); + xlen = RARRAY_LEN(x); + ylen = RARRAY_LEN(y); + len = xlen + ylen; + z = rb_ary_new2(len); + + ary_memcpy(z, 0, xlen, RARRAY_CONST_PTR(x)); + ary_memcpy(z, xlen, ylen, RARRAY_CONST_PTR(y)); + ARY_SET_LEN(z, len); + return z; +} + +/* + * call-seq: + * ary.concat(other_ary) -> ary + * + * Appends the elements of +other_ary+ to +self+. + * + * [ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ] + * a = [ 1, 2, 3 ] + * a.concat( [ 4, 5 ] ) + * a #=> [ 1, 2, 3, 4, 5 ] + * + * See also Array#+. + */ + +VALUE +rb_ary_concat(VALUE x, VALUE y) +{ + rb_ary_modify_check(x); + y = to_ary(y); + if (RARRAY_LEN(y) > 0) { + rb_ary_splice(x, RARRAY_LEN(x), 0, y); + } + return x; +} + + +/* + * call-seq: + * ary * int -> new_ary + * ary * str -> new_string + * + * Repetition --- With a String argument, equivalent to + * ary.join(str). + * + * Otherwise, returns a new array built by concatenating the +int+ copies of + * +self+. + * + * + * [ 1, 2, 3 ] * 3 #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ] + * [ 1, 2, 3 ] * "," #=> "1,2,3" + * + */ + +static VALUE +rb_ary_times(VALUE ary, VALUE times) +{ + VALUE ary2, tmp; + const VALUE *ptr; + long t, len; + + tmp = rb_check_string_type(times); + if (!NIL_P(tmp)) { + return rb_ary_join(ary, tmp); + } + + len = NUM2LONG(times); + if (len == 0) { + ary2 = ary_new(rb_obj_class(ary), 0); + goto out; + } + if (len < 0) { + rb_raise(rb_eArgError, "negative argument"); + } + if (ARY_MAX_SIZE/len < RARRAY_LEN(ary)) { + rb_raise(rb_eArgError, "argument too big"); + } + len *= RARRAY_LEN(ary); + + ary2 = ary_new(rb_obj_class(ary), len); + ARY_SET_LEN(ary2, len); + + ptr = RARRAY_CONST_PTR(ary); + t = RARRAY_LEN(ary); + if (0 < t) { + ary_memcpy(ary2, 0, t, ptr); + while (t <= len/2) { + ary_memcpy(ary2, t, t, RARRAY_CONST_PTR(ary2)); + t *= 2; + } + if (t < len) { + ary_memcpy(ary2, t, len-t, RARRAY_CONST_PTR(ary2)); + } + } + out: + OBJ_INFECT(ary2, ary); + + return ary2; +} + +/* + * call-seq: + * ary.assoc(obj) -> new_ary or nil + * + * Searches through an array whose elements are also arrays comparing +obj+ + * with the first element of each contained array using obj.==. + * + * Returns the first contained array that matches (that is, the first + * associated array), or +nil+ if no match is found. + * + * See also Array#rassoc + * + * s1 = [ "colors", "red", "blue", "green" ] + * s2 = [ "letters", "a", "b", "c" ] + * s3 = "foo" + * a = [ s1, s2, s3 ] + * a.assoc("letters") #=> [ "letters", "a", "b", "c" ] + * a.assoc("foo") #=> nil + */ + +VALUE +rb_ary_assoc(VALUE ary, VALUE key) +{ + long i; + VALUE v; + + for (i = 0; i < RARRAY_LEN(ary); ++i) { + v = rb_check_array_type(RARRAY_AREF(ary, i)); + if (!NIL_P(v) && RARRAY_LEN(v) > 0 && + rb_equal(RARRAY_AREF(v, 0), key)) + return v; + } + return Qnil; +} + +/* + * call-seq: + * ary.rassoc(obj) -> new_ary or nil + * + * Searches through the array whose elements are also arrays. + * + * Compares +obj+ with the second element of each contained array using + * obj.==. + * + * Returns the first contained array that matches +obj+. + * + * See also Array#assoc. + * + * a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ] + * a.rassoc("two") #=> [2, "two"] + * a.rassoc("four") #=> nil + */ + +VALUE +rb_ary_rassoc(VALUE ary, VALUE value) +{ + long i; + VALUE v; + + for (i = 0; i < RARRAY_LEN(ary); ++i) { + v = RARRAY_AREF(ary, i); + if (RB_TYPE_P(v, T_ARRAY) && + RARRAY_LEN(v) > 1 && + rb_equal(RARRAY_AREF(v, 1), value)) + return v; + } + return Qnil; +} + +static VALUE +recursive_equal(VALUE ary1, VALUE ary2, int recur) +{ + long i, len1; + const VALUE *p1, *p2; + + if (recur) return Qtrue; /* Subtle! */ + + p1 = RARRAY_CONST_PTR(ary1); + p2 = RARRAY_CONST_PTR(ary2); + len1 = RARRAY_LEN(ary1); + + for (i = 0; i < len1; i++) { + if (*p1 != *p2) { + if (rb_equal(*p1, *p2)) { + len1 = RARRAY_LEN(ary1); + if (len1 != RARRAY_LEN(ary2)) + return Qfalse; + if (len1 < i) + return Qtrue; + p1 = RARRAY_CONST_PTR(ary1) + i; + p2 = RARRAY_CONST_PTR(ary2) + i; + } + else { + return Qfalse; + } + } + p1++; + p2++; + } + return Qtrue; +} + +/* + * call-seq: + * ary == other_ary -> bool + * + * Equality --- Two arrays are equal if they contain the same number of + * elements and if each element is equal to (according to Object#==) the + * corresponding element in +other_ary+. + * + * [ "a", "c" ] == [ "a", "c", 7 ] #=> false + * [ "a", "c", 7 ] == [ "a", "c", 7 ] #=> true + * [ "a", "c", 7 ] == [ "a", "d", "f" ] #=> false + * + */ + +static VALUE +rb_ary_equal(VALUE ary1, VALUE ary2) +{ + if (ary1 == ary2) return Qtrue; + if (!RB_TYPE_P(ary2, T_ARRAY)) { + if (!rb_respond_to(ary2, idTo_ary)) { + return Qfalse; + } + return rb_equal(ary2, ary1); + } + if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse; + if (RARRAY_CONST_PTR(ary1) == RARRAY_CONST_PTR(ary2)) return Qtrue; + return rb_exec_recursive_paired(recursive_equal, ary1, ary2, ary2); +} + +static VALUE +recursive_eql(VALUE ary1, VALUE ary2, int recur) +{ + long i; + + if (recur) return Qtrue; /* Subtle! */ + for (i=0; i true or false + * + * Returns +true+ if +self+ and +other+ are the same object, + * or are both arrays with the same content (according to Object#eql?). + */ + +static VALUE +rb_ary_eql(VALUE ary1, VALUE ary2) +{ + if (ary1 == ary2) return Qtrue; + if (!RB_TYPE_P(ary2, T_ARRAY)) return Qfalse; + if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse; + if (RARRAY_CONST_PTR(ary1) == RARRAY_CONST_PTR(ary2)) return Qtrue; + return rb_exec_recursive_paired(recursive_eql, ary1, ary2, ary2); +} + +/* + * call-seq: + * ary.hash -> fixnum + * + * Compute a hash-code for this array. + * + * Two arrays with the same content will have the same hash code (and will + * compare using #eql?). + * + * See also Object#hash. + */ + +static VALUE +rb_ary_hash(VALUE ary) +{ + long i; + st_index_t h; + VALUE n; + + h = rb_hash_start(RARRAY_LEN(ary)); + h = rb_hash_uint(h, (st_index_t)rb_ary_hash); + for (i=0; i true or false + * + * Returns +true+ if the given +object+ is present in +self+ (that is, if any + * element == +object+), otherwise returns +false+. + * + * a = [ "a", "b", "c" ] + * a.include?("b") #=> true + * a.include?("z") #=> false + */ + +VALUE +rb_ary_includes(VALUE ary, VALUE item) +{ + long i; + VALUE e; + + for (i=0; i RARRAY_LEN(ary2)) { + len = RARRAY_LEN(ary2); + } + for (i=0; i other_ary -> -1, 0, +1 or nil + * + * Comparison --- Returns an integer (+-1+, +0+, or +1) if this + * array is less than, equal to, or greater than +other_ary+. + * + * Each object in each array is compared (using the <=> operator). + * + * Arrays are compared in an "element-wise" manner; the first element of +ary+ + * is compared with the first one of +other_ary+ using the <=> operator, then + * each of the second elements, etc... + * As soon as the result of any such comparison is non zero (i.e. the two + * corresponding elements are not equal), that result is returned for the + * whole array comparison. + * + * If all the elements are equal, then the result is based on a comparison of + * the array lengths. Thus, two arrays are "equal" according to Array#<=> if, + * and only if, they have the same length and the value of each element is + * equal to the value of the corresponding element in the other array. + * + * +nil+ is returned if the +other_ary+ is not an array or if the comparison + * of two elements returned +nil+. + * + * [ "a", "a", "c" ] <=> [ "a", "b", "c" ] #=> -1 + * [ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ] #=> +1 + * [ 1, 2 ] <=> [ 1, :two ] #=> nil + * + */ + +VALUE +rb_ary_cmp(VALUE ary1, VALUE ary2) +{ + long len; + VALUE v; + + ary2 = rb_check_array_type(ary2); + if (NIL_P(ary2)) return Qnil; + if (ary1 == ary2) return INT2FIX(0); + v = rb_exec_recursive_paired(recursive_cmp, ary1, ary2, ary2); + if (v != Qundef) return v; + len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2); + if (len == 0) return INT2FIX(0); + if (len > 0) return INT2FIX(1); + return INT2FIX(-1); +} + +static VALUE +ary_add_hash(VALUE hash, VALUE ary) +{ + long i; + + for (i=0; intbl) { + st_table *tbl = RHASH(hash)->ntbl; + RHASH(hash)->ntbl = 0; + st_free_table(tbl); + } + RB_GC_GUARD(hash); +} + +/* + * call-seq: + * ary - other_ary -> new_ary + * + * Array Difference + * + * Returns a new array that is a copy of the original array, removing any + * items that also appear in +other_ary+. The order is preserved from the + * original array. + * + * It compares elements using their #hash and #eql? methods for efficiency. + * + * [ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ] #=> [ 3, 3, 5 ] + * + * If you need set-like behavior, see the library class Set. + */ + +static VALUE +rb_ary_diff(VALUE ary1, VALUE ary2) +{ + VALUE ary3; + VALUE hash; + long i; + + hash = ary_make_hash(to_ary(ary2)); + ary3 = rb_ary_new(); + + for (i=0; i new_ary + * + * Set Intersection --- Returns a new array containing elements common to the + * two arrays, excluding any duplicates. The order is preserved from the + * original array. + * + * It compares elements using their #hash and #eql? methods for efficiency. + * + * [ 1, 1, 3, 5 ] & [ 1, 2, 3 ] #=> [ 1, 3 ] + * [ 'a', 'b', 'b', 'z' ] & [ 'a', 'b', 'c' ] #=> [ 'a', 'b' ] + * + * See also Array#uniq. + */ + + +static VALUE +rb_ary_and(VALUE ary1, VALUE ary2) +{ + VALUE hash, ary3, v; + st_table *table; + st_data_t vv; + long i; + + ary2 = to_ary(ary2); + ary3 = rb_ary_new(); + if (RARRAY_LEN(ary2) == 0) return ary3; + hash = ary_make_hash(ary2); + table = rb_hash_tbl_raw(hash); + + for (i=0; i new_ary + * + * Set Union --- Returns a new array by joining +ary+ with +other_ary+, + * excluding any duplicates and preserving the order from the original array. + * + * It compares elements using their #hash and #eql? methods for efficiency. + * + * [ "a", "b", "c" ] | [ "c", "d", "a" ] #=> [ "a", "b", "c", "d" ] + * + * See also Array#uniq. + */ + +static VALUE +rb_ary_or(VALUE ary1, VALUE ary2) +{ + VALUE hash, ary3; + long i; + + ary2 = to_ary(ary2); + hash = ary_make_hash(ary1); + + for (i=0; i ary or nil + * ary.uniq! { |item| ... } -> ary or nil + * + * Removes duplicate elements from +self+. + * + * If a block is given, it will use the return value of the block for + * comparison. + * + * It compares values using their #hash and #eql? methods for efficiency. + * + * Returns +nil+ if no changes are made (that is, no duplicates are found). + * + * a = [ "a", "a", "b", "b", "c" ] + * a.uniq! # => ["a", "b", "c"] + * + * b = [ "a", "b", "c" ] + * b.uniq! # => nil + * + * c = [["student","sam"], ["student","george"], ["teacher","matz"]] + * c.uniq! { |s| s.first } # => [["student", "sam"], ["teacher", "matz"]] + * + */ + +static VALUE +rb_ary_uniq_bang(VALUE ary) +{ + VALUE hash; + long hash_size; + + rb_ary_modify_check(ary); + if (RARRAY_LEN(ary) <= 1) + return Qnil; + if (rb_block_given_p()) + hash = ary_make_hash_by(ary); + else + hash = ary_make_hash(ary); + + hash_size = RHASH_SIZE(hash); + if (RARRAY_LEN(ary) == hash_size) { + return Qnil; + } + rb_ary_modify_check(ary); + ARY_SET_LEN(ary, 0); + if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) { + rb_ary_unshare(ary); + FL_SET_EMBED(ary); + } + ary_resize_capa(ary, hash_size); + st_foreach(rb_hash_tbl_raw(hash), push_value, ary); + ary_recycle_hash(hash); + + return ary; +} + +/* + * call-seq: + * ary.uniq -> new_ary + * ary.uniq { |item| ... } -> new_ary + * + * Returns a new array by removing duplicate values in +self+. + * + * If a block is given, it will use the return value of the block for comparison. + * + * It compares values using their #hash and #eql? methods for efficiency. + * + * a = [ "a", "a", "b", "b", "c" ] + * a.uniq # => ["a", "b", "c"] + * + * b = [["student","sam"], ["student","george"], ["teacher","matz"]] + * b.uniq { |s| s.first } # => [["student", "sam"], ["teacher", "matz"]] + * + */ + +static VALUE +rb_ary_uniq(VALUE ary) +{ + VALUE hash, uniq; + + if (RARRAY_LEN(ary) <= 1) + return rb_ary_dup(ary); + if (rb_block_given_p()) { + hash = ary_make_hash_by(ary); + uniq = rb_hash_values(hash); + } + else { + hash = ary_make_hash(ary); + uniq = rb_hash_values(hash); + } + RBASIC_SET_CLASS(uniq, rb_obj_class(ary)); + ary_recycle_hash(hash); + + return uniq; +} + +/* + * call-seq: + * ary.compact! -> ary or nil + * + * Removes +nil+ elements from the array. + * + * Returns +nil+ if no changes were made, otherwise returns the array. + * + * [ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ] + * [ "a", "b", "c" ].compact! #=> nil + */ + +static VALUE +rb_ary_compact_bang(VALUE ary) +{ + VALUE *p, *t, *end; + long n; + + rb_ary_modify(ary); + p = t = (VALUE *)RARRAY_CONST_PTR(ary); /* WB: no new reference */ + end = p + RARRAY_LEN(ary); + + while (t < end) { + if (NIL_P(*t)) t++; + else *p++ = *t++; + } + n = p - RARRAY_CONST_PTR(ary); + if (RARRAY_LEN(ary) == n) { + return Qnil; + } + ary_resize_smaller(ary, n); + + return ary; +} + +/* + * call-seq: + * ary.compact -> new_ary + * + * Returns a copy of +self+ with all +nil+ elements removed. + * + * [ "a", nil, "b", nil, "c", nil ].compact + * #=> [ "a", "b", "c" ] + */ + +static VALUE +rb_ary_compact(VALUE ary) +{ + ary = rb_ary_dup(ary); + rb_ary_compact_bang(ary); + return ary; +} + +/* + * call-seq: + * ary.count -> int + * ary.count(obj) -> int + * ary.count { |item| block } -> int + * + * Returns the number of elements. + * + * If an argument is given, counts the number of elements which equal +obj+ + * using ==. + * + * If a block is given, counts the number of elements for which the block + * returns a true value. + * + * ary = [1, 2, 4, 2] + * ary.count #=> 4 + * ary.count(2) #=> 2 + * ary.count { |x| x%2 == 0 } #=> 3 + * + */ + +static VALUE +rb_ary_count(int argc, VALUE *argv, VALUE ary) +{ + long i, n = 0; + + if (argc == 0) { + VALUE v; + + if (!rb_block_given_p()) + return LONG2NUM(RARRAY_LEN(ary)); + + for (i = 0; i < RARRAY_LEN(ary); i++) { + v = RARRAY_AREF(ary, i); + if (RTEST(rb_yield(v))) n++; + } + } + else { + VALUE obj; + + rb_scan_args(argc, argv, "1", &obj); + if (rb_block_given_p()) { + rb_warn("given block not used"); + } + for (i = 0; i < RARRAY_LEN(ary); i++) { + if (rb_equal(RARRAY_AREF(ary, i), obj)) n++; + } + } + + return LONG2NUM(n); +} + +static VALUE +flatten(VALUE ary, int level, int *modified) +{ + long i = 0; + VALUE stack, result, tmp, elt; + st_table *memo; + st_data_t id; + + stack = ary_new(0, ARY_DEFAULT_SIZE); + result = ary_new(0, RARRAY_LEN(ary)); + memo = st_init_numtable(); + st_insert(memo, (st_data_t)ary, (st_data_t)Qtrue); + *modified = 0; + + while (1) { + while (i < RARRAY_LEN(ary)) { + elt = RARRAY_AREF(ary, i++); + tmp = rb_check_array_type(elt); + if (RBASIC(result)->klass) { + rb_raise(rb_eRuntimeError, "flatten reentered"); + } + if (NIL_P(tmp) || (level >= 0 && RARRAY_LEN(stack) / 2 >= level)) { + rb_ary_push(result, elt); + } + else { + *modified = 1; + id = (st_data_t)tmp; + if (st_lookup(memo, id, 0)) { + st_free_table(memo); + rb_raise(rb_eArgError, "tried to flatten recursive array"); + } + st_insert(memo, id, (st_data_t)Qtrue); + rb_ary_push(stack, ary); + rb_ary_push(stack, LONG2NUM(i)); + ary = tmp; + i = 0; + } + } + if (RARRAY_LEN(stack) == 0) { + break; + } + id = (st_data_t)ary; + st_delete(memo, &id, 0); + tmp = rb_ary_pop(stack); + i = NUM2LONG(tmp); + ary = rb_ary_pop(stack); + } + + st_free_table(memo); + + RBASIC_SET_CLASS(result, rb_class_of(ary)); + return result; +} + +/* + * call-seq: + * ary.flatten! -> ary or nil + * ary.flatten!(level) -> ary or nil + * + * Flattens +self+ in place. + * + * Returns +nil+ if no modifications were made (i.e., the array contains no + * subarrays.) + * + * The optional +level+ argument determines the level of recursion to flatten. + * + * a = [ 1, 2, [3, [4, 5] ] ] + * a.flatten! #=> [1, 2, 3, 4, 5] + * a.flatten! #=> nil + * a #=> [1, 2, 3, 4, 5] + * a = [ 1, 2, [3, [4, 5] ] ] + * a.flatten!(1) #=> [1, 2, 3, [4, 5]] + */ + +static VALUE +rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary) +{ + int mod = 0, level = -1; + VALUE result, lv; + + rb_scan_args(argc, argv, "01", &lv); + rb_ary_modify_check(ary); + if (!NIL_P(lv)) level = NUM2INT(lv); + if (level == 0) return Qnil; + + result = flatten(ary, level, &mod); + if (mod == 0) { + ary_discard(result); + return Qnil; + } + if (!(mod = ARY_EMBED_P(result))) rb_obj_freeze(result); + rb_ary_replace(ary, result); + if (mod) ARY_SET_EMBED_LEN(result, 0); + + return ary; +} + +/* + * call-seq: + * ary.flatten -> new_ary + * ary.flatten(level) -> new_ary + * + * Returns a new array that is a one-dimensional flattening of +self+ + * (recursively). + * + * That is, for every element that is an array, extract its elements into + * the new array. + * + * The optional +level+ argument determines the level of recursion to + * flatten. + * + * s = [ 1, 2, 3 ] #=> [1, 2, 3] + * t = [ 4, 5, 6, [7, 8] ] #=> [4, 5, 6, [7, 8]] + * a = [ s, t, 9, 10 ] #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10] + * a.flatten #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] + * a = [ 1, 2, [3, [4, 5] ] ] + * a.flatten(1) #=> [1, 2, 3, [4, 5]] + */ + +static VALUE +rb_ary_flatten(int argc, VALUE *argv, VALUE ary) +{ + int mod = 0, level = -1; + VALUE result, lv; + + rb_scan_args(argc, argv, "01", &lv); + if (!NIL_P(lv)) level = NUM2INT(lv); + if (level == 0) return ary_make_shared_copy(ary); + + result = flatten(ary, level, &mod); + OBJ_INFECT(result, ary); + + return result; +} + +#define OPTHASH_GIVEN_P(opts) \ + (argc > 0 && !NIL_P((opts) = rb_check_hash_type(argv[argc-1])) && (--argc, 1)) +static ID id_random; + +#define RAND_UPTO(max) (long)rb_random_ulong_limited((randgen), (max)-1) + +/* + * call-seq: + * ary.shuffle! -> ary + * ary.shuffle!(random: rng) -> ary + * + * Shuffles elements in +self+ in place. + * + * a = [ 1, 2, 3 ] #=> [1, 2, 3] + * a.shuffle! #=> [2, 3, 1] + * a #=> [2, 3, 1] + * + * The optional +rng+ argument will be used as the random number generator. + * + * a.shuffle!(random: Random.new(1)) #=> [1, 3, 2] + */ + +static VALUE +rb_ary_shuffle_bang(int argc, VALUE *argv, VALUE ary) +{ + VALUE opts, randgen = rb_cRandom; + long i, len; + + if (OPTHASH_GIVEN_P(opts)) { + VALUE rnd; + ID keyword_ids[1]; + + keyword_ids[0] = id_random; + rb_get_kwargs(opts, keyword_ids, 0, 1, &rnd); + if (rnd != Qundef) { + randgen = rnd; + } + } + rb_check_arity(argc, 0, 0); + rb_ary_modify(ary); + i = len = RARRAY_LEN(ary); + RARRAY_PTR_USE(ary, ptr, { + while (i) { + long j = RAND_UPTO(i); + VALUE tmp; + if (len != RARRAY_LEN(ary) || ptr != RARRAY_CONST_PTR(ary)) { + rb_raise(rb_eRuntimeError, "modified during shuffle"); + } + tmp = ptr[--i]; + ptr[i] = ptr[j]; + ptr[j] = tmp; + } + }); /* WB: no new reference */ + return ary; +} + + +/* + * call-seq: + * ary.shuffle -> new_ary + * ary.shuffle(random: rng) -> new_ary + * + * Returns a new array with elements of +self+ shuffled. + * + * a = [ 1, 2, 3 ] #=> [1, 2, 3] + * a.shuffle #=> [2, 3, 1] + * a #=> [1, 2, 3] + * + * The optional +rng+ argument will be used as the random number generator. + * + * a.shuffle(random: Random.new(1)) #=> [1, 3, 2] + */ + +static VALUE +rb_ary_shuffle(int argc, VALUE *argv, VALUE ary) +{ + ary = rb_ary_dup(ary); + rb_ary_shuffle_bang(argc, argv, ary); + return ary; +} + + +/* + * call-seq: + * ary.sample -> obj + * ary.sample(random: rng) -> obj + * ary.sample(n) -> new_ary + * ary.sample(n, random: rng) -> new_ary + * + * Choose a random element or +n+ random elements from the array. + * + * The elements are chosen by using random and unique indices into the array + * in order to ensure that an element doesn't repeat itself unless the array + * already contained duplicate elements. + * + * If the array is empty the first form returns +nil+ and the second form + * returns an empty array. + * + * The optional +rng+ argument will be used as the random number generator. + * + * a = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ] + * a.sample #=> 7 + * a.sample(4) #=> [6, 4, 2, 5] + */ + + +static VALUE +rb_ary_sample(int argc, VALUE *argv, VALUE ary) +{ + VALUE nv, result; + VALUE opts, randgen = rb_cRandom; + long n, len, i, j, k, idx[10]; + long rnds[numberof(idx)]; + + if (OPTHASH_GIVEN_P(opts)) { + VALUE rnd; + ID keyword_ids[1]; + + keyword_ids[0] = id_random; + rb_get_kwargs(opts, keyword_ids, 0, 1, &rnd); + if (rnd != Qundef) { + randgen = rnd; + } + } + len = RARRAY_LEN(ary); + if (argc == 0) { + if (len < 2) + i = 0; + else + i = RAND_UPTO(len); + + return rb_ary_elt(ary, i); + } + rb_scan_args(argc, argv, "1", &nv); + n = NUM2LONG(nv); + if (n < 0) rb_raise(rb_eArgError, "negative sample number"); + if (n > len) n = len; + if (n <= numberof(idx)) { + for (i = 0; i < n; ++i) { + rnds[i] = RAND_UPTO(len - i); + } + } + k = len; + len = RARRAY_LEN(ary); + if (len < k && n <= numberof(idx)) { + for (i = 0; i < n; ++i) { + if (rnds[i] >= len) return rb_ary_new_capa(0); + } + } + if (n > len) n = len; + switch (n) { + case 0: + return rb_ary_new_capa(0); + case 1: + i = rnds[0]; + return rb_ary_new_from_values(1, &RARRAY_AREF(ary, i)); + case 2: + i = rnds[0]; + j = rnds[1]; + if (j >= i) j++; + return rb_ary_new_from_args(2, RARRAY_AREF(ary, i), RARRAY_AREF(ary, j)); + case 3: + i = rnds[0]; + j = rnds[1]; + k = rnds[2]; + { + long l = j, g = i; + if (j >= i) l = i, g = ++j; + if (k >= l && (++k >= g)) ++k; + } + return rb_ary_new_from_args(3, RARRAY_AREF(ary, i), RARRAY_AREF(ary, j), RARRAY_AREF(ary, k)); + } + if (n <= numberof(idx)) { + long sorted[numberof(idx)]; + sorted[0] = idx[0] = rnds[0]; + for (i=1; i 0)) { + n = RARRAY_AREF(args, 0); + } + if (RARRAY_LEN(self) == 0) return INT2FIX(0); + if (n == Qnil) return DBL2NUM(INFINITY); + mul = NUM2LONG(n); + if (mul <= 0) return INT2FIX(0); + n = LONG2FIX(mul); + return rb_funcallv(rb_ary_length(self), '*', 1, &n); +} + +/* + * call-seq: + * ary.cycle(n=nil) { |obj| block } -> nil + * ary.cycle(n=nil) -> Enumerator + * + * Calls the given block for each element +n+ times or forever if +nil+ is + * given. + * + * Does nothing if a non-positive number is given or the array is empty. + * + * Returns +nil+ if the loop has finished without getting interrupted. + * + * If no block is given, an Enumerator is returned instead. + * + * a = ["a", "b", "c"] + * a.cycle { |x| puts x } # print, a, b, c, a, b, c,.. forever. + * a.cycle(2) { |x| puts x } # print, a, b, c, a, b, c. + * + */ + +static VALUE +rb_ary_cycle(int argc, VALUE *argv, VALUE ary) +{ + long n, i; + VALUE nv = Qnil; + + rb_scan_args(argc, argv, "01", &nv); + + RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_cycle_size); + if (NIL_P(nv)) { + n = -1; + } + else { + n = NUM2LONG(nv); + if (n <= 0) return Qnil; + } + + while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) { + for (i=0; iklass; +} + +/* + * Compute permutations of +r+ elements of the set [0..n-1]. + * + * When we have a complete permutation of array indexes, copy the values + * at those indexes into a new array and yield that array. + * + * n: the size of the set + * r: the number of elements in each permutation + * p: the array (of size r) that we're filling in + * used: an array of booleans: whether a given index is already used + * values: the Ruby array that holds the actual values to permute + */ +static void +permute0(const long n, const long r, long *const p, char *const used, const VALUE values) +{ + long i = 0, index = 0; + + for (;;) { + const char *const unused = memchr(&used[i], 0, n-i); + if (!unused) { + if (!index) break; + i = p[--index]; /* pop index */ + used[i++] = 0; /* index unused */ + } + else { + i = unused - used; + p[index] = i; + used[i] = 1; /* mark index used */ + ++index; + if (index < r-1) { /* if not done yet */ + p[index] = i = 0; + continue; + } + for (i = 0; i < n; ++i) { + if (used[i]) continue; + p[index] = i; + if (!yield_indexed_values(values, r, p)) { + rb_raise(rb_eRuntimeError, "permute reentered"); + } + } + i = p[--index]; /* pop index */ + used[i] = 0; /* index unused */ + p[index] = ++i; + } + } +} + +/* + * Returns the product of from, from-1, ..., from - how_many + 1. + * http://en.wikipedia.org/wiki/Pochhammer_symbol + */ +static VALUE +descending_factorial(long from, long how_many) +{ + VALUE cnt = LONG2FIX(how_many >= 0); + while (how_many-- > 0) { + VALUE v = LONG2FIX(from--); + cnt = rb_funcallv(cnt, '*', 1, &v); + } + return cnt; +} + +static VALUE +binomial_coefficient(long comb, long size) +{ + VALUE r, v; + if (comb > size-comb) { + comb = size-comb; + } + if (comb < 0) { + return LONG2FIX(0); + } + r = descending_factorial(size, comb); + v = descending_factorial(comb, comb); + return rb_funcallv(r, id_div, 1, &v); +} + +static VALUE +rb_ary_permutation_size(VALUE ary, VALUE args, VALUE eobj) +{ + long n = RARRAY_LEN(ary); + long k = (args && (RARRAY_LEN(args) > 0)) ? NUM2LONG(RARRAY_AREF(args, 0)) : n; + + return descending_factorial(n, k); +} + +/* + * call-seq: + * ary.permutation { |p| block } -> ary + * ary.permutation -> Enumerator + * ary.permutation(n) { |p| block } -> ary + * ary.permutation(n) -> Enumerator + * + * When invoked with a block, yield all permutations of length +n+ of the + * elements of the array, then return the array itself. + * + * If +n+ is not specified, yield all permutations of all elements. + * + * The implementation makes no guarantees about the order in which the + * permutations are yielded. + * + * If no block is given, an Enumerator is returned instead. + * + * Examples: + * + * a = [1, 2, 3] + * a.permutation.to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] + * a.permutation(1).to_a #=> [[1],[2],[3]] + * a.permutation(2).to_a #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]] + * a.permutation(3).to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] + * a.permutation(0).to_a #=> [[]] # one permutation of length 0 + * a.permutation(4).to_a #=> [] # no permutations of length 4 + */ + +static VALUE +rb_ary_permutation(int argc, VALUE *argv, VALUE ary) +{ + VALUE num; + long r, n, i; + + n = RARRAY_LEN(ary); /* Array length */ + RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_permutation_size); /* Return enumerator if no block */ + rb_scan_args(argc, argv, "01", &num); + r = NIL_P(num) ? n : NUM2LONG(num); /* Permutation size from argument */ + + if (r < 0 || n < r) { + /* no permutations: yield nothing */ + } + else if (r == 0) { /* exactly one permutation: the zero-length array */ + rb_yield(rb_ary_new2(0)); + } + else if (r == 1) { /* this is a special, easy case */ + for (i = 0; i < RARRAY_LEN(ary); i++) { + rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i))); + } + } + else { /* this is the general case */ + volatile VALUE t0; + long *p = (long*)ALLOCV(t0, r*sizeof(long)+n*sizeof(char)); + char *used = (char*)(p + r); + VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ + RBASIC_CLEAR_CLASS(ary0); + + MEMZERO(used, char, n); /* initialize array */ + + permute0(n, r, p, used, ary0); /* compute and yield permutations */ + ALLOCV_END(t0); + RBASIC_SET_CLASS_RAW(ary0, rb_cArray); + } + return ary; +} + +static void +combinate0(const long len, const long n, long *const stack, const VALUE values) +{ + long lev = 0; + + MEMZERO(stack+1, long, n); + stack[0] = -1; + for (;;) { + for (lev++; lev < n; lev++) { + stack[lev+1] = stack[lev]+1; + } + if (!yield_indexed_values(values, n, stack+1)) { + rb_raise(rb_eRuntimeError, "combination reentered"); + } + do { + if (lev == 0) return; + stack[lev--]++; + } while (stack[lev+1]+n == len+lev+1); + } +} + +static VALUE +rb_ary_combination_size(VALUE ary, VALUE args, VALUE eobj) +{ + long n = RARRAY_LEN(ary); + long k = NUM2LONG(RARRAY_AREF(args, 0)); + + return binomial_coefficient(k, n); +} + +/* + * call-seq: + * ary.combination(n) { |c| block } -> ary + * ary.combination(n) -> Enumerator + * + * When invoked with a block, yields all combinations of length +n+ of elements + * from the array and then returns the array itself. + * + * The implementation makes no guarantees about the order in which the + * combinations are yielded. + * + * If no block is given, an Enumerator is returned instead. + * + * Examples: + * + * a = [1, 2, 3, 4] + * a.combination(1).to_a #=> [[1],[2],[3],[4]] + * a.combination(2).to_a #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]] + * a.combination(3).to_a #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]] + * a.combination(4).to_a #=> [[1,2,3,4]] + * a.combination(0).to_a #=> [[]] # one combination of length 0 + * a.combination(5).to_a #=> [] # no combinations of length 5 + * + */ + +static VALUE +rb_ary_combination(VALUE ary, VALUE num) +{ + long i, n, len; + + n = NUM2LONG(num); + RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_combination_size); + len = RARRAY_LEN(ary); + if (n < 0 || len < n) { + /* yield nothing */ + } + else if (n == 0) { + rb_yield(rb_ary_new2(0)); + } + else if (n == 1) { + for (i = 0; i < len; i++) { + rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i))); + } + } + else { + VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ + volatile VALUE t0; + long *stack = ALLOCV_N(long, t0, n+1); + + RBASIC_CLEAR_CLASS(ary0); + combinate0(len, n, stack, ary0); + ALLOCV_END(t0); + RBASIC_SET_CLASS_RAW(ary0, rb_cArray); + } + return ary; +} + +/* + * Compute repeated permutations of +r+ elements of the set + * [0..n-1]. + * + * When we have a complete repeated permutation of array indexes, copy the + * values at those indexes into a new array and yield that array. + * + * n: the size of the set + * r: the number of elements in each permutation + * p: the array (of size r) that we're filling in + * values: the Ruby array that holds the actual values to permute + */ +static void +rpermute0(const long n, const long r, long *const p, const VALUE values) +{ + long i = 0, index = 0; + + p[index] = i; + for (;;) { + if (++index < r-1) { + p[index] = i = 0; + continue; + } + for (i = 0; i < n; ++i) { + p[index] = i; + if (!yield_indexed_values(values, r, p)) { + rb_raise(rb_eRuntimeError, "repeated permute reentered"); + } + } + do { + if (index <= 0) return; + } while ((i = ++p[--index]) >= n); + } +} + +static VALUE +rb_ary_repeated_permutation_size(VALUE ary, VALUE args, VALUE eobj) +{ + long n = RARRAY_LEN(ary); + long k = NUM2LONG(RARRAY_AREF(args, 0)); + VALUE v; + + if (k < 0) { + return LONG2FIX(0); + } + + v = LONG2NUM(k); + return rb_funcallv(LONG2NUM(n), id_power, 1, &v); +} + +/* + * call-seq: + * ary.repeated_permutation(n) { |p| block } -> ary + * ary.repeated_permutation(n) -> Enumerator + * + * When invoked with a block, yield all repeated permutations of length +n+ of + * the elements of the array, then return the array itself. + * + * The implementation makes no guarantees about the order in which the repeated + * permutations are yielded. + * + * If no block is given, an Enumerator is returned instead. + * + * Examples: + * + * a = [1, 2] + * a.repeated_permutation(1).to_a #=> [[1], [2]] + * a.repeated_permutation(2).to_a #=> [[1,1],[1,2],[2,1],[2,2]] + * a.repeated_permutation(3).to_a #=> [[1,1,1],[1,1,2],[1,2,1],[1,2,2], + * # [2,1,1],[2,1,2],[2,2,1],[2,2,2]] + * a.repeated_permutation(0).to_a #=> [[]] # one permutation of length 0 + */ + +static VALUE +rb_ary_repeated_permutation(VALUE ary, VALUE num) +{ + long r, n, i; + + n = RARRAY_LEN(ary); /* Array length */ + RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_permutation_size); /* Return Enumerator if no block */ + r = NUM2LONG(num); /* Permutation size from argument */ + + if (r < 0) { + /* no permutations: yield nothing */ + } + else if (r == 0) { /* exactly one permutation: the zero-length array */ + rb_yield(rb_ary_new2(0)); + } + else if (r == 1) { /* this is a special, easy case */ + for (i = 0; i < RARRAY_LEN(ary); i++) { + rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i))); + } + } + else { /* this is the general case */ + volatile VALUE t0; + long *p = ALLOCV_N(long, t0, r); + VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ + RBASIC_CLEAR_CLASS(ary0); + + rpermute0(n, r, p, ary0); /* compute and yield repeated permutations */ + ALLOCV_END(t0); + RBASIC_SET_CLASS_RAW(ary0, rb_cArray); + } + return ary; +} + +static void +rcombinate0(const long n, const long r, long *const p, const long rest, const VALUE values) +{ + long i = 0, index = 0; + + p[index] = i; + for (;;) { + if (++index < r-1) { + p[index] = i; + continue; + } + for (; i < n; ++i) { + p[index] = i; + if (!yield_indexed_values(values, r, p)) { + rb_raise(rb_eRuntimeError, "repeated combination reentered"); + } + } + do { + if (index <= 0) return; + } while ((i = ++p[--index]) >= n); + } +} + +static VALUE +rb_ary_repeated_combination_size(VALUE ary, VALUE args, VALUE eobj) +{ + long n = RARRAY_LEN(ary); + long k = NUM2LONG(RARRAY_AREF(args, 0)); + if (k == 0) { + return LONG2FIX(1); + } + return binomial_coefficient(k, n + k - 1); +} + +/* + * call-seq: + * ary.repeated_combination(n) { |c| block } -> ary + * ary.repeated_combination(n) -> Enumerator + * + * When invoked with a block, yields all repeated combinations of length +n+ of + * elements from the array and then returns the array itself. + * + * The implementation makes no guarantees about the order in which the repeated + * combinations are yielded. + * + * If no block is given, an Enumerator is returned instead. + * + * Examples: + * + * a = [1, 2, 3] + * a.repeated_combination(1).to_a #=> [[1], [2], [3]] + * a.repeated_combination(2).to_a #=> [[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]] + * a.repeated_combination(3).to_a #=> [[1,1,1],[1,1,2],[1,1,3],[1,2,2],[1,2,3], + * # [1,3,3],[2,2,2],[2,2,3],[2,3,3],[3,3,3]] + * a.repeated_combination(4).to_a #=> [[1,1,1,1],[1,1,1,2],[1,1,1,3],[1,1,2,2],[1,1,2,3], + * # [1,1,3,3],[1,2,2,2],[1,2,2,3],[1,2,3,3],[1,3,3,3], + * # [2,2,2,2],[2,2,2,3],[2,2,3,3],[2,3,3,3],[3,3,3,3]] + * a.repeated_combination(0).to_a #=> [[]] # one combination of length 0 + * + */ + +static VALUE +rb_ary_repeated_combination(VALUE ary, VALUE num) +{ + long n, i, len; + + n = NUM2LONG(num); /* Combination size from argument */ + RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_combination_size); /* Return enumerator if no block */ + len = RARRAY_LEN(ary); + if (n < 0) { + /* yield nothing */ + } + else if (n == 0) { + rb_yield(rb_ary_new2(0)); + } + else if (n == 1) { + for (i = 0; i < len; i++) { + rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i))); + } + } + else if (len == 0) { + /* yield nothing */ + } + else { + volatile VALUE t0; + long *p = ALLOCV_N(long, t0, n); + VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */ + RBASIC_CLEAR_CLASS(ary0); + + rcombinate0(len, n, p, n, ary0); /* compute and yield repeated combinations */ + ALLOCV_END(t0); + RBASIC_SET_CLASS_RAW(ary0, rb_cArray); + } + return ary; +} + +/* + * call-seq: + * ary.product(other_ary, ...) -> new_ary + * ary.product(other_ary, ...) { |p| block } -> ary + * + * Returns an array of all combinations of elements from all arrays. + * + * The length of the returned array is the product of the length of +self+ and + * the argument arrays. + * + * If given a block, #product will yield all combinations and return +self+ + * instead. + * + * [1,2,3].product([4,5]) #=> [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]] + * [1,2].product([1,2]) #=> [[1,1],[1,2],[2,1],[2,2]] + * [1,2].product([3,4],[5,6]) #=> [[1,3,5],[1,3,6],[1,4,5],[1,4,6], + * # [2,3,5],[2,3,6],[2,4,5],[2,4,6]] + * [1,2].product() #=> [[1],[2]] + * [1,2].product([]) #=> [] + */ + +static VALUE +rb_ary_product(int argc, VALUE *argv, VALUE ary) +{ + int n = argc+1; /* How many arrays we're operating on */ + volatile VALUE t0 = tmpary(n); + volatile VALUE t1 = tmpbuf(n, sizeof(int)); + VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */ + int *counters = (int*)RSTRING_PTR(t1); /* The current position in each one */ + VALUE result = Qnil; /* The array we'll be returning, when no block given */ + long i,j; + long resultlen = 1; + + RBASIC_CLEAR_CLASS(t0); + RBASIC_CLEAR_CLASS(t1); + + /* initialize the arrays of arrays */ + ARY_SET_LEN(t0, n); + arrays[0] = ary; + for (i = 1; i < n; i++) arrays[i] = Qnil; + for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]); + + /* initialize the counters for the arrays */ + for (i = 0; i < n; i++) counters[i] = 0; + + /* Otherwise, allocate and fill in an array of results */ + if (rb_block_given_p()) { + /* Make defensive copies of arrays; exit if any is empty */ + for (i = 0; i < n; i++) { + if (RARRAY_LEN(arrays[i]) == 0) goto done; + arrays[i] = ary_make_shared_copy(arrays[i]); + } + } + else { + /* Compute the length of the result array; return [] if any is empty */ + for (i = 0; i < n; i++) { + long k = RARRAY_LEN(arrays[i]); + if (k == 0) { + result = rb_ary_new2(0); + goto done; + } + if (MUL_OVERFLOW_LONG_P(resultlen, k)) + rb_raise(rb_eRangeError, "too big to product"); + resultlen *= k; + } + result = rb_ary_new2(resultlen); + } + for (;;) { + int m; + /* fill in one subarray */ + VALUE subarray = rb_ary_new2(n); + for (j = 0; j < n; j++) { + rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j])); + } + + /* put it on the result array */ + if (NIL_P(result)) { + FL_SET(t0, FL_USER5); + rb_yield(subarray); + if (! FL_TEST(t0, FL_USER5)) { + rb_raise(rb_eRuntimeError, "product reentered"); + } + else { + FL_UNSET(t0, FL_USER5); + } + } + else { + rb_ary_push(result, subarray); + } + + /* + * Increment the last counter. If it overflows, reset to 0 + * and increment the one before it. + */ + m = n-1; + counters[m]++; + while (counters[m] == RARRAY_LEN(arrays[m])) { + counters[m] = 0; + /* If the first counter overflows, we are done */ + if (--m < 0) goto done; + counters[m]++; + } + } +done: + tmpary_discard(t0); + tmpbuf_discard(t1); + + return NIL_P(result) ? ary : result; +} + +/* + * call-seq: + * ary.take(n) -> new_ary + * + * Returns first +n+ elements from the array. + * + * If a negative number is given, raises an ArgumentError. + * + * See also Array#drop + * + * a = [1, 2, 3, 4, 5, 0] + * a.take(3) #=> [1, 2, 3] + * + */ + +static VALUE +rb_ary_take(VALUE obj, VALUE n) +{ + long len = NUM2LONG(n); + if (len < 0) { + rb_raise(rb_eArgError, "attempt to take negative size"); + } + return rb_ary_subseq(obj, 0, len); +} + +/* + * call-seq: + * ary.take_while { |arr| block } -> new_ary + * ary.take_while -> Enumerator + * + * Passes elements to the block until the block returns +nil+ or +false+, then + * stops iterating and returns an array of all prior elements. + * + * If no block is given, an Enumerator is returned instead. + * + * See also Array#drop_while + * + * a = [1, 2, 3, 4, 5, 0] + * a.take_while { |i| i < 3 } #=> [1, 2] + * + */ + +static VALUE +rb_ary_take_while(VALUE ary) +{ + long i; + + RETURN_ENUMERATOR(ary, 0, 0); + for (i = 0; i < RARRAY_LEN(ary); i++) { + if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) break; + } + return rb_ary_take(ary, LONG2FIX(i)); +} + +/* + * call-seq: + * ary.drop(n) -> new_ary + * + * Drops first +n+ elements from +ary+ and returns the rest of the elements in + * an array. + * + * If a negative number is given, raises an ArgumentError. + * + * See also Array#take + * + * a = [1, 2, 3, 4, 5, 0] + * a.drop(3) #=> [4, 5, 0] + * + */ + +static VALUE +rb_ary_drop(VALUE ary, VALUE n) +{ + VALUE result; + long pos = NUM2LONG(n); + if (pos < 0) { + rb_raise(rb_eArgError, "attempt to drop negative size"); + } + + result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary)); + if (result == Qnil) result = rb_ary_new(); + return result; +} + +/* + * call-seq: + * ary.drop_while { |arr| block } -> new_ary + * ary.drop_while -> Enumerator + * + * Drops elements up to, but not including, the first element for which the + * block returns +nil+ or +false+ and returns an array containing the + * remaining elements. + * + * If no block is given, an Enumerator is returned instead. + * + * See also Array#take_while + * + * a = [1, 2, 3, 4, 5, 0] + * a.drop_while {|i| i < 3 } #=> [3, 4, 5, 0] + * + */ + +static VALUE +rb_ary_drop_while(VALUE ary) +{ + long i; + + RETURN_ENUMERATOR(ary, 0, 0); + for (i = 0; i < RARRAY_LEN(ary); i++) { + if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) break; + } + return rb_ary_drop(ary, LONG2FIX(i)); +} + +/* + * call-seq: + * ary.any? [{ |obj| block }] -> true or false + * + * See also Enumerable#any? + */ + +static VALUE +rb_ary_any_p(VALUE ary) +{ + long i, len = RARRAY_LEN(ary); + const VALUE *ptr = RARRAY_CONST_PTR(ary); + + if (!len) return Qfalse; + if (!rb_block_given_p()) { + for (i = 0; i < len; ++i) if (RTEST(ptr[i])) return Qtrue; + } + else { + for (i = 0; i < RARRAY_LEN(ary); ++i) { + if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) return Qtrue; + } + } + return Qfalse; +} + +/* + * Arrays are ordered, integer-indexed collections of any object. + * + * Array indexing starts at 0, as in C or Java. A negative index is assumed + * to be relative to the end of the array---that is, an index of -1 indicates + * the last element of the array, -2 is the next to last element in the + * array, and so on. + * + * == Creating Arrays + * + * A new array can be created by using the literal constructor + * []. Arrays can contain different types of objects. For + * example, the array below contains an Integer, a String and a Float: + * + * ary = [1, "two", 3.0] #=> [1, "two", 3.0] + * + * An array can also be created by explicitly calling Array.new with zero, one + * (the initial size of the Array) or two arguments (the initial size and a + * default object). + * + * ary = Array.new #=> [] + * Array.new(3) #=> [nil, nil, nil] + * Array.new(3, true) #=> [true, true, true] + * + * Note that the second argument populates the array with references to the + * same object. Therefore, it is only recommended in cases when you need to + * instantiate arrays with natively immutable objects such as Symbols, + * numbers, true or false. + * + * To create an array with separate objects a block can be passed instead. + * This method is safe to use with mutable objects such as hashes, strings or + * other arrays: + * + * Array.new(4) { Hash.new } #=> [{}, {}, {}, {}] + * + * This is also a quick way to build up multi-dimensional arrays: + * + * empty_table = Array.new(3) { Array.new(3) } + * #=> [[nil, nil, nil], [nil, nil, nil], [nil, nil, nil]] + * + * An array can also be created by using the Array() method, provided by + * Kernel, which tries to call #to_ary, then #to_a on its argument. + * + * Array({:a => "a", :b => "b"}) #=> [[:a, "a"], [:b, "b"]] + * + * == Example Usage + * + * In addition to the methods it mixes in through the Enumerable module, the + * Array class has proprietary methods for accessing, searching and otherwise + * manipulating arrays. + * + * Some of the more common ones are illustrated below. + * + * == Accessing Elements + * + * Elements in an array can be retrieved using the Array#[] method. It can + * take a single integer argument (a numeric index), a pair of arguments + * (start and length) or a range. Negative indices start counting from the end, + * with -1 being the last element. + * + * arr = [1, 2, 3, 4, 5, 6] + * arr[2] #=> 3 + * arr[100] #=> nil + * arr[-3] #=> 4 + * arr[2, 3] #=> [3, 4, 5] + * arr[1..4] #=> [2, 3, 4, 5] + * arr[1..-3] #=> [2, 3, 4] + * + * Another way to access a particular array element is by using the #at method + * + * arr.at(0) #=> 1 + * + * The #slice method works in an identical manner to Array#[]. + * + * To raise an error for indices outside of the array bounds or else to + * provide a default value when that happens, you can use #fetch. + * + * arr = ['a', 'b', 'c', 'd', 'e', 'f'] + * arr.fetch(100) #=> IndexError: index 100 outside of array bounds: -6...6 + * arr.fetch(100, "oops") #=> "oops" + * + * The special methods #first and #last will return the first and last + * elements of an array, respectively. + * + * arr.first #=> 1 + * arr.last #=> 6 + * + * To return the first +n+ elements of an array, use #take + * + * arr.take(3) #=> [1, 2, 3] + * + * #drop does the opposite of #take, by returning the elements after +n+ + * elements have been dropped: + * + * arr.drop(3) #=> [4, 5, 6] + * + * == Obtaining Information about an Array + * + * Arrays keep track of their own length at all times. To query an array + * about the number of elements it contains, use #length, #count or #size. + * + * browsers = ['Chrome', 'Firefox', 'Safari', 'Opera', 'IE'] + * browsers.length #=> 5 + * browsers.count #=> 5 + * + * To check whether an array contains any elements at all + * + * browsers.empty? #=> false + * + * To check whether a particular item is included in the array + * + * browsers.include?('Konqueror') #=> false + * + * == Adding Items to Arrays + * + * Items can be added to the end of an array by using either #push or #<< + * + * arr = [1, 2, 3, 4] + * arr.push(5) #=> [1, 2, 3, 4, 5] + * arr << 6 #=> [1, 2, 3, 4, 5, 6] + * + * #unshift will add a new item to the beginning of an array. + * + * arr.unshift(0) #=> [0, 1, 2, 3, 4, 5, 6] + * + * With #insert you can add a new element to an array at any position. + * + * arr.insert(3, 'apple') #=> [0, 1, 2, 'apple', 3, 4, 5, 6] + * + * Using the #insert method, you can also insert multiple values at once: + * + * arr.insert(3, 'orange', 'pear', 'grapefruit') + * #=> [0, 1, 2, "orange", "pear", "grapefruit", "apple", 3, 4, 5, 6] + * + * == Removing Items from an Array + * + * The method #pop removes the last element in an array and returns it: + * + * arr = [1, 2, 3, 4, 5, 6] + * arr.pop #=> 6 + * arr #=> [1, 2, 3, 4, 5] + * + * To retrieve and at the same time remove the first item, use #shift: + * + * arr.shift #=> 1 + * arr #=> [2, 3, 4, 5] + * + * To delete an element at a particular index: + * + * arr.delete_at(2) #=> 4 + * arr #=> [2, 3, 5] + * + * To delete a particular element anywhere in an array, use #delete: + * + * arr = [1, 2, 2, 3] + * arr.delete(2) #=> 2 + * arr #=> [1,3] + * + * A useful method if you need to remove +nil+ values from an array is + * #compact: + * + * arr = ['foo', 0, nil, 'bar', 7, 'baz', nil] + * arr.compact #=> ['foo', 0, 'bar', 7, 'baz'] + * arr #=> ['foo', 0, nil, 'bar', 7, 'baz', nil] + * arr.compact! #=> ['foo', 0, 'bar', 7, 'baz'] + * arr #=> ['foo', 0, 'bar', 7, 'baz'] + * + * Another common need is to remove duplicate elements from an array. + * + * It has the non-destructive #uniq, and destructive method #uniq! + * + * arr = [2, 5, 6, 556, 6, 6, 8, 9, 0, 123, 556] + * arr.uniq #=> [2, 5, 6, 556, 8, 9, 0, 123] + * + * == Iterating over Arrays + * + * Like all classes that include the Enumerable module, Array has an each + * method, which defines what elements should be iterated over and how. In + * case of Array's #each, all elements in the Array instance are yielded to + * the supplied block in sequence. + * + * Note that this operation leaves the array unchanged. + * + * arr = [1, 2, 3, 4, 5] + * arr.each { |a| print a -= 10, " " } + * # prints: -9 -8 -7 -6 -5 + * #=> [1, 2, 3, 4, 5] + * + * Another sometimes useful iterator is #reverse_each which will iterate over + * the elements in the array in reverse order. + * + * words = %w[first second third fourth fifth sixth] + * str = "" + * words.reverse_each { |word| str += "#{word} " } + * p str #=> "sixth fifth fourth third second first " + * + * The #map method can be used to create a new array based on the original + * array, but with the values modified by the supplied block: + * + * arr.map { |a| 2*a } #=> [2, 4, 6, 8, 10] + * arr #=> [1, 2, 3, 4, 5] + * arr.map! { |a| a**2 } #=> [1, 4, 9, 16, 25] + * arr #=> [1, 4, 9, 16, 25] + * + * == Selecting Items from an Array + * + * Elements can be selected from an array according to criteria defined in a + * block. The selection can happen in a destructive or a non-destructive + * manner. While the destructive operations will modify the array they were + * called on, the non-destructive methods usually return a new array with the + * selected elements, but leave the original array unchanged. + * + * === Non-destructive Selection + * + * arr = [1, 2, 3, 4, 5, 6] + * arr.select { |a| a > 3 } #=> [4, 5, 6] + * arr.reject { |a| a < 3 } #=> [3, 4, 5, 6] + * arr.drop_while { |a| a < 4 } #=> [4, 5, 6] + * arr #=> [1, 2, 3, 4, 5, 6] + * + * === Destructive Selection + * + * #select! and #reject! are the corresponding destructive methods to #select + * and #reject + * + * Similar to #select vs. #reject, #delete_if and #keep_if have the exact + * opposite result when supplied with the same block: + * + * arr.delete_if { |a| a < 4 } #=> [4, 5, 6] + * arr #=> [4, 5, 6] + * + * arr = [1, 2, 3, 4, 5, 6] + * arr.keep_if { |a| a < 4 } #=> [1, 2, 3] + * arr #=> [1, 2, 3] + * + */ + +void +Init_Array(void) +{ +#undef rb_intern +#define rb_intern(str) rb_intern_const(str) + + rb_cArray = rb_define_class("Array", rb_cObject); + rb_include_module(rb_cArray, rb_mEnumerable); + + rb_define_alloc_func(rb_cArray, empty_ary_alloc); + rb_define_singleton_method(rb_cArray, "[]", rb_ary_s_create, -1); + rb_define_singleton_method(rb_cArray, "try_convert", rb_ary_s_try_convert, 1); + rb_define_method(rb_cArray, "initialize", rb_ary_initialize, -1); + rb_define_method(rb_cArray, "initialize_copy", rb_ary_replace, 1); + + rb_define_method(rb_cArray, "inspect", rb_ary_inspect, 0); + rb_define_alias(rb_cArray, "to_s", "inspect"); + rb_define_method(rb_cArray, "to_a", rb_ary_to_a, 0); + rb_define_method(rb_cArray, "to_h", rb_ary_to_h, 0); + rb_define_method(rb_cArray, "to_ary", rb_ary_to_ary_m, 0); + rb_define_method(rb_cArray, "frozen?", rb_ary_frozen_p, 0); + + rb_define_method(rb_cArray, "==", rb_ary_equal, 1); + rb_define_method(rb_cArray, "eql?", rb_ary_eql, 1); + rb_define_method(rb_cArray, "hash", rb_ary_hash, 0); + + rb_define_method(rb_cArray, "[]", rb_ary_aref, -1); + rb_define_method(rb_cArray, "[]=", rb_ary_aset, -1); + rb_define_method(rb_cArray, "at", rb_ary_at, 1); + rb_define_method(rb_cArray, "fetch", rb_ary_fetch, -1); + rb_define_method(rb_cArray, "first", rb_ary_first, -1); + rb_define_method(rb_cArray, "last", rb_ary_last, -1); + rb_define_method(rb_cArray, "concat", rb_ary_concat, 1); + rb_define_method(rb_cArray, "<<", rb_ary_push, 1); + rb_define_method(rb_cArray, "push", rb_ary_push_m, -1); + rb_define_method(rb_cArray, "pop", rb_ary_pop_m, -1); + rb_define_method(rb_cArray, "shift", rb_ary_shift_m, -1); + rb_define_method(rb_cArray, "unshift", rb_ary_unshift_m, -1); + rb_define_method(rb_cArray, "insert", rb_ary_insert, -1); + rb_define_method(rb_cArray, "each", rb_ary_each, 0); + rb_define_method(rb_cArray, "each_index", rb_ary_each_index, 0); + rb_define_method(rb_cArray, "reverse_each", rb_ary_reverse_each, 0); + rb_define_method(rb_cArray, "length", rb_ary_length, 0); + rb_define_alias(rb_cArray, "size", "length"); + rb_define_method(rb_cArray, "empty?", rb_ary_empty_p, 0); + rb_define_method(rb_cArray, "find_index", rb_ary_index, -1); + rb_define_method(rb_cArray, "index", rb_ary_index, -1); + rb_define_method(rb_cArray, "rindex", rb_ary_rindex, -1); + rb_define_method(rb_cArray, "join", rb_ary_join_m, -1); + rb_define_method(rb_cArray, "reverse", rb_ary_reverse_m, 0); + rb_define_method(rb_cArray, "reverse!", rb_ary_reverse_bang, 0); + rb_define_method(rb_cArray, "rotate", rb_ary_rotate_m, -1); + rb_define_method(rb_cArray, "rotate!", rb_ary_rotate_bang, -1); + rb_define_method(rb_cArray, "sort", rb_ary_sort, 0); + rb_define_method(rb_cArray, "sort!", rb_ary_sort_bang, 0); + rb_define_method(rb_cArray, "sort_by!", rb_ary_sort_by_bang, 0); + rb_define_method(rb_cArray, "collect", rb_ary_collect, 0); + rb_define_method(rb_cArray, "collect!", rb_ary_collect_bang, 0); + rb_define_method(rb_cArray, "map", rb_ary_collect, 0); + rb_define_method(rb_cArray, "map!", rb_ary_collect_bang, 0); + rb_define_method(rb_cArray, "select", rb_ary_select, 0); + rb_define_method(rb_cArray, "select!", rb_ary_select_bang, 0); + rb_define_method(rb_cArray, "keep_if", rb_ary_keep_if, 0); + rb_define_method(rb_cArray, "values_at", rb_ary_values_at, -1); + rb_define_method(rb_cArray, "delete", rb_ary_delete, 1); + rb_define_method(rb_cArray, "delete_at", rb_ary_delete_at_m, 1); + rb_define_method(rb_cArray, "delete_if", rb_ary_delete_if, 0); + rb_define_method(rb_cArray, "reject", rb_ary_reject, 0); + rb_define_method(rb_cArray, "reject!", rb_ary_reject_bang, 0); + rb_define_method(rb_cArray, "zip", rb_ary_zip, -1); + rb_define_method(rb_cArray, "transpose", rb_ary_transpose, 0); + rb_define_method(rb_cArray, "replace", rb_ary_replace, 1); + rb_define_method(rb_cArray, "clear", rb_ary_clear, 0); + rb_define_method(rb_cArray, "fill", rb_ary_fill, -1); + rb_define_method(rb_cArray, "include?", rb_ary_includes, 1); + rb_define_method(rb_cArray, "<=>", rb_ary_cmp, 1); + + rb_define_method(rb_cArray, "slice", rb_ary_aref, -1); + rb_define_method(rb_cArray, "slice!", rb_ary_slice_bang, -1); + + rb_define_method(rb_cArray, "assoc", rb_ary_assoc, 1); + rb_define_method(rb_cArray, "rassoc", rb_ary_rassoc, 1); + + rb_define_method(rb_cArray, "+", rb_ary_plus, 1); + rb_define_method(rb_cArray, "*", rb_ary_times, 1); + + rb_define_method(rb_cArray, "-", rb_ary_diff, 1); + rb_define_method(rb_cArray, "&", rb_ary_and, 1); + rb_define_method(rb_cArray, "|", rb_ary_or, 1); + + rb_define_method(rb_cArray, "uniq", rb_ary_uniq, 0); + rb_define_method(rb_cArray, "uniq!", rb_ary_uniq_bang, 0); + rb_define_method(rb_cArray, "compact", rb_ary_compact, 0); + rb_define_method(rb_cArray, "compact!", rb_ary_compact_bang, 0); + rb_define_method(rb_cArray, "flatten", rb_ary_flatten, -1); + rb_define_method(rb_cArray, "flatten!", rb_ary_flatten_bang, -1); + rb_define_method(rb_cArray, "count", rb_ary_count, -1); + rb_define_method(rb_cArray, "shuffle!", rb_ary_shuffle_bang, -1); + rb_define_method(rb_cArray, "shuffle", rb_ary_shuffle, -1); + rb_define_method(rb_cArray, "sample", rb_ary_sample, -1); + rb_define_method(rb_cArray, "cycle", rb_ary_cycle, -1); + rb_define_method(rb_cArray, "permutation", rb_ary_permutation, -1); + rb_define_method(rb_cArray, "combination", rb_ary_combination, 1); + rb_define_method(rb_cArray, "repeated_permutation", rb_ary_repeated_permutation, 1); + rb_define_method(rb_cArray, "repeated_combination", rb_ary_repeated_combination, 1); + rb_define_method(rb_cArray, "product", rb_ary_product, -1); + + rb_define_method(rb_cArray, "take", rb_ary_take, 1); + rb_define_method(rb_cArray, "take_while", rb_ary_take_while, 0); + rb_define_method(rb_cArray, "drop", rb_ary_drop, 1); + rb_define_method(rb_cArray, "drop_while", rb_ary_drop_while, 0); + rb_define_method(rb_cArray, "bsearch", rb_ary_bsearch, 0); + rb_define_method(rb_cArray, "any?", rb_ary_any_p, 0); + + id_cmp = rb_intern("<=>"); + id_random = rb_intern("random"); + id_div = rb_intern("div"); + id_power = rb_intern("**"); +} -- cgit v1.2.3