From fcbf63e62c627deae76c1b8cb8c0876c536ed811 Mon Sep 17 00:00:00 2001 From: Jari Vetoniemi Date: Mon, 16 Mar 2020 18:49:26 +0900 Subject: Fresh start --- jni/ruby/ext/bigdecimal/bigdecimal.c | 6266 ++++++++++++++++++++++++++++++++++ 1 file changed, 6266 insertions(+) create mode 100644 jni/ruby/ext/bigdecimal/bigdecimal.c (limited to 'jni/ruby/ext/bigdecimal/bigdecimal.c') diff --git a/jni/ruby/ext/bigdecimal/bigdecimal.c b/jni/ruby/ext/bigdecimal/bigdecimal.c new file mode 100644 index 0000000..aabdbc6 --- /dev/null +++ b/jni/ruby/ext/bigdecimal/bigdecimal.c @@ -0,0 +1,6266 @@ +/* + * + * Ruby BigDecimal(Variable decimal precision) extension library. + * + * Copyright(C) 2002 by Shigeo Kobayashi(shigeo@tinyforest.gr.jp) + * + */ + +/* #define BIGDECIMAL_DEBUG 1 */ +#ifdef BIGDECIMAL_DEBUG +# define BIGDECIMAL_ENABLE_VPRINT 1 +#endif +#include "bigdecimal.h" +#include "ruby/util.h" + +#ifndef BIGDECIMAL_DEBUG +# define NDEBUG +#endif +#include + +#include +#include +#include +#include +#include +#include +#include "math.h" + +#ifdef HAVE_IEEEFP_H +#include +#endif + +/* #define ENABLE_NUMERIC_STRING */ + +#define MUL_OVERFLOW_SIGNED_INTEGER_P(a, b, min, max) ( \ + (a) == 0 ? 0 : \ + (a) == -1 ? (b) < -(max) : \ + (a) > 0 ? \ + ((b) > 0 ? (max) / (a) < (b) : (min) / (a) > (b)) : \ + ((b) > 0 ? (min) / (a) < (b) : (max) / (a) > (b))) +#define SIGNED_VALUE_MAX INTPTR_MAX +#define SIGNED_VALUE_MIN INTPTR_MIN +#define MUL_OVERFLOW_SIGNED_VALUE_P(a, b) MUL_OVERFLOW_SIGNED_INTEGER_P(a, b, SIGNED_VALUE_MIN, SIGNED_VALUE_MAX) + +VALUE rb_cBigDecimal; +VALUE rb_mBigMath; + +static ID id_BigDecimal_exception_mode; +static ID id_BigDecimal_rounding_mode; +static ID id_BigDecimal_precision_limit; + +static ID id_up; +static ID id_down; +static ID id_truncate; +static ID id_half_up; +static ID id_default; +static ID id_half_down; +static ID id_half_even; +static ID id_banker; +static ID id_ceiling; +static ID id_ceil; +static ID id_floor; +static ID id_to_r; +static ID id_eq; + +/* MACRO's to guard objects from GC by keeping them in stack */ +#define ENTER(n) volatile VALUE RB_UNUSED_VAR(vStack[n]);int iStack=0 +#define PUSH(x) (vStack[iStack++] = (VALUE)(x)) +#define SAVE(p) PUSH((p)->obj) +#define GUARD_OBJ(p,y) ((p)=(y), SAVE(p)) + +#define BASE_FIG RMPD_COMPONENT_FIGURES +#define BASE RMPD_BASE + +#define HALF_BASE (BASE/2) +#define BASE1 (BASE/10) + +#ifndef DBLE_FIG +#define DBLE_FIG (DBL_DIG+1) /* figure of double */ +#endif + +#ifndef RRATIONAL_ZERO_P +# define RRATIONAL_ZERO_P(x) (FIXNUM_P(rb_rational_num(x)) && \ + FIX2LONG(rb_rational_num(x)) == 0) +#endif + +#ifndef RRATIONAL_NEGATIVE_P +# define RRATIONAL_NEGATIVE_P(x) RTEST(rb_funcall((x), '<', 1, INT2FIX(0))) +#endif + +#ifndef DECIMAL_SIZE_OF_BITS +#define DECIMAL_SIZE_OF_BITS(n) (((n) * 3010 + 9998) / 9999) +/* an approximation of ceil(n * log10(2)), upto 65536 at least */ +#endif + +#ifdef PRIsVALUE +# define RB_OBJ_CLASSNAME(obj) rb_obj_class(obj) +# define RB_OBJ_STRING(obj) (obj) +#else +# define PRIsVALUE "s" +# define RB_OBJ_CLASSNAME(obj) rb_obj_classname(obj) +# define RB_OBJ_STRING(obj) StringValueCStr(obj) +#endif + +/* + * ================== Ruby Interface part ========================== + */ +#define DoSomeOne(x,y,f) rb_num_coerce_bin(x,y,f) + +/* + * Returns the BigDecimal version number. + */ +static VALUE +BigDecimal_version(VALUE self) +{ + /* + * 1.0.0: Ruby 1.8.0 + * 1.0.1: Ruby 1.8.1 + * 1.1.0: Ruby 1.9.3 + */ + return rb_str_new2("1.1.0"); +} + +/* + * VP routines used in BigDecimal part + */ +static unsigned short VpGetException(void); +static void VpSetException(unsigned short f); +static void VpInternalRound(Real *c, size_t ixDigit, BDIGIT vPrev, BDIGIT v); +static int VpLimitRound(Real *c, size_t ixDigit); +static Real *VpCopy(Real *pv, Real const* const x); + +#ifdef BIGDECIMAL_ENABLE_VPRINT +static int VPrint(FILE *fp,const char *cntl_chr,Real *a); +#endif + +/* + * **** BigDecimal part **** + */ + +static void +BigDecimal_delete(void *pv) +{ + VpFree(pv); +} + +static size_t +BigDecimal_memsize(const void *ptr) +{ + const Real *pv = ptr; + return pv ? (sizeof(*pv) + pv->MaxPrec * sizeof(BDIGIT)) : 0; +} + +static const rb_data_type_t BigDecimal_data_type = { + "BigDecimal", + { 0, BigDecimal_delete, BigDecimal_memsize, }, +#ifdef RUBY_TYPED_FREE_IMMEDIATELY + 0, 0, RUBY_TYPED_FREE_IMMEDIATELY +#endif +}; + +static inline int +is_kind_of_BigDecimal(VALUE const v) +{ + return rb_typeddata_is_kind_of(v, &BigDecimal_data_type); +} + +static VALUE +ToValue(Real *p) +{ + if (VpIsNaN(p)) { + VpException(VP_EXCEPTION_NaN, "Computation results to 'NaN'(Not a Number)", 0); + } + else if (VpIsPosInf(p)) { + VpException(VP_EXCEPTION_INFINITY, "Computation results to 'Infinity'", 0); + } + else if (VpIsNegInf(p)) { + VpException(VP_EXCEPTION_INFINITY, "Computation results to '-Infinity'", 0); + } + return p->obj; +} + +NORETURN(static void cannot_be_coerced_into_BigDecimal(VALUE, VALUE)); + +static void +cannot_be_coerced_into_BigDecimal(VALUE exc_class, VALUE v) +{ + VALUE str; + + if (rb_special_const_p(v)) { + str = rb_inspect(v); + } + else { + str = rb_class_name(rb_obj_class(v)); + } + + str = rb_str_cat2(rb_str_dup(str), " can't be coerced into BigDecimal"); + rb_exc_raise(rb_exc_new3(exc_class, str)); +} + +static inline VALUE BigDecimal_div2(VALUE, VALUE, VALUE); + +static Real* +GetVpValueWithPrec(VALUE v, long prec, int must) +{ + Real *pv; + VALUE num, bg; + char szD[128]; + VALUE orig = Qundef; + double d; + +again: + switch(TYPE(v)) { + case T_FLOAT: + if (prec < 0) goto unable_to_coerce_without_prec; + if (prec > DBL_DIG+1) goto SomeOneMayDoIt; + d = RFLOAT_VALUE(v); + if (d != 0.0) { + v = rb_funcall(v, id_to_r, 0); + goto again; + } + if (1/d < 0.0) { + return VpCreateRbObject(prec, "-0"); + } + return VpCreateRbObject(prec, "0"); + + case T_RATIONAL: + if (prec < 0) goto unable_to_coerce_without_prec; + + if (orig == Qundef ? (orig = v, 1) : orig != v) { + num = rb_rational_num(v); + pv = GetVpValueWithPrec(num, -1, must); + if (pv == NULL) goto SomeOneMayDoIt; + + v = BigDecimal_div2(ToValue(pv), rb_rational_den(v), LONG2NUM(prec)); + goto again; + } + + v = orig; + goto SomeOneMayDoIt; + + case T_DATA: + if (is_kind_of_BigDecimal(v)) { + pv = DATA_PTR(v); + return pv; + } + else { + goto SomeOneMayDoIt; + } + break; + + case T_FIXNUM: + sprintf(szD, "%ld", FIX2LONG(v)); + return VpCreateRbObject(VpBaseFig() * 2 + 1, szD); + +#ifdef ENABLE_NUMERIC_STRING + case T_STRING: + SafeStringValue(v); + return VpCreateRbObject(strlen(RSTRING_PTR(v)) + VpBaseFig() + 1, + RSTRING_PTR(v)); +#endif /* ENABLE_NUMERIC_STRING */ + + case T_BIGNUM: + bg = rb_big2str(v, 10); + return VpCreateRbObject(strlen(RSTRING_PTR(bg)) + VpBaseFig() + 1, + RSTRING_PTR(bg)); + default: + goto SomeOneMayDoIt; + } + +SomeOneMayDoIt: + if (must) { + cannot_be_coerced_into_BigDecimal(rb_eTypeError, v); + } + return NULL; /* NULL means to coerce */ + +unable_to_coerce_without_prec: + if (must) { + rb_raise(rb_eArgError, + "%"PRIsVALUE" can't be coerced into BigDecimal without a precision", + RB_OBJ_CLASSNAME(v)); + } + return NULL; +} + +static Real* +GetVpValue(VALUE v, int must) +{ + return GetVpValueWithPrec(v, -1, must); +} + +/* call-seq: + * BigDecimal.double_fig + * + * The BigDecimal.double_fig class method returns the number of digits a + * Float number is allowed to have. The result depends upon the CPU and OS + * in use. + */ +static VALUE +BigDecimal_double_fig(VALUE self) +{ + return INT2FIX(VpDblFig()); +} + +/* call-seq: + * precs + * + * Returns an Array of two Integer values. + * + * The first value is the current number of significant digits in the + * BigDecimal. The second value is the maximum number of significant digits + * for the BigDecimal. + */ +static VALUE +BigDecimal_prec(VALUE self) +{ + ENTER(1); + Real *p; + VALUE obj; + + GUARD_OBJ(p, GetVpValue(self, 1)); + obj = rb_assoc_new(INT2NUM(p->Prec*VpBaseFig()), + INT2NUM(p->MaxPrec*VpBaseFig())); + return obj; +} + +/* + * call-seq: hash + * + * Creates a hash for this BigDecimal. + * + * Two BigDecimals with equal sign, + * fractional part and exponent have the same hash. + */ +static VALUE +BigDecimal_hash(VALUE self) +{ + ENTER(1); + Real *p; + st_index_t hash; + + GUARD_OBJ(p, GetVpValue(self, 1)); + hash = (st_index_t)p->sign; + /* hash!=2: the case for 0(1),NaN(0) or +-Infinity(3) is sign itself */ + if(hash == 2 || hash == (st_index_t)-2) { + hash ^= rb_memhash(p->frac, sizeof(BDIGIT)*p->Prec); + hash += p->exponent; + } + return INT2FIX(hash); +} + +/* + * call-seq: _dump + * + * Method used to provide marshalling support. + * + * inf = BigDecimal.new('Infinity') + * => # + * BigDecimal._load(inf._dump) + * => # + * + * See the Marshal module. + */ +static VALUE +BigDecimal_dump(int argc, VALUE *argv, VALUE self) +{ + ENTER(5); + Real *vp; + char *psz; + VALUE dummy; + volatile VALUE dump; + + rb_scan_args(argc, argv, "01", &dummy); + GUARD_OBJ(vp,GetVpValue(self, 1)); + dump = rb_str_new(0, VpNumOfChars(vp, "E")+50); + psz = RSTRING_PTR(dump); + sprintf(psz, "%"PRIuSIZE":", VpMaxPrec(vp)*VpBaseFig()); + VpToString(vp, psz+strlen(psz), 0, 0); + rb_str_resize(dump, strlen(psz)); + return dump; +} + +/* + * Internal method used to provide marshalling support. See the Marshal module. + */ +static VALUE +BigDecimal_load(VALUE self, VALUE str) +{ + ENTER(2); + Real *pv; + unsigned char *pch; + unsigned char ch; + unsigned long m=0; + + SafeStringValue(str); + pch = (unsigned char *)RSTRING_PTR(str); + /* First get max prec */ + while((*pch) != (unsigned char)'\0' && (ch = *pch++) != (unsigned char)':') { + if(!ISDIGIT(ch)) { + rb_raise(rb_eTypeError, "load failed: invalid character in the marshaled string"); + } + m = m*10 + (unsigned long)(ch-'0'); + } + if (m > VpBaseFig()) m -= VpBaseFig(); + GUARD_OBJ(pv, VpNewRbClass(m, (char *)pch, self)); + m /= VpBaseFig(); + if (m && pv->MaxPrec > m) { + pv->MaxPrec = m+1; + } + return ToValue(pv); +} + +static unsigned short +check_rounding_mode(VALUE const v) +{ + unsigned short sw; + ID id; + switch (TYPE(v)) { + case T_SYMBOL: + id = SYM2ID(v); + if (id == id_up) + return VP_ROUND_UP; + if (id == id_down || id == id_truncate) + return VP_ROUND_DOWN; + if (id == id_half_up || id == id_default) + return VP_ROUND_HALF_UP; + if (id == id_half_down) + return VP_ROUND_HALF_DOWN; + if (id == id_half_even || id == id_banker) + return VP_ROUND_HALF_EVEN; + if (id == id_ceiling || id == id_ceil) + return VP_ROUND_CEIL; + if (id == id_floor) + return VP_ROUND_FLOOR; + rb_raise(rb_eArgError, "invalid rounding mode"); + + default: + break; + } + + Check_Type(v, T_FIXNUM); + sw = (unsigned short)FIX2UINT(v); + if (!VpIsRoundMode(sw)) { + rb_raise(rb_eArgError, "invalid rounding mode"); + } + return sw; +} + +/* call-seq: + * BigDecimal.mode(mode, value) + * + * Controls handling of arithmetic exceptions and rounding. If no value + * is supplied, the current value is returned. + * + * Six values of the mode parameter control the handling of arithmetic + * exceptions: + * + * BigDecimal::EXCEPTION_NaN + * BigDecimal::EXCEPTION_INFINITY + * BigDecimal::EXCEPTION_UNDERFLOW + * BigDecimal::EXCEPTION_OVERFLOW + * BigDecimal::EXCEPTION_ZERODIVIDE + * BigDecimal::EXCEPTION_ALL + * + * For each mode parameter above, if the value set is false, computation + * continues after an arithmetic exception of the appropriate type. + * When computation continues, results are as follows: + * + * EXCEPTION_NaN:: NaN + * EXCEPTION_INFINITY:: +Infinity or -Infinity + * EXCEPTION_UNDERFLOW:: 0 + * EXCEPTION_OVERFLOW:: +Infinity or -Infinity + * EXCEPTION_ZERODIVIDE:: +Infinity or -Infinity + * + * One value of the mode parameter controls the rounding of numeric values: + * BigDecimal::ROUND_MODE. The values it can take are: + * + * ROUND_UP, :up:: round away from zero + * ROUND_DOWN, :down, :truncate:: round towards zero (truncate) + * ROUND_HALF_UP, :half_up, :default:: round towards the nearest neighbor, unless both neighbors are equidistant, in which case round away from zero. (default) + * ROUND_HALF_DOWN, :half_down:: round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards zero. + * ROUND_HALF_EVEN, :half_even, :banker:: round towards the nearest neighbor, unless both neighbors are equidistant, in which case round towards the even neighbor (Banker's rounding) + * ROUND_CEILING, :ceiling, :ceil:: round towards positive infinity (ceil) + * ROUND_FLOOR, :floor:: round towards negative infinity (floor) + * + */ +static VALUE +BigDecimal_mode(int argc, VALUE *argv, VALUE self) +{ + VALUE which; + VALUE val; + unsigned long f,fo; + + rb_scan_args(argc, argv, "11", &which, &val); + Check_Type(which, T_FIXNUM); + f = (unsigned long)FIX2INT(which); + + if (f & VP_EXCEPTION_ALL) { + /* Exception mode setting */ + fo = VpGetException(); + if (val == Qnil) return INT2FIX(fo); + if (val != Qfalse && val!=Qtrue) { + rb_raise(rb_eArgError, "second argument must be true or false"); + return Qnil; /* Not reached */ + } + if (f & VP_EXCEPTION_INFINITY) { + VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_INFINITY) : + (fo & (~VP_EXCEPTION_INFINITY)))); + } + fo = VpGetException(); + if (f & VP_EXCEPTION_NaN) { + VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_NaN) : + (fo & (~VP_EXCEPTION_NaN)))); + } + fo = VpGetException(); + if (f & VP_EXCEPTION_UNDERFLOW) { + VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_UNDERFLOW) : + (fo & (~VP_EXCEPTION_UNDERFLOW)))); + } + fo = VpGetException(); + if(f & VP_EXCEPTION_ZERODIVIDE) { + VpSetException((unsigned short)((val == Qtrue) ? (fo | VP_EXCEPTION_ZERODIVIDE) : + (fo & (~VP_EXCEPTION_ZERODIVIDE)))); + } + fo = VpGetException(); + return INT2FIX(fo); + } + if (VP_ROUND_MODE == f) { + /* Rounding mode setting */ + unsigned short sw; + fo = VpGetRoundMode(); + if (NIL_P(val)) return INT2FIX(fo); + sw = check_rounding_mode(val); + fo = VpSetRoundMode(sw); + return INT2FIX(fo); + } + rb_raise(rb_eTypeError, "first argument for BigDecimal#mode invalid"); + return Qnil; +} + +static size_t +GetAddSubPrec(Real *a, Real *b) +{ + size_t mxs; + size_t mx = a->Prec; + SIGNED_VALUE d; + + if (!VpIsDef(a) || !VpIsDef(b)) return (size_t)-1L; + if (mx < b->Prec) mx = b->Prec; + if (a->exponent != b->exponent) { + mxs = mx; + d = a->exponent - b->exponent; + if (d < 0) d = -d; + mx = mx + (size_t)d; + if (mx < mxs) { + return VpException(VP_EXCEPTION_INFINITY, "Exponent overflow", 0); + } + } + return mx; +} + +static SIGNED_VALUE +GetPositiveInt(VALUE v) +{ + SIGNED_VALUE n; + Check_Type(v, T_FIXNUM); + n = FIX2INT(v); + if (n < 0) { + rb_raise(rb_eArgError, "argument must be positive"); + } + return n; +} + +VP_EXPORT Real * +VpNewRbClass(size_t mx, const char *str, VALUE klass) +{ + Real *pv = VpAlloc(mx,str); + pv->obj = TypedData_Wrap_Struct(klass, &BigDecimal_data_type, pv); + return pv; +} + +VP_EXPORT Real * +VpCreateRbObject(size_t mx, const char *str) +{ + Real *pv = VpAlloc(mx,str); + pv->obj = TypedData_Wrap_Struct(rb_cBigDecimal, &BigDecimal_data_type, pv); + return pv; +} + +#define VpAllocReal(prec) (Real *)VpMemAlloc(offsetof(Real, frac) + (prec) * sizeof(BDIGIT)) +#define VpReallocReal(ptr, prec) (Real *)VpMemRealloc((ptr), offsetof(Real, frac) + (prec) * sizeof(BDIGIT)) + +static Real * +VpCopy(Real *pv, Real const* const x) +{ + assert(x != NULL); + + pv = VpReallocReal(pv, x->MaxPrec); + pv->MaxPrec = x->MaxPrec; + pv->Prec = x->Prec; + pv->exponent = x->exponent; + pv->sign = x->sign; + pv->flag = x->flag; + MEMCPY(pv->frac, x->frac, BDIGIT, pv->MaxPrec); + + return pv; +} + +/* Returns True if the value is Not a Number */ +static VALUE +BigDecimal_IsNaN(VALUE self) +{ + Real *p = GetVpValue(self, 1); + if (VpIsNaN(p)) return Qtrue; + return Qfalse; +} + +/* Returns nil, -1, or +1 depending on whether the value is finite, + * -Infinity, or +Infinity. + */ +static VALUE +BigDecimal_IsInfinite(VALUE self) +{ + Real *p = GetVpValue(self, 1); + if (VpIsPosInf(p)) return INT2FIX(1); + if (VpIsNegInf(p)) return INT2FIX(-1); + return Qnil; +} + +/* Returns True if the value is finite (not NaN or infinite) */ +static VALUE +BigDecimal_IsFinite(VALUE self) +{ + Real *p = GetVpValue(self, 1); + if (VpIsNaN(p)) return Qfalse; + if (VpIsInf(p)) return Qfalse; + return Qtrue; +} + +static void +BigDecimal_check_num(Real *p) +{ + if (VpIsNaN(p)) { + VpException(VP_EXCEPTION_NaN, "Computation results to 'NaN'(Not a Number)", 1); + } + else if (VpIsPosInf(p)) { + VpException(VP_EXCEPTION_INFINITY, "Computation results to 'Infinity'", 1); + } + else if (VpIsNegInf(p)) { + VpException(VP_EXCEPTION_INFINITY, "Computation results to '-Infinity'", 1); + } +} + +static VALUE BigDecimal_split(VALUE self); + +/* Returns the value as an integer (Fixnum or Bignum). + * + * If the BigNumber is infinity or NaN, raises FloatDomainError. + */ +static VALUE +BigDecimal_to_i(VALUE self) +{ + ENTER(5); + ssize_t e, nf; + Real *p; + + GUARD_OBJ(p, GetVpValue(self, 1)); + BigDecimal_check_num(p); + + e = VpExponent10(p); + if (e <= 0) return INT2FIX(0); + nf = VpBaseFig(); + if (e <= nf) { + return LONG2NUM((long)(VpGetSign(p) * (BDIGIT_DBL_SIGNED)p->frac[0])); + } + else { + VALUE a = BigDecimal_split(self); + VALUE digits = RARRAY_PTR(a)[1]; + VALUE numerator = rb_funcall(digits, rb_intern("to_i"), 0); + VALUE ret; + ssize_t dpower = e - (ssize_t)RSTRING_LEN(digits); + + if (VpGetSign(p) < 0) { + numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1)); + } + if (dpower < 0) { + ret = rb_funcall(numerator, rb_intern("div"), 1, + rb_funcall(INT2FIX(10), rb_intern("**"), 1, + INT2FIX(-dpower))); + } + else { + ret = rb_funcall(numerator, '*', 1, + rb_funcall(INT2FIX(10), rb_intern("**"), 1, + INT2FIX(dpower))); + } + if (RB_TYPE_P(ret, T_FLOAT)) { + rb_raise(rb_eFloatDomainError, "Infinity"); + } + return ret; + } +} + +/* Returns a new Float object having approximately the same value as the + * BigDecimal number. Normal accuracy limits and built-in errors of binary + * Float arithmetic apply. + */ +static VALUE +BigDecimal_to_f(VALUE self) +{ + ENTER(1); + Real *p; + double d; + SIGNED_VALUE e; + char *buf; + volatile VALUE str; + + GUARD_OBJ(p, GetVpValue(self, 1)); + if (VpVtoD(&d, &e, p) != 1) + return rb_float_new(d); + if (e > (SIGNED_VALUE)(DBL_MAX_10_EXP+BASE_FIG)) + goto overflow; + if (e < (SIGNED_VALUE)(DBL_MIN_10_EXP-BASE_FIG)) + goto underflow; + + str = rb_str_new(0, VpNumOfChars(p, "E")); + buf = RSTRING_PTR(str); + VpToString(p, buf, 0, 0); + errno = 0; + d = strtod(buf, 0); + if (errno == ERANGE) { + if (d == 0.0) goto underflow; + if (fabs(d) >= HUGE_VAL) goto overflow; + } + return rb_float_new(d); + +overflow: + VpException(VP_EXCEPTION_OVERFLOW, "BigDecimal to Float conversion", 0); + if (p->sign >= 0) + return rb_float_new(VpGetDoublePosInf()); + else + return rb_float_new(VpGetDoubleNegInf()); + +underflow: + VpException(VP_EXCEPTION_UNDERFLOW, "BigDecimal to Float conversion", 0); + if (p->sign >= 0) + return rb_float_new(0.0); + else + return rb_float_new(-0.0); +} + + +/* Converts a BigDecimal to a Rational. + */ +static VALUE +BigDecimal_to_r(VALUE self) +{ + Real *p; + ssize_t sign, power, denomi_power; + VALUE a, digits, numerator; + + p = GetVpValue(self, 1); + BigDecimal_check_num(p); + + sign = VpGetSign(p); + power = VpExponent10(p); + a = BigDecimal_split(self); + digits = RARRAY_PTR(a)[1]; + denomi_power = power - RSTRING_LEN(digits); + numerator = rb_funcall(digits, rb_intern("to_i"), 0); + + if (sign < 0) { + numerator = rb_funcall(numerator, '*', 1, INT2FIX(-1)); + } + if (denomi_power < 0) { + return rb_Rational(numerator, + rb_funcall(INT2FIX(10), rb_intern("**"), 1, + INT2FIX(-denomi_power))); + } + else { + return rb_Rational1(rb_funcall(numerator, '*', 1, + rb_funcall(INT2FIX(10), rb_intern("**"), 1, + INT2FIX(denomi_power)))); + } +} + +/* The coerce method provides support for Ruby type coercion. It is not + * enabled by default. + * + * This means that binary operations like + * / or - can often be performed + * on a BigDecimal and an object of another type, if the other object can + * be coerced into a BigDecimal value. + * + * e.g. + * a = BigDecimal.new("1.0") + * b = a / 2.0 -> 0.5 + * + * Note that coercing a String to a BigDecimal is not supported by default; + * it requires a special compile-time option when building Ruby. + */ +static VALUE +BigDecimal_coerce(VALUE self, VALUE other) +{ + ENTER(2); + VALUE obj; + Real *b; + + if (RB_TYPE_P(other, T_FLOAT)) { + GUARD_OBJ(b, GetVpValueWithPrec(other, DBL_DIG+1, 1)); + obj = rb_assoc_new(ToValue(b), self); + } + else { + if (RB_TYPE_P(other, T_RATIONAL)) { + Real* pv = DATA_PTR(self); + GUARD_OBJ(b, GetVpValueWithPrec(other, pv->Prec*VpBaseFig(), 1)); + } + else { + GUARD_OBJ(b, GetVpValue(other, 1)); + } + obj = rb_assoc_new(b->obj, self); + } + + return obj; +} + +/* + * call-seq: +@ + * + * Return self. + * + * e.g. + * b = +a # b == a + */ +static VALUE +BigDecimal_uplus(VALUE self) +{ + return self; +} + + /* + * Document-method: BigDecimal#add + * Document-method: BigDecimal#+ + * + * call-seq: + * add(value, digits) + * + * Add the specified value. + * + * e.g. + * c = a.add(b,n) + * c = a + b + * + * digits:: If specified and less than the number of significant digits of the + * result, the result is rounded to that number of digits, according to + * BigDecimal.mode. + */ +static VALUE +BigDecimal_add(VALUE self, VALUE r) +{ + ENTER(5); + Real *c, *a, *b; + size_t mx; + + GUARD_OBJ(a, GetVpValue(self, 1)); + if (RB_TYPE_P(r, T_FLOAT)) { + b = GetVpValueWithPrec(r, DBL_DIG+1, 1); + } + else if (RB_TYPE_P(r, T_RATIONAL)) { + b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1); + } + else { + b = GetVpValue(r, 0); + } + + if (!b) return DoSomeOne(self,r,'+'); + SAVE(b); + + if (VpIsNaN(b)) return b->obj; + if (VpIsNaN(a)) return a->obj; + + mx = GetAddSubPrec(a, b); + if (mx == (size_t)-1L) { + GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0")); + VpAddSub(c, a, b, 1); + } + else { + GUARD_OBJ(c, VpCreateRbObject(mx * (VpBaseFig() + 1), "0")); + if(!mx) { + VpSetInf(c, VpGetSign(a)); + } + else { + VpAddSub(c, a, b, 1); + } + } + return ToValue(c); +} + + /* call-seq: + * value - digits -> bigdecimal + * + * Subtract the specified value. + * + * e.g. + * c = a - b + * + * The precision of the result value depends on the type of +b+. + * + * If +b+ is a Float, the precision of the result is Float::DIG+1. + * + * If +b+ is a BigDecimal, the precision of the result is +b+'s precision of + * internal representation from platform. So, it's return value is platform + * dependent. + * + */ +static VALUE +BigDecimal_sub(VALUE self, VALUE r) +{ + ENTER(5); + Real *c, *a, *b; + size_t mx; + + GUARD_OBJ(a, GetVpValue(self,1)); + if (RB_TYPE_P(r, T_FLOAT)) { + b = GetVpValueWithPrec(r, DBL_DIG+1, 1); + } + else if (RB_TYPE_P(r, T_RATIONAL)) { + b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1); + } + else { + b = GetVpValue(r,0); + } + + if (!b) return DoSomeOne(self,r,'-'); + SAVE(b); + + if (VpIsNaN(b)) return b->obj; + if (VpIsNaN(a)) return a->obj; + + mx = GetAddSubPrec(a,b); + if (mx == (size_t)-1L) { + GUARD_OBJ(c,VpCreateRbObject(VpBaseFig() + 1, "0")); + VpAddSub(c, a, b, -1); + } + else { + GUARD_OBJ(c,VpCreateRbObject(mx *(VpBaseFig() + 1), "0")); + if (!mx) { + VpSetInf(c,VpGetSign(a)); + } + else { + VpAddSub(c, a, b, -1); + } + } + return ToValue(c); +} + +static VALUE +BigDecimalCmp(VALUE self, VALUE r,char op) +{ + ENTER(5); + SIGNED_VALUE e; + Real *a, *b=0; + GUARD_OBJ(a, GetVpValue(self, 1)); + switch (TYPE(r)) { + case T_DATA: + if (!is_kind_of_BigDecimal(r)) break; + /* fall through */ + case T_FIXNUM: + /* fall through */ + case T_BIGNUM: + GUARD_OBJ(b, GetVpValue(r, 0)); + break; + + case T_FLOAT: + GUARD_OBJ(b, GetVpValueWithPrec(r, DBL_DIG+1, 0)); + break; + + case T_RATIONAL: + GUARD_OBJ(b, GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 0)); + break; + + default: + break; + } + if (b == NULL) { + ID f = 0; + + switch (op) { + case '*': + return rb_num_coerce_cmp(self, r, rb_intern("<=>")); + + case '=': + return RTEST(rb_num_coerce_cmp(self, r, rb_intern("=="))) ? Qtrue : Qfalse; + + case 'G': + f = rb_intern(">="); + break; + + case 'L': + f = rb_intern("<="); + break; + + case '>': + /* fall through */ + case '<': + f = (ID)op; + break; + + default: + break; + } + return rb_num_coerce_relop(self, r, f); + } + SAVE(b); + e = VpComp(a, b); + if (e == 999) + return (op == '*') ? Qnil : Qfalse; + switch (op) { + case '*': + return INT2FIX(e); /* any op */ + + case '=': + if (e == 0) return Qtrue; + return Qfalse; + + case 'G': + if (e >= 0) return Qtrue; + return Qfalse; + + case '>': + if (e > 0) return Qtrue; + return Qfalse; + + case 'L': + if (e <= 0) return Qtrue; + return Qfalse; + + case '<': + if (e < 0) return Qtrue; + return Qfalse; + + default: + break; + } + + rb_bug("Undefined operation in BigDecimalCmp()"); + + UNREACHABLE; +} + +/* Returns True if the value is zero. */ +static VALUE +BigDecimal_zero(VALUE self) +{ + Real *a = GetVpValue(self, 1); + return VpIsZero(a) ? Qtrue : Qfalse; +} + +/* Returns self if the value is non-zero, nil otherwise. */ +static VALUE +BigDecimal_nonzero(VALUE self) +{ + Real *a = GetVpValue(self, 1); + return VpIsZero(a) ? Qnil : self; +} + +/* The comparison operator. + * a <=> b is 0 if a == b, 1 if a > b, -1 if a < b. + */ +static VALUE +BigDecimal_comp(VALUE self, VALUE r) +{ + return BigDecimalCmp(self, r, '*'); +} + +/* + * Tests for value equality; returns true if the values are equal. + * + * The == and === operators and the eql? method have the same implementation + * for BigDecimal. + * + * Values may be coerced to perform the comparison: + * + * BigDecimal.new('1.0') == 1.0 -> true + */ +static VALUE +BigDecimal_eq(VALUE self, VALUE r) +{ + return BigDecimalCmp(self, r, '='); +} + +/* call-seq: + * a < b + * + * Returns true if a is less than b. + * + * Values may be coerced to perform the comparison (see ==, BigDecimal#coerce). + */ +static VALUE +BigDecimal_lt(VALUE self, VALUE r) +{ + return BigDecimalCmp(self, r, '<'); +} + +/* call-seq: + * a <= b + * + * Returns true if a is less than or equal to b. + * + * Values may be coerced to perform the comparison (see ==, BigDecimal#coerce). + */ +static VALUE +BigDecimal_le(VALUE self, VALUE r) +{ + return BigDecimalCmp(self, r, 'L'); +} + +/* call-seq: + * a > b + * + * Returns true if a is greater than b. + * + * Values may be coerced to perform the comparison (see ==, BigDecimal#coerce). + */ +static VALUE +BigDecimal_gt(VALUE self, VALUE r) +{ + return BigDecimalCmp(self, r, '>'); +} + +/* call-seq: + * a >= b + * + * Returns true if a is greater than or equal to b. + * + * Values may be coerced to perform the comparison (see ==, BigDecimal#coerce) + */ +static VALUE +BigDecimal_ge(VALUE self, VALUE r) +{ + return BigDecimalCmp(self, r, 'G'); +} + +/* + * call-seq: -@ + * + * Return the negation of self. + * + * e.g. + * b = -a + * b == a * -1 + */ +static VALUE +BigDecimal_neg(VALUE self) +{ + ENTER(5); + Real *c, *a; + GUARD_OBJ(a, GetVpValue(self, 1)); + GUARD_OBJ(c, VpCreateRbObject(a->Prec *(VpBaseFig() + 1), "0")); + VpAsgn(c, a, -1); + return ToValue(c); +} + + /* + * Document-method: BigDecimal#mult + * + * call-seq: mult(value, digits) + * + * Multiply by the specified value. + * + * e.g. + * c = a.mult(b,n) + * c = a * b + * + * digits:: If specified and less than the number of significant digits of the + * result, the result is rounded to that number of digits, according to + * BigDecimal.mode. + */ +static VALUE +BigDecimal_mult(VALUE self, VALUE r) +{ + ENTER(5); + Real *c, *a, *b; + size_t mx; + + GUARD_OBJ(a, GetVpValue(self, 1)); + if (RB_TYPE_P(r, T_FLOAT)) { + b = GetVpValueWithPrec(r, DBL_DIG+1, 1); + } + else if (RB_TYPE_P(r, T_RATIONAL)) { + b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1); + } + else { + b = GetVpValue(r,0); + } + + if (!b) return DoSomeOne(self, r, '*'); + SAVE(b); + + mx = a->Prec + b->Prec; + GUARD_OBJ(c, VpCreateRbObject(mx *(VpBaseFig() + 1), "0")); + VpMult(c, a, b); + return ToValue(c); +} + +static VALUE +BigDecimal_divide(Real **c, Real **res, Real **div, VALUE self, VALUE r) +/* For c = self.div(r): with round operation */ +{ + ENTER(5); + Real *a, *b; + size_t mx; + + GUARD_OBJ(a, GetVpValue(self, 1)); + if (RB_TYPE_P(r, T_FLOAT)) { + b = GetVpValueWithPrec(r, DBL_DIG+1, 1); + } + else if (RB_TYPE_P(r, T_RATIONAL)) { + b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1); + } + else { + b = GetVpValue(r, 0); + } + + if (!b) return DoSomeOne(self, r, '/'); + SAVE(b); + + *div = b; + mx = a->Prec + vabs(a->exponent); + if (mx < b->Prec + vabs(b->exponent)) mx = b->Prec + vabs(b->exponent); + mx++; /* NOTE: An additional digit is needed for the compatibility to + the version 1.2.1 and the former. */ + mx = (mx + 1) * VpBaseFig(); + GUARD_OBJ((*c), VpCreateRbObject(mx, "#0")); + GUARD_OBJ((*res), VpCreateRbObject((mx+1) * 2 +(VpBaseFig() + 1), "#0")); + VpDivd(*c, *res, a, b); + return Qnil; +} + + /* call-seq: + * div(value, digits) + * quo(value) + * + * Divide by the specified value. + * + * e.g. + * c = a.div(b,n) + * + * digits:: If specified and less than the number of significant digits of the + * result, the result is rounded to that number of digits, according to + * BigDecimal.mode. + * + * If digits is 0, the result is the same as the / operator. If not, the + * result is an integer BigDecimal, by analogy with Float#div. + * + * The alias quo is provided since div(value, 0) is the same as + * computing the quotient; see BigDecimal#divmod. + */ +static VALUE +BigDecimal_div(VALUE self, VALUE r) +/* For c = self/r: with round operation */ +{ + ENTER(5); + Real *c=NULL, *res=NULL, *div = NULL; + r = BigDecimal_divide(&c, &res, &div, self, r); + if (!NIL_P(r)) return r; /* coerced by other */ + SAVE(c); SAVE(res); SAVE(div); + /* a/b = c + r/b */ + /* c xxxxx + r 00000yyyyy ==> (y/b)*BASE >= HALF_BASE + */ + /* Round */ + if (VpHasVal(div)) { /* frac[0] must be zero for NaN,INF,Zero */ + VpInternalRound(c, 0, c->frac[c->Prec-1], (BDIGIT)(VpBaseVal() * (BDIGIT_DBL)res->frac[0] / div->frac[0])); + } + return ToValue(c); +} + +/* + * %: mod = a%b = a - (a.to_f/b).floor * b + * div = (a.to_f/b).floor + */ +static VALUE +BigDecimal_DoDivmod(VALUE self, VALUE r, Real **div, Real **mod) +{ + ENTER(8); + Real *c=NULL, *d=NULL, *res=NULL; + Real *a, *b; + size_t mx; + + GUARD_OBJ(a, GetVpValue(self, 1)); + if (RB_TYPE_P(r, T_FLOAT)) { + b = GetVpValueWithPrec(r, DBL_DIG+1, 1); + } + else if (RB_TYPE_P(r, T_RATIONAL)) { + b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1); + } + else { + b = GetVpValue(r, 0); + } + + if (!b) return Qfalse; + SAVE(b); + + if (VpIsNaN(a) || VpIsNaN(b)) goto NaN; + if (VpIsInf(a) && VpIsInf(b)) goto NaN; + if (VpIsZero(b)) { + rb_raise(rb_eZeroDivError, "divided by 0"); + } + if (VpIsInf(a)) { + GUARD_OBJ(d, VpCreateRbObject(1, "0")); + VpSetInf(d, (SIGNED_VALUE)(VpGetSign(a) == VpGetSign(b) ? 1 : -1)); + GUARD_OBJ(c, VpCreateRbObject(1, "NaN")); + *div = d; + *mod = c; + return Qtrue; + } + if (VpIsInf(b)) { + GUARD_OBJ(d, VpCreateRbObject(1, "0")); + *div = d; + *mod = a; + return Qtrue; + } + if (VpIsZero(a)) { + GUARD_OBJ(c, VpCreateRbObject(1, "0")); + GUARD_OBJ(d, VpCreateRbObject(1, "0")); + *div = d; + *mod = c; + return Qtrue; + } + + mx = a->Prec + vabs(a->exponent); + if (mxPrec + vabs(b->exponent)) mx = b->Prec + vabs(b->exponent); + mx = (mx + 1) * VpBaseFig(); + GUARD_OBJ(c, VpCreateRbObject(mx, "0")); + GUARD_OBJ(res, VpCreateRbObject((mx+1) * 2 +(VpBaseFig() + 1), "#0")); + VpDivd(c, res, a, b); + mx = c->Prec * (VpBaseFig() + 1); + GUARD_OBJ(d, VpCreateRbObject(mx, "0")); + VpActiveRound(d, c, VP_ROUND_DOWN, 0); + VpMult(res, d, b); + VpAddSub(c, a, res, -1); + if (!VpIsZero(c) && (VpGetSign(a) * VpGetSign(b) < 0)) { + VpAddSub(res, d, VpOne(), -1); + GUARD_OBJ(d, VpCreateRbObject(GetAddSubPrec(c, b)*(VpBaseFig() + 1), "0")); + VpAddSub(d, c, b, 1); + *div = res; + *mod = d; + } else { + *div = d; + *mod = c; + } + return Qtrue; + +NaN: + GUARD_OBJ(c, VpCreateRbObject(1, "NaN")); + GUARD_OBJ(d, VpCreateRbObject(1, "NaN")); + *div = d; + *mod = c; + return Qtrue; +} + +/* call-seq: + * a % b + * a.modulo(b) + * + * Returns the modulus from dividing by b. + * + * See BigDecimal#divmod. + */ +static VALUE +BigDecimal_mod(VALUE self, VALUE r) /* %: a%b = a - (a.to_f/b).floor * b */ +{ + ENTER(3); + Real *div = NULL, *mod = NULL; + + if (BigDecimal_DoDivmod(self, r, &div, &mod)) { + SAVE(div); SAVE(mod); + return ToValue(mod); + } + return DoSomeOne(self, r, '%'); +} + +static VALUE +BigDecimal_divremain(VALUE self, VALUE r, Real **dv, Real **rv) +{ + ENTER(10); + size_t mx; + Real *a = NULL, *b = NULL, *c = NULL, *res = NULL, *d = NULL, *rr = NULL, *ff = NULL; + Real *f = NULL; + + GUARD_OBJ(a, GetVpValue(self, 1)); + if (RB_TYPE_P(r, T_FLOAT)) { + b = GetVpValueWithPrec(r, DBL_DIG+1, 1); + } + else if (RB_TYPE_P(r, T_RATIONAL)) { + b = GetVpValueWithPrec(r, a->Prec*VpBaseFig(), 1); + } + else { + b = GetVpValue(r, 0); + } + + if (!b) return DoSomeOne(self, r, rb_intern("remainder")); + SAVE(b); + + mx = (a->MaxPrec + b->MaxPrec) *VpBaseFig(); + GUARD_OBJ(c, VpCreateRbObject(mx, "0")); + GUARD_OBJ(res, VpCreateRbObject((mx+1) * 2 + (VpBaseFig() + 1), "#0")); + GUARD_OBJ(rr, VpCreateRbObject((mx+1) * 2 + (VpBaseFig() + 1), "#0")); + GUARD_OBJ(ff, VpCreateRbObject((mx+1) * 2 + (VpBaseFig() + 1), "#0")); + + VpDivd(c, res, a, b); + + mx = c->Prec *(VpBaseFig() + 1); + + GUARD_OBJ(d, VpCreateRbObject(mx, "0")); + GUARD_OBJ(f, VpCreateRbObject(mx, "0")); + + VpActiveRound(d, c, VP_ROUND_DOWN, 0); /* 0: round off */ + + VpFrac(f, c); + VpMult(rr, f, b); + VpAddSub(ff, res, rr, 1); + + *dv = d; + *rv = ff; + return Qnil; +} + +/* Returns the remainder from dividing by the value. + * + * x.remainder(y) means x-y*(x/y).truncate + */ +static VALUE +BigDecimal_remainder(VALUE self, VALUE r) /* remainder */ +{ + VALUE f; + Real *d, *rv = 0; + f = BigDecimal_divremain(self, r, &d, &rv); + if (!NIL_P(f)) return f; + return ToValue(rv); +} + +/* Divides by the specified value, and returns the quotient and modulus + * as BigDecimal numbers. The quotient is rounded towards negative infinity. + * + * For example: + * + * require 'bigdecimal' + * + * a = BigDecimal.new("42") + * b = BigDecimal.new("9") + * + * q,m = a.divmod(b) + * + * c = q * b + m + * + * a == c -> true + * + * The quotient q is (a/b).floor, and the modulus is the amount that must be + * added to q * b to get a. + */ +static VALUE +BigDecimal_divmod(VALUE self, VALUE r) +{ + ENTER(5); + Real *div = NULL, *mod = NULL; + + if (BigDecimal_DoDivmod(self, r, &div, &mod)) { + SAVE(div); SAVE(mod); + return rb_assoc_new(ToValue(div), ToValue(mod)); + } + return DoSomeOne(self,r,rb_intern("divmod")); +} + +/* + * See BigDecimal#quo + */ +static inline VALUE +BigDecimal_div2(VALUE self, VALUE b, VALUE n) +{ + ENTER(5); + SIGNED_VALUE ix; + + if (NIL_P(n)) { /* div in Float sense */ + Real *div = NULL; + Real *mod; + if (BigDecimal_DoDivmod(self, b, &div, &mod)) { + return BigDecimal_to_i(ToValue(div)); + } + return DoSomeOne(self, b, rb_intern("div")); + } + + /* div in BigDecimal sense */ + ix = GetPositiveInt(n); + if (ix == 0) { + return BigDecimal_div(self, b); + } + else { + Real *res = NULL; + Real *av = NULL, *bv = NULL, *cv = NULL; + size_t mx = ix + VpBaseFig()*2; + size_t pl = VpSetPrecLimit(0); + + GUARD_OBJ(cv, VpCreateRbObject(mx, "0")); + GUARD_OBJ(av, GetVpValue(self, 1)); + GUARD_OBJ(bv, GetVpValue(b, 1)); + mx = av->Prec + bv->Prec + 2; + if (mx <= cv->MaxPrec) mx = cv->MaxPrec + 1; + GUARD_OBJ(res, VpCreateRbObject((mx * 2 + 2)*VpBaseFig(), "#0")); + VpDivd(cv, res, av, bv); + VpSetPrecLimit(pl); + VpLeftRound(cv, VpGetRoundMode(), ix); + return ToValue(cv); + } +} + +static VALUE +BigDecimal_div3(int argc, VALUE *argv, VALUE self) +{ + VALUE b,n; + + rb_scan_args(argc, argv, "11", &b, &n); + + return BigDecimal_div2(self, b, n); +} + +static VALUE +BigDecimal_add2(VALUE self, VALUE b, VALUE n) +{ + ENTER(2); + Real *cv; + SIGNED_VALUE mx = GetPositiveInt(n); + if (mx == 0) return BigDecimal_add(self, b); + else { + size_t pl = VpSetPrecLimit(0); + VALUE c = BigDecimal_add(self, b); + VpSetPrecLimit(pl); + GUARD_OBJ(cv, GetVpValue(c, 1)); + VpLeftRound(cv, VpGetRoundMode(), mx); + return ToValue(cv); + } +} + +/* + * sub(value, digits) -> bigdecimal + * + * Subtract the specified value. + * + * e.g. + * c = a.sub(b,n) + * + * digits:: If specified and less than the number of significant digits of the + * result, the result is rounded to that number of digits, according to + * BigDecimal.mode. + * + */ +static VALUE +BigDecimal_sub2(VALUE self, VALUE b, VALUE n) +{ + ENTER(2); + Real *cv; + SIGNED_VALUE mx = GetPositiveInt(n); + if (mx == 0) return BigDecimal_sub(self, b); + else { + size_t pl = VpSetPrecLimit(0); + VALUE c = BigDecimal_sub(self, b); + VpSetPrecLimit(pl); + GUARD_OBJ(cv, GetVpValue(c, 1)); + VpLeftRound(cv, VpGetRoundMode(), mx); + return ToValue(cv); + } +} + + +static VALUE +BigDecimal_mult2(VALUE self, VALUE b, VALUE n) +{ + ENTER(2); + Real *cv; + SIGNED_VALUE mx = GetPositiveInt(n); + if (mx == 0) return BigDecimal_mult(self, b); + else { + size_t pl = VpSetPrecLimit(0); + VALUE c = BigDecimal_mult(self, b); + VpSetPrecLimit(pl); + GUARD_OBJ(cv, GetVpValue(c, 1)); + VpLeftRound(cv, VpGetRoundMode(), mx); + return ToValue(cv); + } +} + +/* Returns the absolute value. + * + * BigDecimal('5').abs -> 5 + * + * BigDecimal('-3').abs -> 3 + */ +static VALUE +BigDecimal_abs(VALUE self) +{ + ENTER(5); + Real *c, *a; + size_t mx; + + GUARD_OBJ(a, GetVpValue(self, 1)); + mx = a->Prec *(VpBaseFig() + 1); + GUARD_OBJ(c, VpCreateRbObject(mx, "0")); + VpAsgn(c, a, 1); + VpChangeSign(c, 1); + return ToValue(c); +} + +/* call-seq: + * sqrt(n) + * + * Returns the square root of the value. + * + * Result has at least n significant digits. + */ +static VALUE +BigDecimal_sqrt(VALUE self, VALUE nFig) +{ + ENTER(5); + Real *c, *a; + size_t mx, n; + + GUARD_OBJ(a, GetVpValue(self, 1)); + mx = a->Prec * (VpBaseFig() + 1); + + n = GetPositiveInt(nFig) + VpDblFig() + BASE_FIG; + if (mx <= n) mx = n; + GUARD_OBJ(c, VpCreateRbObject(mx, "0")); + VpSqrt(c, a); + return ToValue(c); +} + +/* Return the integer part of the number. + */ +static VALUE +BigDecimal_fix(VALUE self) +{ + ENTER(5); + Real *c, *a; + size_t mx; + + GUARD_OBJ(a, GetVpValue(self, 1)); + mx = a->Prec *(VpBaseFig() + 1); + GUARD_OBJ(c, VpCreateRbObject(mx, "0")); + VpActiveRound(c, a, VP_ROUND_DOWN, 0); /* 0: round off */ + return ToValue(c); +} + +/* call-seq: + * round(n, mode) + * + * Round to the nearest 1 (by default), returning the result as a BigDecimal. + * + * BigDecimal('3.14159').round #=> 3 + * BigDecimal('8.7').round #=> 9 + * + * If n is specified and positive, the fractional part of the result has no + * more than that many digits. + * + * If n is specified and negative, at least that many digits to the left of the + * decimal point will be 0 in the result. + * + * BigDecimal('3.14159').round(3) #=> 3.142 + * BigDecimal('13345.234').round(-2) #=> 13300.0 + * + * The value of the optional mode argument can be used to determine how + * rounding is performed; see BigDecimal.mode. + */ +static VALUE +BigDecimal_round(int argc, VALUE *argv, VALUE self) +{ + ENTER(5); + Real *c, *a; + int iLoc = 0; + VALUE vLoc; + VALUE vRound; + size_t mx, pl; + + unsigned short sw = VpGetRoundMode(); + + switch (rb_scan_args(argc, argv, "02", &vLoc, &vRound)) { + case 0: + iLoc = 0; + break; + case 1: + Check_Type(vLoc, T_FIXNUM); + iLoc = FIX2INT(vLoc); + break; + case 2: + Check_Type(vLoc, T_FIXNUM); + iLoc = FIX2INT(vLoc); + sw = check_rounding_mode(vRound); + break; + default: + break; + } + + pl = VpSetPrecLimit(0); + GUARD_OBJ(a, GetVpValue(self, 1)); + mx = a->Prec * (VpBaseFig() + 1); + GUARD_OBJ(c, VpCreateRbObject(mx, "0")); + VpSetPrecLimit(pl); + VpActiveRound(c, a, sw, iLoc); + if (argc == 0) { + return BigDecimal_to_i(ToValue(c)); + } + return ToValue(c); +} + +/* call-seq: + * truncate(n) + * + * Truncate to the nearest 1, returning the result as a BigDecimal. + * + * BigDecimal('3.14159').truncate #=> 3 + * BigDecimal('8.7').truncate #=> 8 + * + * If n is specified and positive, the fractional part of the result has no + * more than that many digits. + * + * If n is specified and negative, at least that many digits to the left of the + * decimal point will be 0 in the result. + * + * BigDecimal('3.14159').truncate(3) #=> 3.141 + * BigDecimal('13345.234').truncate(-2) #=> 13300.0 + */ +static VALUE +BigDecimal_truncate(int argc, VALUE *argv, VALUE self) +{ + ENTER(5); + Real *c, *a; + int iLoc; + VALUE vLoc; + size_t mx, pl = VpSetPrecLimit(0); + + if (rb_scan_args(argc, argv, "01", &vLoc) == 0) { + iLoc = 0; + } + else { + Check_Type(vLoc, T_FIXNUM); + iLoc = FIX2INT(vLoc); + } + + GUARD_OBJ(a, GetVpValue(self, 1)); + mx = a->Prec * (VpBaseFig() + 1); + GUARD_OBJ(c, VpCreateRbObject(mx, "0")); + VpSetPrecLimit(pl); + VpActiveRound(c, a, VP_ROUND_DOWN, iLoc); /* 0: truncate */ + if (argc == 0) { + return BigDecimal_to_i(ToValue(c)); + } + return ToValue(c); +} + +/* Return the fractional part of the number. + */ +static VALUE +BigDecimal_frac(VALUE self) +{ + ENTER(5); + Real *c, *a; + size_t mx; + + GUARD_OBJ(a, GetVpValue(self, 1)); + mx = a->Prec * (VpBaseFig() + 1); + GUARD_OBJ(c, VpCreateRbObject(mx, "0")); + VpFrac(c, a); + return ToValue(c); +} + +/* call-seq: + * floor(n) + * + * Return the largest integer less than or equal to the value, as a BigDecimal. + * + * BigDecimal('3.14159').floor #=> 3 + * BigDecimal('-9.1').floor #=> -10 + * + * If n is specified and positive, the fractional part of the result has no + * more than that many digits. + * + * If n is specified and negative, at least that + * many digits to the left of the decimal point will be 0 in the result. + * + * BigDecimal('3.14159').floor(3) #=> 3.141 + * BigDecimal('13345.234').floor(-2) #=> 13300.0 + */ +static VALUE +BigDecimal_floor(int argc, VALUE *argv, VALUE self) +{ + ENTER(5); + Real *c, *a; + int iLoc; + VALUE vLoc; + size_t mx, pl = VpSetPrecLimit(0); + + if (rb_scan_args(argc, argv, "01", &vLoc)==0) { + iLoc = 0; + } + else { + Check_Type(vLoc, T_FIXNUM); + iLoc = FIX2INT(vLoc); + } + + GUARD_OBJ(a, GetVpValue(self, 1)); + mx = a->Prec * (VpBaseFig() + 1); + GUARD_OBJ(c, VpCreateRbObject(mx, "0")); + VpSetPrecLimit(pl); + VpActiveRound(c, a, VP_ROUND_FLOOR, iLoc); +#ifdef BIGDECIMAL_DEBUG + VPrint(stderr, "floor: c=%\n", c); +#endif + if (argc == 0) { + return BigDecimal_to_i(ToValue(c)); + } + return ToValue(c); +} + +/* call-seq: + * ceil(n) + * + * Return the smallest integer greater than or equal to the value, as a BigDecimal. + * + * BigDecimal('3.14159').ceil #=> 4 + * BigDecimal('-9.1').ceil #=> -9 + * + * If n is specified and positive, the fractional part of the result has no + * more than that many digits. + * + * If n is specified and negative, at least that + * many digits to the left of the decimal point will be 0 in the result. + * + * BigDecimal('3.14159').ceil(3) #=> 3.142 + * BigDecimal('13345.234').ceil(-2) #=> 13400.0 + */ +static VALUE +BigDecimal_ceil(int argc, VALUE *argv, VALUE self) +{ + ENTER(5); + Real *c, *a; + int iLoc; + VALUE vLoc; + size_t mx, pl = VpSetPrecLimit(0); + + if (rb_scan_args(argc, argv, "01", &vLoc) == 0) { + iLoc = 0; + } else { + Check_Type(vLoc, T_FIXNUM); + iLoc = FIX2INT(vLoc); + } + + GUARD_OBJ(a, GetVpValue(self, 1)); + mx = a->Prec * (VpBaseFig() + 1); + GUARD_OBJ(c, VpCreateRbObject(mx, "0")); + VpSetPrecLimit(pl); + VpActiveRound(c, a, VP_ROUND_CEIL, iLoc); + if (argc == 0) { + return BigDecimal_to_i(ToValue(c)); + } + return ToValue(c); +} + +/* call-seq: + * to_s(s) + * + * Converts the value to a string. + * + * The default format looks like 0.xxxxEnn. + * + * The optional parameter s consists of either an integer; or an optional '+' + * or ' ', followed by an optional number, followed by an optional 'E' or 'F'. + * + * If there is a '+' at the start of s, positive values are returned with + * a leading '+'. + * + * A space at the start of s returns positive values with a leading space. + * + * If s contains a number, a space is inserted after each group of that many + * fractional digits. + * + * If s ends with an 'E', engineering notation (0.xxxxEnn) is used. + * + * If s ends with an 'F', conventional floating point notation is used. + * + * Examples: + * + * BigDecimal.new('-123.45678901234567890').to_s('5F') + * #=> '-123.45678 90123 45678 9' + * + * BigDecimal.new('123.45678901234567890').to_s('+8F') + * #=> '+123.45678901 23456789' + * + * BigDecimal.new('123.45678901234567890').to_s(' F') + * #=> ' 123.4567890123456789' + */ +static VALUE +BigDecimal_to_s(int argc, VALUE *argv, VALUE self) +{ + ENTER(5); + int fmt = 0; /* 0:E format */ + int fPlus = 0; /* =0:default,=1: set ' ' before digits ,set '+' before digits. */ + Real *vp; + volatile VALUE str; + char *psz; + char ch; + size_t nc, mc = 0; + VALUE f; + + GUARD_OBJ(vp, GetVpValue(self, 1)); + + if (rb_scan_args(argc, argv, "01", &f) == 1) { + if (RB_TYPE_P(f, T_STRING)) { + SafeStringValue(f); + psz = RSTRING_PTR(f); + if (*psz == ' ') { + fPlus = 1; + psz++; + } + else if (*psz == '+') { + fPlus = 2; + psz++; + } + while ((ch = *psz++) != 0) { + if (ISSPACE(ch)) { + continue; + } + if (!ISDIGIT(ch)) { + if (ch == 'F' || ch == 'f') { + fmt = 1; /* F format */ + } + break; + } + mc = mc*10 + ch - '0'; + } + } + else { + mc = (size_t)GetPositiveInt(f); + } + } + if (fmt) { + nc = VpNumOfChars(vp, "F"); + } + else { + nc = VpNumOfChars(vp, "E"); + } + if (mc > 0) { + nc += (nc + mc - 1) / mc + 1; + } + + str = rb_str_new(0, nc); + psz = RSTRING_PTR(str); + + if (fmt) { + VpToFString(vp, psz, mc, fPlus); + } + else { + VpToString (vp, psz, mc, fPlus); + } + rb_str_resize(str, strlen(psz)); + return str; +} + +/* Splits a BigDecimal number into four parts, returned as an array of values. + * + * The first value represents the sign of the BigDecimal, and is -1 or 1, or 0 + * if the BigDecimal is Not a Number. + * + * The second value is a string representing the significant digits of the + * BigDecimal, with no leading zeros. + * + * The third value is the base used for arithmetic (currently always 10) as an + * Integer. + * + * The fourth value is an Integer exponent. + * + * If the BigDecimal can be represented as 0.xxxxxx*10**n, then xxxxxx is the + * string of significant digits with no leading zeros, and n is the exponent. + * + * From these values, you can translate a BigDecimal to a float as follows: + * + * sign, significant_digits, base, exponent = a.split + * f = sign * "0.#{significant_digits}".to_f * (base ** exponent) + * + * (Note that the to_f method is provided as a more convenient way to translate + * a BigDecimal to a Float.) + */ +static VALUE +BigDecimal_split(VALUE self) +{ + ENTER(5); + Real *vp; + VALUE obj,str; + ssize_t e, s; + char *psz1; + + GUARD_OBJ(vp, GetVpValue(self, 1)); + str = rb_str_new(0, VpNumOfChars(vp, "E")); + psz1 = RSTRING_PTR(str); + VpSzMantissa(vp, psz1); + s = 1; + if(psz1[0] == '-') { + size_t len = strlen(psz1 + 1); + + memmove(psz1, psz1 + 1, len); + psz1[len] = '\0'; + s = -1; + } + if (psz1[0] == 'N') s = 0; /* NaN */ + e = VpExponent10(vp); + obj = rb_ary_new2(4); + rb_ary_push(obj, INT2FIX(s)); + rb_ary_push(obj, str); + rb_str_resize(str, strlen(psz1)); + rb_ary_push(obj, INT2FIX(10)); + rb_ary_push(obj, INT2NUM(e)); + return obj; +} + +/* Returns the exponent of the BigDecimal number, as an Integer. + * + * If the number can be represented as 0.xxxxxx*10**n where xxxxxx is a string + * of digits with no leading zeros, then n is the exponent. + */ +static VALUE +BigDecimal_exponent(VALUE self) +{ + ssize_t e = VpExponent10(GetVpValue(self, 1)); + return INT2NUM(e); +} + +/* Returns debugging information about the value as a string of comma-separated + * values in angle brackets with a leading #: + * + * BigDecimal.new("1234.5678").inspect -> + * "#" + * + * The first part is the address, the second is the value as a string, and + * the final part ss(mm) is the current number of significant digits and the + * maximum number of significant digits, respectively. + */ +static VALUE +BigDecimal_inspect(VALUE self) +{ + ENTER(5); + Real *vp; + volatile VALUE obj; + size_t nc; + char *psz, *tmp; + + GUARD_OBJ(vp, GetVpValue(self, 1)); + nc = VpNumOfChars(vp, "E"); + nc += (nc + 9) / 10; + + obj = rb_str_new(0, nc+256); + psz = RSTRING_PTR(obj); + sprintf(psz, "#", VpPrec(vp)*VpBaseFig(), VpMaxPrec(vp)*VpBaseFig()); + rb_str_resize(obj, strlen(psz)); + return obj; +} + +static VALUE BigMath_s_exp(VALUE, VALUE, VALUE); +static VALUE BigMath_s_log(VALUE, VALUE, VALUE); + +#define BigMath_exp(x, n) BigMath_s_exp(rb_mBigMath, (x), (n)) +#define BigMath_log(x, n) BigMath_s_log(rb_mBigMath, (x), (n)) + +inline static int +is_integer(VALUE x) +{ + return (RB_TYPE_P(x, T_FIXNUM) || RB_TYPE_P(x, T_BIGNUM)); +} + +inline static int +is_negative(VALUE x) +{ + if (FIXNUM_P(x)) { + return FIX2LONG(x) < 0; + } + else if (RB_TYPE_P(x, T_BIGNUM)) { + return FIX2INT(rb_big_cmp(x, INT2FIX(0))) < 0; + } + else if (RB_TYPE_P(x, T_FLOAT)) { + return RFLOAT_VALUE(x) < 0.0; + } + return RTEST(rb_funcall(x, '<', 1, INT2FIX(0))); +} + +#define is_positive(x) (!is_negative(x)) + +inline static int +is_zero(VALUE x) +{ + VALUE num; + + switch (TYPE(x)) { + case T_FIXNUM: + return FIX2LONG(x) == 0; + + case T_BIGNUM: + return Qfalse; + + case T_RATIONAL: + num = rb_rational_num(x); + return FIXNUM_P(num) && FIX2LONG(num) == 0; + + default: + break; + } + + return RTEST(rb_funcall(x, id_eq, 1, INT2FIX(0))); +} + +inline static int +is_one(VALUE x) +{ + VALUE num, den; + + switch (TYPE(x)) { + case T_FIXNUM: + return FIX2LONG(x) == 1; + + case T_BIGNUM: + return Qfalse; + + case T_RATIONAL: + num = rb_rational_num(x); + den = rb_rational_den(x); + return FIXNUM_P(den) && FIX2LONG(den) == 1 && + FIXNUM_P(num) && FIX2LONG(num) == 1; + + default: + break; + } + + return RTEST(rb_funcall(x, id_eq, 1, INT2FIX(1))); +} + +inline static int +is_even(VALUE x) +{ + switch (TYPE(x)) { + case T_FIXNUM: + return (FIX2LONG(x) % 2) == 0; + + case T_BIGNUM: + { + unsigned long l; + rb_big_pack(x, &l, 1); + return l % 2 == 0; + } + + default: + break; + } + + return 0; +} + +static VALUE +rmpd_power_by_big_decimal(Real const* x, Real const* exp, ssize_t const n) +{ + VALUE log_x, multiplied, y; + volatile VALUE obj = exp->obj; + + if (VpIsZero(exp)) { + return ToValue(VpCreateRbObject(n, "1")); + } + + log_x = BigMath_log(x->obj, SSIZET2NUM(n+1)); + multiplied = BigDecimal_mult2(exp->obj, log_x, SSIZET2NUM(n+1)); + y = BigMath_exp(multiplied, SSIZET2NUM(n)); + RB_GC_GUARD(obj); + + return y; +} + +/* call-seq: + * power(n) + * power(n, prec) + * + * Returns the value raised to the power of n. + * + * Note that n must be an Integer. + * + * Also available as the operator ** + */ +static VALUE +BigDecimal_power(int argc, VALUE*argv, VALUE self) +{ + ENTER(5); + VALUE vexp, prec; + Real* exp = NULL; + Real *x, *y; + ssize_t mp, ma, n; + SIGNED_VALUE int_exp; + double d; + + rb_scan_args(argc, argv, "11", &vexp, &prec); + + GUARD_OBJ(x, GetVpValue(self, 1)); + n = NIL_P(prec) ? (ssize_t)(x->Prec*VpBaseFig()) : NUM2SSIZET(prec); + + if (VpIsNaN(x)) { + y = VpCreateRbObject(n, "0#"); + RB_GC_GUARD(y->obj); + VpSetNaN(y); + return ToValue(y); + } + + retry: + switch (TYPE(vexp)) { + case T_FIXNUM: + break; + + case T_BIGNUM: + break; + + case T_FLOAT: + d = RFLOAT_VALUE(vexp); + if (d == round(d)) { + if (FIXABLE(d)) { + vexp = LONG2FIX((long)d); + } + else { + vexp = rb_dbl2big(d); + } + goto retry; + } + exp = GetVpValueWithPrec(vexp, DBL_DIG+1, 1); + break; + + case T_RATIONAL: + if (is_zero(rb_rational_num(vexp))) { + if (is_positive(vexp)) { + vexp = INT2FIX(0); + goto retry; + } + } + else if (is_one(rb_rational_den(vexp))) { + vexp = rb_rational_num(vexp); + goto retry; + } + exp = GetVpValueWithPrec(vexp, n, 1); + break; + + case T_DATA: + if (is_kind_of_BigDecimal(vexp)) { + VALUE zero = INT2FIX(0); + VALUE rounded = BigDecimal_round(1, &zero, vexp); + if (RTEST(BigDecimal_eq(vexp, rounded))) { + vexp = BigDecimal_to_i(vexp); + goto retry; + } + exp = DATA_PTR(vexp); + break; + } + /* fall through */ + default: + rb_raise(rb_eTypeError, + "wrong argument type %"PRIsVALUE" (expected scalar Numeric)", + RB_OBJ_CLASSNAME(vexp)); + } + + if (VpIsZero(x)) { + if (is_negative(vexp)) { + y = VpCreateRbObject(n, "#0"); + RB_GC_GUARD(y->obj); + if (VpGetSign(x) < 0) { + if (is_integer(vexp)) { + if (is_even(vexp)) { + /* (-0) ** (-even_integer) -> Infinity */ + VpSetPosInf(y); + } + else { + /* (-0) ** (-odd_integer) -> -Infinity */ + VpSetNegInf(y); + } + } + else { + /* (-0) ** (-non_integer) -> Infinity */ + VpSetPosInf(y); + } + } + else { + /* (+0) ** (-num) -> Infinity */ + VpSetPosInf(y); + } + return ToValue(y); + } + else if (is_zero(vexp)) { + return ToValue(VpCreateRbObject(n, "1")); + } + else { + return ToValue(VpCreateRbObject(n, "0")); + } + } + + if (is_zero(vexp)) { + return ToValue(VpCreateRbObject(n, "1")); + } + else if (is_one(vexp)) { + return self; + } + + if (VpIsInf(x)) { + if (is_negative(vexp)) { + if (VpGetSign(x) < 0) { + if (is_integer(vexp)) { + if (is_even(vexp)) { + /* (-Infinity) ** (-even_integer) -> +0 */ + return ToValue(VpCreateRbObject(n, "0")); + } + else { + /* (-Infinity) ** (-odd_integer) -> -0 */ + return ToValue(VpCreateRbObject(n, "-0")); + } + } + else { + /* (-Infinity) ** (-non_integer) -> -0 */ + return ToValue(VpCreateRbObject(n, "-0")); + } + } + else { + return ToValue(VpCreateRbObject(n, "0")); + } + } + else { + y = VpCreateRbObject(n, "0#"); + if (VpGetSign(x) < 0) { + if (is_integer(vexp)) { + if (is_even(vexp)) { + VpSetPosInf(y); + } + else { + VpSetNegInf(y); + } + } + else { + /* TODO: support complex */ + rb_raise(rb_eMathDomainError, + "a non-integral exponent for a negative base"); + } + } + else { + VpSetPosInf(y); + } + return ToValue(y); + } + } + + if (exp != NULL) { + return rmpd_power_by_big_decimal(x, exp, n); + } + else if (RB_TYPE_P(vexp, T_BIGNUM)) { + VALUE abs_value = BigDecimal_abs(self); + if (is_one(abs_value)) { + return ToValue(VpCreateRbObject(n, "1")); + } + else if (RTEST(rb_funcall(abs_value, '<', 1, INT2FIX(1)))) { + if (is_negative(vexp)) { + y = VpCreateRbObject(n, "0#"); + if (is_even(vexp)) { + VpSetInf(y, VpGetSign(x)); + } + else { + VpSetInf(y, -VpGetSign(x)); + } + return ToValue(y); + } + else if (VpGetSign(x) < 0 && is_even(vexp)) { + return ToValue(VpCreateRbObject(n, "-0")); + } + else { + return ToValue(VpCreateRbObject(n, "0")); + } + } + else { + if (is_positive(vexp)) { + y = VpCreateRbObject(n, "0#"); + if (is_even(vexp)) { + VpSetInf(y, VpGetSign(x)); + } + else { + VpSetInf(y, -VpGetSign(x)); + } + return ToValue(y); + } + else if (VpGetSign(x) < 0 && is_even(vexp)) { + return ToValue(VpCreateRbObject(n, "-0")); + } + else { + return ToValue(VpCreateRbObject(n, "0")); + } + } + } + + int_exp = FIX2LONG(vexp); + ma = int_exp; + if (ma < 0) ma = -ma; + if (ma == 0) ma = 1; + + if (VpIsDef(x)) { + mp = x->Prec * (VpBaseFig() + 1); + GUARD_OBJ(y, VpCreateRbObject(mp * (ma + 1), "0")); + } + else { + GUARD_OBJ(y, VpCreateRbObject(1, "0")); + } + VpPower(y, x, int_exp); + if (!NIL_P(prec) && VpIsDef(y)) { + VpMidRound(y, VpGetRoundMode(), n); + } + return ToValue(y); +} + +/* call-seq: + * big_decimal ** exp -> big_decimal + * + * It is a synonym of BigDecimal#power(exp). + */ +static VALUE +BigDecimal_power_op(VALUE self, VALUE exp) +{ + return BigDecimal_power(1, &exp, self); +} + +static VALUE +BigDecimal_s_allocate(VALUE klass) +{ + return VpNewRbClass(0, NULL, klass)->obj; +} + +static Real *BigDecimal_new(int argc, VALUE *argv); + +/* call-seq: + * new(initial, digits) + * + * Create a new BigDecimal object. + * + * initial:: The initial value, as an Integer, a Float, a Rational, + * a BigDecimal, or a String. + * + * If it is a String, spaces are ignored and unrecognized characters + * terminate the value. + * + * digits:: The number of significant digits, as a Fixnum. If omitted or 0, + * the number of significant digits is determined from the initial + * value. + * + * The actual number of significant digits used in computation is usually + * larger than the specified number. + * + * ==== Exceptions + * + * TypeError:: If the +initial+ type is neither Fixnum, Bignum, Float, + * Rational, nor BigDecimal, this exception is raised. + * + * TypeError:: If the +digits+ is not a Fixnum, this exception is raised. + * + * ArgumentError:: If +initial+ is a Float, and the +digits+ is larger than + * Float::DIG + 1, this exception is raised. + * + * ArgumentError:: If the +initial+ is a Float or Rational, and the +digits+ + * value is omitted, this exception is raised. + */ +static VALUE +BigDecimal_initialize(int argc, VALUE *argv, VALUE self) +{ + ENTER(1); + Real *pv = rb_check_typeddata(self, &BigDecimal_data_type); + Real *x; + + GUARD_OBJ(x, BigDecimal_new(argc, argv)); + if (ToValue(x)) { + pv = VpCopy(pv, x); + } + else { + VpFree(pv); + pv = x; + } + DATA_PTR(self) = pv; + pv->obj = self; + return self; +} + +/* :nodoc: + * + * private method to dup and clone the provided BigDecimal +other+ + */ +static VALUE +BigDecimal_initialize_copy(VALUE self, VALUE other) +{ + Real *pv = rb_check_typeddata(self, &BigDecimal_data_type); + Real *x = rb_check_typeddata(other, &BigDecimal_data_type); + + if (self != other) { + DATA_PTR(self) = VpCopy(pv, x); + } + return self; +} + +static Real * +BigDecimal_new(int argc, VALUE *argv) +{ + size_t mf; + VALUE nFig; + VALUE iniValue; + + if (rb_scan_args(argc, argv, "11", &iniValue, &nFig) == 1) { + mf = 0; + } + else { + mf = GetPositiveInt(nFig); + } + + switch (TYPE(iniValue)) { + case T_DATA: + if (is_kind_of_BigDecimal(iniValue)) { + return DATA_PTR(iniValue); + } + break; + + case T_FIXNUM: + /* fall through */ + case T_BIGNUM: + return GetVpValue(iniValue, 1); + + case T_FLOAT: + if (mf > DBL_DIG+1) { + rb_raise(rb_eArgError, "precision too large."); + } + /* fall through */ + case T_RATIONAL: + if (NIL_P(nFig)) { + rb_raise(rb_eArgError, + "can't omit precision for a %"PRIsVALUE".", + RB_OBJ_CLASSNAME(iniValue)); + } + return GetVpValueWithPrec(iniValue, mf, 1); + + case T_STRING: + /* fall through */ + default: + break; + } + StringValueCStr(iniValue); + return VpAlloc(mf, RSTRING_PTR(iniValue)); +} + +/* See also BigDecimal.new */ +static VALUE +BigDecimal_global_new(int argc, VALUE *argv, VALUE self) +{ + ENTER(1); + Real *pv; + + GUARD_OBJ(pv, BigDecimal_new(argc, argv)); + if (ToValue(pv)) pv = VpCopy(NULL, pv); + pv->obj = TypedData_Wrap_Struct(rb_cBigDecimal, &BigDecimal_data_type, pv); + return pv->obj; +} + + /* call-seq: + * BigDecimal.limit(digits) + * + * Limit the number of significant digits in newly created BigDecimal + * numbers to the specified value. Rounding is performed as necessary, + * as specified by BigDecimal.mode. + * + * A limit of 0, the default, means no upper limit. + * + * The limit specified by this method takes less priority over any limit + * specified to instance methods such as ceil, floor, truncate, or round. + */ +static VALUE +BigDecimal_limit(int argc, VALUE *argv, VALUE self) +{ + VALUE nFig; + VALUE nCur = INT2NUM(VpGetPrecLimit()); + + if (rb_scan_args(argc, argv, "01", &nFig) == 1) { + int nf; + if (NIL_P(nFig)) return nCur; + Check_Type(nFig, T_FIXNUM); + nf = FIX2INT(nFig); + if (nf < 0) { + rb_raise(rb_eArgError, "argument must be positive"); + } + VpSetPrecLimit(nf); + } + return nCur; +} + +/* Returns the sign of the value. + * + * Returns a positive value if > 0, a negative value if < 0, and a + * zero if == 0. + * + * The specific value returned indicates the type and sign of the BigDecimal, + * as follows: + * + * BigDecimal::SIGN_NaN:: value is Not a Number + * BigDecimal::SIGN_POSITIVE_ZERO:: value is +0 + * BigDecimal::SIGN_NEGATIVE_ZERO:: value is -0 + * BigDecimal::SIGN_POSITIVE_INFINITE:: value is +Infinity + * BigDecimal::SIGN_NEGATIVE_INFINITE:: value is -Infinity + * BigDecimal::SIGN_POSITIVE_FINITE:: value is positive + * BigDecimal::SIGN_NEGATIVE_FINITE:: value is negative + */ +static VALUE +BigDecimal_sign(VALUE self) +{ /* sign */ + int s = GetVpValue(self, 1)->sign; + return INT2FIX(s); +} + +/* + * call-seq: BigDecimal.save_exception_mode { ... } + * + * Execute the provided block, but preserve the exception mode + * + * BigDecimal.save_exception_mode do + * BigDecimal.mode(BigDecimal::EXCEPTION_OVERFLOW, false) + * BigDecimal.mode(BigDecimal::EXCEPTION_NaN, false) + * + * BigDecimal.new(BigDecimal('Infinity')) + * BigDecimal.new(BigDecimal('-Infinity')) + * BigDecimal(BigDecimal.new('NaN')) + * end + * + * For use with the BigDecimal::EXCEPTION_* + * + * See BigDecimal.mode + */ +static VALUE +BigDecimal_save_exception_mode(VALUE self) +{ + unsigned short const exception_mode = VpGetException(); + int state; + VALUE ret = rb_protect(rb_yield, Qnil, &state); + VpSetException(exception_mode); + if (state) rb_jump_tag(state); + return ret; +} + +/* + * call-seq: BigDecimal.save_rounding_mode { ... } + * + * Execute the provided block, but preserve the rounding mode + * + * BigDecimal.save_rounding_mode do + * BigDecimal.mode(BigDecimal::ROUND_MODE, :up) + * puts BigDecimal.mode(BigDecimal::ROUND_MODE) + * end + * + * For use with the BigDecimal::ROUND_* + * + * See BigDecimal.mode + */ +static VALUE +BigDecimal_save_rounding_mode(VALUE self) +{ + unsigned short const round_mode = VpGetRoundMode(); + int state; + VALUE ret = rb_protect(rb_yield, Qnil, &state); + VpSetRoundMode(round_mode); + if (state) rb_jump_tag(state); + return ret; +} + +/* + * call-seq: BigDecimal.save_limit { ... } + * + * Execute the provided block, but preserve the precision limit + * + * BigDecimal.limit(100) + * puts BigDecimal.limit + * BigDecimal.save_limit do + * BigDecimal.limit(200) + * puts BigDecimal.limit + * end + * puts BigDecimal.limit + * + */ +static VALUE +BigDecimal_save_limit(VALUE self) +{ + size_t const limit = VpGetPrecLimit(); + int state; + VALUE ret = rb_protect(rb_yield, Qnil, &state); + VpSetPrecLimit(limit); + if (state) rb_jump_tag(state); + return ret; +} + +/* call-seq: + * BigMath.exp(decimal, numeric) -> BigDecimal + * + * Computes the value of e (the base of natural logarithms) raised to the + * power of +decimal+, to the specified number of digits of precision. + * + * If +decimal+ is infinity, returns Infinity. + * + * If +decimal+ is NaN, returns NaN. + */ +static VALUE +BigMath_s_exp(VALUE klass, VALUE x, VALUE vprec) +{ + ssize_t prec, n, i; + Real* vx = NULL; + VALUE one, d, y; + int negative = 0; + int infinite = 0; + int nan = 0; + double flo; + + prec = NUM2SSIZET(vprec); + if (prec <= 0) { + rb_raise(rb_eArgError, "Zero or negative precision for exp"); + } + + /* TODO: the following switch statement is almostly the same as one in the + * BigDecimalCmp function. */ + switch (TYPE(x)) { + case T_DATA: + if (!is_kind_of_BigDecimal(x)) break; + vx = DATA_PTR(x); + negative = VpGetSign(vx) < 0; + infinite = VpIsPosInf(vx) || VpIsNegInf(vx); + nan = VpIsNaN(vx); + break; + + case T_FIXNUM: + /* fall through */ + case T_BIGNUM: + vx = GetVpValue(x, 0); + break; + + case T_FLOAT: + flo = RFLOAT_VALUE(x); + negative = flo < 0; + infinite = isinf(flo); + nan = isnan(flo); + if (!infinite && !nan) { + vx = GetVpValueWithPrec(x, DBL_DIG+1, 0); + } + break; + + case T_RATIONAL: + vx = GetVpValueWithPrec(x, prec, 0); + break; + + default: + break; + } + if (infinite) { + if (negative) { + return ToValue(GetVpValueWithPrec(INT2FIX(0), prec, 1)); + } + else { + Real* vy; + vy = VpCreateRbObject(prec, "#0"); + VpSetInf(vy, VP_SIGN_POSITIVE_INFINITE); + RB_GC_GUARD(vy->obj); + return ToValue(vy); + } + } + else if (nan) { + Real* vy; + vy = VpCreateRbObject(prec, "#0"); + VpSetNaN(vy); + RB_GC_GUARD(vy->obj); + return ToValue(vy); + } + else if (vx == NULL) { + cannot_be_coerced_into_BigDecimal(rb_eArgError, x); + } + x = vx->obj; + + n = prec + rmpd_double_figures(); + negative = VpGetSign(vx) < 0; + if (negative) { + VpSetSign(vx, 1); + } + + one = ToValue(VpCreateRbObject(1, "1")); + y = one; + d = y; + i = 1; + + while (!VpIsZero((Real*)DATA_PTR(d))) { + SIGNED_VALUE const ey = VpExponent10(DATA_PTR(y)); + SIGNED_VALUE const ed = VpExponent10(DATA_PTR(d)); + ssize_t m = n - vabs(ey - ed); + + rb_thread_check_ints(); + + if (m <= 0) { + break; + } + else if ((size_t)m < rmpd_double_figures()) { + m = rmpd_double_figures(); + } + + d = BigDecimal_mult(d, x); /* d <- d * x */ + d = BigDecimal_div2(d, SSIZET2NUM(i), SSIZET2NUM(m)); /* d <- d / i */ + y = BigDecimal_add(y, d); /* y <- y + d */ + ++i; /* i <- i + 1 */ + } + + if (negative) { + return BigDecimal_div2(one, y, vprec); + } + else { + vprec = SSIZET2NUM(prec - VpExponent10(DATA_PTR(y))); + return BigDecimal_round(1, &vprec, y); + } + + RB_GC_GUARD(one); + RB_GC_GUARD(x); + RB_GC_GUARD(y); + RB_GC_GUARD(d); +} + +/* call-seq: + * BigMath.log(decimal, numeric) -> BigDecimal + * + * Computes the natural logarithm of +decimal+ to the specified number of + * digits of precision, +numeric+. + * + * If +decimal+ is zero or negative, raises Math::DomainError. + * + * If +decimal+ is positive infinity, returns Infinity. + * + * If +decimal+ is NaN, returns NaN. + */ +static VALUE +BigMath_s_log(VALUE klass, VALUE x, VALUE vprec) +{ + ssize_t prec, n, i; + SIGNED_VALUE expo; + Real* vx = NULL; + VALUE vn, one, two, w, x2, y, d; + int zero = 0; + int negative = 0; + int infinite = 0; + int nan = 0; + double flo; + long fix; + + if (!is_integer(vprec)) { + rb_raise(rb_eArgError, "precision must be an Integer"); + } + + prec = NUM2SSIZET(vprec); + if (prec <= 0) { + rb_raise(rb_eArgError, "Zero or negative precision for exp"); + } + + /* TODO: the following switch statement is almostly the same as one in the + * BigDecimalCmp function. */ + switch (TYPE(x)) { + case T_DATA: + if (!is_kind_of_BigDecimal(x)) break; + vx = DATA_PTR(x); + zero = VpIsZero(vx); + negative = VpGetSign(vx) < 0; + infinite = VpIsPosInf(vx) || VpIsNegInf(vx); + nan = VpIsNaN(vx); + break; + + case T_FIXNUM: + fix = FIX2LONG(x); + zero = fix == 0; + negative = fix < 0; + goto get_vp_value; + + case T_BIGNUM: + i = FIX2INT(rb_big_cmp(x, INT2FIX(0))); + zero = i == 0; + negative = i < 0; +get_vp_value: + if (zero || negative) break; + vx = GetVpValue(x, 0); + break; + + case T_FLOAT: + flo = RFLOAT_VALUE(x); + zero = flo == 0; + negative = flo < 0; + infinite = isinf(flo); + nan = isnan(flo); + if (!zero && !negative && !infinite && !nan) { + vx = GetVpValueWithPrec(x, DBL_DIG+1, 1); + } + break; + + case T_RATIONAL: + zero = RRATIONAL_ZERO_P(x); + negative = RRATIONAL_NEGATIVE_P(x); + if (zero || negative) break; + vx = GetVpValueWithPrec(x, prec, 1); + break; + + case T_COMPLEX: + rb_raise(rb_eMathDomainError, + "Complex argument for BigMath.log"); + + default: + break; + } + if (infinite && !negative) { + Real* vy; + vy = VpCreateRbObject(prec, "#0"); + RB_GC_GUARD(vy->obj); + VpSetInf(vy, VP_SIGN_POSITIVE_INFINITE); + return ToValue(vy); + } + else if (nan) { + Real* vy; + vy = VpCreateRbObject(prec, "#0"); + RB_GC_GUARD(vy->obj); + VpSetNaN(vy); + return ToValue(vy); + } + else if (zero || negative) { + rb_raise(rb_eMathDomainError, + "Zero or negative argument for log"); + } + else if (vx == NULL) { + cannot_be_coerced_into_BigDecimal(rb_eArgError, x); + } + x = ToValue(vx); + + RB_GC_GUARD(one) = ToValue(VpCreateRbObject(1, "1")); + RB_GC_GUARD(two) = ToValue(VpCreateRbObject(1, "2")); + + n = prec + rmpd_double_figures(); + RB_GC_GUARD(vn) = SSIZET2NUM(n); + expo = VpExponent10(vx); + if (expo < 0 || expo >= 3) { + char buf[DECIMAL_SIZE_OF_BITS(SIZEOF_VALUE * CHAR_BIT) + 4]; + snprintf(buf, sizeof(buf), "1E%"PRIdVALUE, -expo); + x = BigDecimal_mult2(x, ToValue(VpCreateRbObject(1, buf)), vn); + } + else { + expo = 0; + } + w = BigDecimal_sub(x, one); + x = BigDecimal_div2(w, BigDecimal_add(x, one), vn); + RB_GC_GUARD(x2) = BigDecimal_mult2(x, x, vn); + RB_GC_GUARD(y) = x; + RB_GC_GUARD(d) = y; + i = 1; + while (!VpIsZero((Real*)DATA_PTR(d))) { + SIGNED_VALUE const ey = VpExponent10(DATA_PTR(y)); + SIGNED_VALUE const ed = VpExponent10(DATA_PTR(d)); + ssize_t m = n - vabs(ey - ed); + if (m <= 0) { + break; + } + else if ((size_t)m < rmpd_double_figures()) { + m = rmpd_double_figures(); + } + + x = BigDecimal_mult2(x2, x, vn); + i += 2; + d = BigDecimal_div2(x, SSIZET2NUM(i), SSIZET2NUM(m)); + y = BigDecimal_add(y, d); + } + + y = BigDecimal_mult(y, two); + if (expo != 0) { + VALUE log10, vexpo, dy; + log10 = BigMath_s_log(klass, INT2FIX(10), vprec); + vexpo = ToValue(GetVpValue(SSIZET2NUM(expo), 1)); + dy = BigDecimal_mult(log10, vexpo); + y = BigDecimal_add(y, dy); + } + + return y; +} + +/* Document-class: BigDecimal + * BigDecimal provides arbitrary-precision floating point decimal arithmetic. + * + * == Introduction + * + * Ruby provides built-in support for arbitrary precision integer arithmetic. + * + * For example: + * + * 42**13 #=> 1265437718438866624512 + * + * BigDecimal provides similar support for very large or very accurate floating + * point numbers. + * + * Decimal arithmetic is also useful for general calculation, because it + * provides the correct answers people expect--whereas normal binary floating + * point arithmetic often introduces subtle errors because of the conversion + * between base 10 and base 2. + * + * For example, try: + * + * sum = 0 + * 10_000.times do + * sum = sum + 0.0001 + * end + * print sum #=> 0.9999999999999062 + * + * and contrast with the output from: + * + * require 'bigdecimal' + * + * sum = BigDecimal.new("0") + * 10_000.times do + * sum = sum + BigDecimal.new("0.0001") + * end + * print sum #=> 0.1E1 + * + * Similarly: + * + * (BigDecimal.new("1.2") - BigDecimal("1.0")) == BigDecimal("0.2") #=> true + * + * (1.2 - 1.0) == 0.2 #=> false + * + * == Special features of accurate decimal arithmetic + * + * Because BigDecimal is more accurate than normal binary floating point + * arithmetic, it requires some special values. + * + * === Infinity + * + * BigDecimal sometimes needs to return infinity, for example if you divide + * a value by zero. + * + * BigDecimal.new("1.0") / BigDecimal.new("0.0") #=> Infinity + * BigDecimal.new("-1.0") / BigDecimal.new("0.0") #=> -Infinity + * + * You can represent infinite numbers to BigDecimal using the strings + * 'Infinity', '+Infinity' and + * '-Infinity' (case-sensitive) + * + * === Not a Number + * + * When a computation results in an undefined value, the special value +NaN+ + * (for 'not a number') is returned. + * + * Example: + * + * BigDecimal.new("0.0") / BigDecimal.new("0.0") #=> NaN + * + * You can also create undefined values. + * + * NaN is never considered to be the same as any other value, even NaN itself: + * + * n = BigDecimal.new('NaN') + * n == 0.0 #=> false + * n == n #=> false + * + * === Positive and negative zero + * + * If a computation results in a value which is too small to be represented as + * a BigDecimal within the currently specified limits of precision, zero must + * be returned. + * + * If the value which is too small to be represented is negative, a BigDecimal + * value of negative zero is returned. + * + * BigDecimal.new("1.0") / BigDecimal.new("-Infinity") #=> -0.0 + * + * If the value is positive, a value of positive zero is returned. + * + * BigDecimal.new("1.0") / BigDecimal.new("Infinity") #=> 0.0 + * + * (See BigDecimal.mode for how to specify limits of precision.) + * + * Note that +-0.0+ and +0.0+ are considered to be the same for the purposes of + * comparison. + * + * Note also that in mathematics, there is no particular concept of negative + * or positive zero; true mathematical zero has no sign. + * + * == License + * + * Copyright (C) 2002 by Shigeo Kobayashi . + * + * You may distribute under the terms of either the GNU General Public + * License or the Artistic License, as specified in the README file + * of the BigDecimal distribution. + * + * Maintained by mrkn and ruby-core members. + * + * Documented by zzak , mathew , and + * many other contributors. + */ +void +Init_bigdecimal(void) +{ + VALUE arg; + + id_BigDecimal_exception_mode = rb_intern_const("BigDecimal.exception_mode"); + id_BigDecimal_rounding_mode = rb_intern_const("BigDecimal.rounding_mode"); + id_BigDecimal_precision_limit = rb_intern_const("BigDecimal.precision_limit"); + + /* Initialize VP routines */ + VpInit(0UL); + + /* Class and method registration */ + rb_cBigDecimal = rb_define_class("BigDecimal", rb_cNumeric); + rb_define_alloc_func(rb_cBigDecimal, BigDecimal_s_allocate); + + /* Global function */ + rb_define_global_function("BigDecimal", BigDecimal_global_new, -1); + + /* Class methods */ + rb_define_singleton_method(rb_cBigDecimal, "mode", BigDecimal_mode, -1); + rb_define_singleton_method(rb_cBigDecimal, "limit", BigDecimal_limit, -1); + rb_define_singleton_method(rb_cBigDecimal, "double_fig", BigDecimal_double_fig, 0); + rb_define_singleton_method(rb_cBigDecimal, "_load", BigDecimal_load, 1); + rb_define_singleton_method(rb_cBigDecimal, "ver", BigDecimal_version, 0); + + rb_define_singleton_method(rb_cBigDecimal, "save_exception_mode", BigDecimal_save_exception_mode, 0); + rb_define_singleton_method(rb_cBigDecimal, "save_rounding_mode", BigDecimal_save_rounding_mode, 0); + rb_define_singleton_method(rb_cBigDecimal, "save_limit", BigDecimal_save_limit, 0); + + /* Constants definition */ + + /* + * Base value used in internal calculations. On a 32 bit system, BASE + * is 10000, indicating that calculation is done in groups of 4 digits. + * (If it were larger, BASE**2 wouldn't fit in 32 bits, so you couldn't + * guarantee that two groups could always be multiplied together without + * overflow.) + */ + rb_define_const(rb_cBigDecimal, "BASE", INT2FIX((SIGNED_VALUE)VpBaseVal())); + + /* Exceptions */ + + /* + * 0xff: Determines whether overflow, underflow or zero divide result in + * an exception being thrown. See BigDecimal.mode. + */ + rb_define_const(rb_cBigDecimal, "EXCEPTION_ALL", INT2FIX(VP_EXCEPTION_ALL)); + + /* + * 0x02: Determines what happens when the result of a computation is not a + * number (NaN). See BigDecimal.mode. + */ + rb_define_const(rb_cBigDecimal, "EXCEPTION_NaN", INT2FIX(VP_EXCEPTION_NaN)); + + /* + * 0x01: Determines what happens when the result of a computation is + * infinity. See BigDecimal.mode. + */ + rb_define_const(rb_cBigDecimal, "EXCEPTION_INFINITY", INT2FIX(VP_EXCEPTION_INFINITY)); + + /* + * 0x04: Determines what happens when the result of a computation is an + * underflow (a result too small to be represented). See BigDecimal.mode. + */ + rb_define_const(rb_cBigDecimal, "EXCEPTION_UNDERFLOW", INT2FIX(VP_EXCEPTION_UNDERFLOW)); + + /* + * 0x01: Determines what happens when the result of a computation is an + * overflow (a result too large to be represented). See BigDecimal.mode. + */ + rb_define_const(rb_cBigDecimal, "EXCEPTION_OVERFLOW", INT2FIX(VP_EXCEPTION_OVERFLOW)); + + /* + * 0x01: Determines what happens when a division by zero is performed. + * See BigDecimal.mode. + */ + rb_define_const(rb_cBigDecimal, "EXCEPTION_ZERODIVIDE", INT2FIX(VP_EXCEPTION_ZERODIVIDE)); + + /* + * 0x100: Determines what happens when a result must be rounded in order to + * fit in the appropriate number of significant digits. See + * BigDecimal.mode. + */ + rb_define_const(rb_cBigDecimal, "ROUND_MODE", INT2FIX(VP_ROUND_MODE)); + + /* 1: Indicates that values should be rounded away from zero. See + * BigDecimal.mode. + */ + rb_define_const(rb_cBigDecimal, "ROUND_UP", INT2FIX(VP_ROUND_UP)); + + /* 2: Indicates that values should be rounded towards zero. See + * BigDecimal.mode. + */ + rb_define_const(rb_cBigDecimal, "ROUND_DOWN", INT2FIX(VP_ROUND_DOWN)); + + /* 3: Indicates that digits >= 5 should be rounded up, others rounded down. + * See BigDecimal.mode. */ + rb_define_const(rb_cBigDecimal, "ROUND_HALF_UP", INT2FIX(VP_ROUND_HALF_UP)); + + /* 4: Indicates that digits >= 6 should be rounded up, others rounded down. + * See BigDecimal.mode. + */ + rb_define_const(rb_cBigDecimal, "ROUND_HALF_DOWN", INT2FIX(VP_ROUND_HALF_DOWN)); + /* 5: Round towards +Infinity. See BigDecimal.mode. */ + rb_define_const(rb_cBigDecimal, "ROUND_CEILING", INT2FIX(VP_ROUND_CEIL)); + + /* 6: Round towards -Infinity. See BigDecimal.mode. */ + rb_define_const(rb_cBigDecimal, "ROUND_FLOOR", INT2FIX(VP_ROUND_FLOOR)); + + /* 7: Round towards the even neighbor. See BigDecimal.mode. */ + rb_define_const(rb_cBigDecimal, "ROUND_HALF_EVEN", INT2FIX(VP_ROUND_HALF_EVEN)); + + /* 0: Indicates that a value is not a number. See BigDecimal.sign. */ + rb_define_const(rb_cBigDecimal, "SIGN_NaN", INT2FIX(VP_SIGN_NaN)); + + /* 1: Indicates that a value is +0. See BigDecimal.sign. */ + rb_define_const(rb_cBigDecimal, "SIGN_POSITIVE_ZERO", INT2FIX(VP_SIGN_POSITIVE_ZERO)); + + /* -1: Indicates that a value is -0. See BigDecimal.sign. */ + rb_define_const(rb_cBigDecimal, "SIGN_NEGATIVE_ZERO", INT2FIX(VP_SIGN_NEGATIVE_ZERO)); + + /* 2: Indicates that a value is positive and finite. See BigDecimal.sign. */ + rb_define_const(rb_cBigDecimal, "SIGN_POSITIVE_FINITE", INT2FIX(VP_SIGN_POSITIVE_FINITE)); + + /* -2: Indicates that a value is negative and finite. See BigDecimal.sign. */ + rb_define_const(rb_cBigDecimal, "SIGN_NEGATIVE_FINITE", INT2FIX(VP_SIGN_NEGATIVE_FINITE)); + + /* 3: Indicates that a value is positive and infinite. See BigDecimal.sign. */ + rb_define_const(rb_cBigDecimal, "SIGN_POSITIVE_INFINITE", INT2FIX(VP_SIGN_POSITIVE_INFINITE)); + + /* -3: Indicates that a value is negative and infinite. See BigDecimal.sign. */ + rb_define_const(rb_cBigDecimal, "SIGN_NEGATIVE_INFINITE", INT2FIX(VP_SIGN_NEGATIVE_INFINITE)); + + arg = rb_str_new2("+Infinity"); + /* Positive infinity value. */ + rb_define_const(rb_cBigDecimal, "INFINITY", BigDecimal_global_new(1, &arg, rb_cBigDecimal)); + arg = rb_str_new2("NaN"); + /* 'Not a Number' value. */ + rb_define_const(rb_cBigDecimal, "NAN", BigDecimal_global_new(1, &arg, rb_cBigDecimal)); + + + /* instance methods */ + rb_define_method(rb_cBigDecimal, "initialize", BigDecimal_initialize, -1); + rb_define_method(rb_cBigDecimal, "initialize_copy", BigDecimal_initialize_copy, 1); + rb_define_method(rb_cBigDecimal, "precs", BigDecimal_prec, 0); + + rb_define_method(rb_cBigDecimal, "add", BigDecimal_add2, 2); + rb_define_method(rb_cBigDecimal, "sub", BigDecimal_sub2, 2); + rb_define_method(rb_cBigDecimal, "mult", BigDecimal_mult2, 2); + rb_define_method(rb_cBigDecimal, "div", BigDecimal_div3, -1); + rb_define_method(rb_cBigDecimal, "hash", BigDecimal_hash, 0); + rb_define_method(rb_cBigDecimal, "to_s", BigDecimal_to_s, -1); + rb_define_method(rb_cBigDecimal, "to_i", BigDecimal_to_i, 0); + rb_define_method(rb_cBigDecimal, "to_int", BigDecimal_to_i, 0); + rb_define_method(rb_cBigDecimal, "to_r", BigDecimal_to_r, 0); + rb_define_method(rb_cBigDecimal, "split", BigDecimal_split, 0); + rb_define_method(rb_cBigDecimal, "+", BigDecimal_add, 1); + rb_define_method(rb_cBigDecimal, "-", BigDecimal_sub, 1); + rb_define_method(rb_cBigDecimal, "+@", BigDecimal_uplus, 0); + rb_define_method(rb_cBigDecimal, "-@", BigDecimal_neg, 0); + rb_define_method(rb_cBigDecimal, "*", BigDecimal_mult, 1); + rb_define_method(rb_cBigDecimal, "/", BigDecimal_div, 1); + rb_define_method(rb_cBigDecimal, "quo", BigDecimal_div, 1); + rb_define_method(rb_cBigDecimal, "%", BigDecimal_mod, 1); + rb_define_method(rb_cBigDecimal, "modulo", BigDecimal_mod, 1); + rb_define_method(rb_cBigDecimal, "remainder", BigDecimal_remainder, 1); + rb_define_method(rb_cBigDecimal, "divmod", BigDecimal_divmod, 1); + /* rb_define_method(rb_cBigDecimal, "dup", BigDecimal_dup, 0); */ + rb_define_method(rb_cBigDecimal, "to_f", BigDecimal_to_f, 0); + rb_define_method(rb_cBigDecimal, "abs", BigDecimal_abs, 0); + rb_define_method(rb_cBigDecimal, "sqrt", BigDecimal_sqrt, 1); + rb_define_method(rb_cBigDecimal, "fix", BigDecimal_fix, 0); + rb_define_method(rb_cBigDecimal, "round", BigDecimal_round, -1); + rb_define_method(rb_cBigDecimal, "frac", BigDecimal_frac, 0); + rb_define_method(rb_cBigDecimal, "floor", BigDecimal_floor, -1); + rb_define_method(rb_cBigDecimal, "ceil", BigDecimal_ceil, -1); + rb_define_method(rb_cBigDecimal, "power", BigDecimal_power, -1); + rb_define_method(rb_cBigDecimal, "**", BigDecimal_power_op, 1); + rb_define_method(rb_cBigDecimal, "<=>", BigDecimal_comp, 1); + rb_define_method(rb_cBigDecimal, "==", BigDecimal_eq, 1); + rb_define_method(rb_cBigDecimal, "===", BigDecimal_eq, 1); + rb_define_method(rb_cBigDecimal, "eql?", BigDecimal_eq, 1); + rb_define_method(rb_cBigDecimal, "<", BigDecimal_lt, 1); + rb_define_method(rb_cBigDecimal, "<=", BigDecimal_le, 1); + rb_define_method(rb_cBigDecimal, ">", BigDecimal_gt, 1); + rb_define_method(rb_cBigDecimal, ">=", BigDecimal_ge, 1); + rb_define_method(rb_cBigDecimal, "zero?", BigDecimal_zero, 0); + rb_define_method(rb_cBigDecimal, "nonzero?", BigDecimal_nonzero, 0); + rb_define_method(rb_cBigDecimal, "coerce", BigDecimal_coerce, 1); + rb_define_method(rb_cBigDecimal, "inspect", BigDecimal_inspect, 0); + rb_define_method(rb_cBigDecimal, "exponent", BigDecimal_exponent, 0); + rb_define_method(rb_cBigDecimal, "sign", BigDecimal_sign, 0); + rb_define_method(rb_cBigDecimal, "nan?", BigDecimal_IsNaN, 0); + rb_define_method(rb_cBigDecimal, "infinite?", BigDecimal_IsInfinite, 0); + rb_define_method(rb_cBigDecimal, "finite?", BigDecimal_IsFinite, 0); + rb_define_method(rb_cBigDecimal, "truncate", BigDecimal_truncate, -1); + rb_define_method(rb_cBigDecimal, "_dump", BigDecimal_dump, -1); + + rb_mBigMath = rb_define_module("BigMath"); + rb_define_singleton_method(rb_mBigMath, "exp", BigMath_s_exp, 2); + rb_define_singleton_method(rb_mBigMath, "log", BigMath_s_log, 2); + + id_up = rb_intern_const("up"); + id_down = rb_intern_const("down"); + id_truncate = rb_intern_const("truncate"); + id_half_up = rb_intern_const("half_up"); + id_default = rb_intern_const("default"); + id_half_down = rb_intern_const("half_down"); + id_half_even = rb_intern_const("half_even"); + id_banker = rb_intern_const("banker"); + id_ceiling = rb_intern_const("ceiling"); + id_ceil = rb_intern_const("ceil"); + id_floor = rb_intern_const("floor"); + id_to_r = rb_intern_const("to_r"); + id_eq = rb_intern_const("=="); +} + +/* + * + * ============================================================================ + * + * vp_ routines begin from here. + * + * ============================================================================ + * + */ +#ifdef BIGDECIMAL_DEBUG +static int gfDebug = 1; /* Debug switch */ +#if 0 +static int gfCheckVal = 1; /* Value checking flag in VpNmlz() */ +#endif +#endif /* BIGDECIMAL_DEBUG */ + +static Real *VpConstOne; /* constant 1.0 */ +static Real *VpPt5; /* constant 0.5 */ +#define maxnr 100UL /* Maximum iterations for calculating sqrt. */ + /* used in VpSqrt() */ + +/* ETC */ +#define MemCmp(x,y,z) memcmp(x,y,z) +#define StrCmp(x,y) strcmp(x,y) + +static int VpIsDefOP(Real *c,Real *a,Real *b,int sw); +static int AddExponent(Real *a, SIGNED_VALUE n); +static BDIGIT VpAddAbs(Real *a,Real *b,Real *c); +static BDIGIT VpSubAbs(Real *a,Real *b,Real *c); +static size_t VpSetPTR(Real *a, Real *b, Real *c, size_t *a_pos, size_t *b_pos, size_t *c_pos, BDIGIT *av, BDIGIT *bv); +static int VpNmlz(Real *a); +static void VpFormatSt(char *psz, size_t fFmt); +static int VpRdup(Real *m, size_t ind_m); + +#ifdef BIGDECIMAL_DEBUG +static int gnAlloc = 0; /* Memory allocation counter */ +#endif /* BIGDECIMAL_DEBUG */ + +VP_EXPORT void * +VpMemAlloc(size_t mb) +{ + void *p = xmalloc(mb); + if (!p) { + VpException(VP_EXCEPTION_MEMORY, "failed to allocate memory", 1); + } + memset(p, 0, mb); +#ifdef BIGDECIMAL_DEBUG + gnAlloc++; /* Count allocation call */ +#endif /* BIGDECIMAL_DEBUG */ + return p; +} + + VP_EXPORT void * +VpMemRealloc(void *ptr, size_t mb) +{ + void *p = xrealloc(ptr, mb); + if (!p) { + VpException(VP_EXCEPTION_MEMORY, "failed to allocate memory", 1); + } + return p; +} + +VP_EXPORT void +VpFree(Real *pv) +{ + if (pv != NULL) { + xfree(pv); +#ifdef BIGDECIMAL_DEBUG + gnAlloc--; /* Decrement allocation count */ + if (gnAlloc == 0) { + printf(" *************** All memories allocated freed ****************"); + getchar(); + } + if (gnAlloc < 0) { + printf(" ??????????? Too many memory free calls(%d) ?????????????\n", gnAlloc); + getchar(); + } +#endif /* BIGDECIMAL_DEBUG */ + } +} + +/* + * EXCEPTION Handling. + */ + +#define rmpd_set_thread_local_exception_mode(mode) \ + rb_thread_local_aset( \ + rb_thread_current(), \ + id_BigDecimal_exception_mode, \ + INT2FIX((int)(mode)) \ + ) + +static unsigned short +VpGetException (void) +{ + VALUE const vmode = rb_thread_local_aref( + rb_thread_current(), + id_BigDecimal_exception_mode + ); + + if (NIL_P(vmode)) { + rmpd_set_thread_local_exception_mode(RMPD_EXCEPTION_MODE_DEFAULT); + return RMPD_EXCEPTION_MODE_DEFAULT; + } + + return (unsigned short)FIX2UINT(vmode); +} + +static void +VpSetException(unsigned short f) +{ + rmpd_set_thread_local_exception_mode(f); +} + +/* + * Precision limit. + */ + +#define rmpd_set_thread_local_precision_limit(limit) \ + rb_thread_local_aset( \ + rb_thread_current(), \ + id_BigDecimal_precision_limit, \ + SIZET2NUM(limit) \ + ) +#define RMPD_PRECISION_LIMIT_DEFAULT ((size_t)0) + +/* These 2 functions added at v1.1.7 */ +VP_EXPORT size_t +VpGetPrecLimit(void) +{ + VALUE const vlimit = rb_thread_local_aref( + rb_thread_current(), + id_BigDecimal_precision_limit + ); + + if (NIL_P(vlimit)) { + rmpd_set_thread_local_precision_limit(RMPD_PRECISION_LIMIT_DEFAULT); + return RMPD_PRECISION_LIMIT_DEFAULT; + } + + return NUM2SIZET(vlimit); +} + +VP_EXPORT size_t +VpSetPrecLimit(size_t n) +{ + size_t const s = VpGetPrecLimit(); + rmpd_set_thread_local_precision_limit(n); + return s; +} + +/* + * Rounding mode. + */ + +#define rmpd_set_thread_local_rounding_mode(mode) \ + rb_thread_local_aset( \ + rb_thread_current(), \ + id_BigDecimal_rounding_mode, \ + INT2FIX((int)(mode)) \ + ) + +VP_EXPORT unsigned short +VpGetRoundMode(void) +{ + VALUE const vmode = rb_thread_local_aref( + rb_thread_current(), + id_BigDecimal_rounding_mode + ); + + if (NIL_P(vmode)) { + rmpd_set_thread_local_rounding_mode(RMPD_ROUNDING_MODE_DEFAULT); + return RMPD_ROUNDING_MODE_DEFAULT; + } + + return (unsigned short)FIX2INT(vmode); +} + +VP_EXPORT int +VpIsRoundMode(unsigned short n) +{ + switch (n) { + case VP_ROUND_UP: + case VP_ROUND_DOWN: + case VP_ROUND_HALF_UP: + case VP_ROUND_HALF_DOWN: + case VP_ROUND_CEIL: + case VP_ROUND_FLOOR: + case VP_ROUND_HALF_EVEN: + return 1; + + default: + return 0; + } +} + +VP_EXPORT unsigned short +VpSetRoundMode(unsigned short n) +{ + if (VpIsRoundMode(n)) { + rmpd_set_thread_local_rounding_mode(n); + return n; + } + + return VpGetRoundMode(); +} + +/* + * 0.0 & 1.0 generator + * These gZero_..... and gOne_..... can be any name + * referenced from nowhere except Zero() and One(). + * gZero_..... and gOne_..... must have global scope + * (to let the compiler know they may be changed in outside + * (... but not actually..)). + */ +volatile const double gZero_ABCED9B1_CE73__00400511F31D = 0.0; +volatile const double gOne_ABCED9B4_CE73__00400511F31D = 1.0; +static double +Zero(void) +{ + return gZero_ABCED9B1_CE73__00400511F31D; +} + +static double +One(void) +{ + return gOne_ABCED9B4_CE73__00400511F31D; +} + +/* + ---------------------------------------------------------------- + Value of sign in Real structure is reserved for future use. + short sign; + ==0 : NaN + 1 : Positive zero + -1 : Negative zero + 2 : Positive number + -2 : Negative number + 3 : Positive infinite number + -3 : Negative infinite number + ---------------------------------------------------------------- +*/ + +VP_EXPORT double +VpGetDoubleNaN(void) /* Returns the value of NaN */ +{ + static double fNaN = 0.0; + if (fNaN == 0.0) fNaN = Zero()/Zero(); + return fNaN; +} + +VP_EXPORT double +VpGetDoublePosInf(void) /* Returns the value of +Infinity */ +{ + static double fInf = 0.0; + if (fInf == 0.0) fInf = One()/Zero(); + return fInf; +} + +VP_EXPORT double +VpGetDoubleNegInf(void) /* Returns the value of -Infinity */ +{ + static double fInf = 0.0; + if (fInf == 0.0) fInf = -(One()/Zero()); + return fInf; +} + +VP_EXPORT double +VpGetDoubleNegZero(void) /* Returns the value of -0 */ +{ + static double nzero = 1000.0; + if (nzero != 0.0) nzero = (One()/VpGetDoubleNegInf()); + return nzero; +} + +#if 0 /* unused */ +VP_EXPORT int +VpIsNegDoubleZero(double v) +{ + double z = VpGetDoubleNegZero(); + return MemCmp(&v,&z,sizeof(v))==0; +} +#endif + +VP_EXPORT int +VpException(unsigned short f, const char *str,int always) +{ + unsigned short const exception_mode = VpGetException(); + + if (f == VP_EXCEPTION_OP || f == VP_EXCEPTION_MEMORY) always = 1; + + if (always || (exception_mode & f)) { + switch(f) { + /* case VP_EXCEPTION_OVERFLOW: */ + case VP_EXCEPTION_ZERODIVIDE: + case VP_EXCEPTION_INFINITY: + case VP_EXCEPTION_NaN: + case VP_EXCEPTION_UNDERFLOW: + case VP_EXCEPTION_OP: + rb_raise(rb_eFloatDomainError, "%s", str); + break; + case VP_EXCEPTION_MEMORY: + default: + rb_fatal("%s", str); + } + } + return 0; /* 0 Means VpException() raised no exception */ +} + +/* Throw exception or returns 0,when resulting c is Inf or NaN */ +/* sw=1:+ 2:- 3:* 4:/ */ +static int +VpIsDefOP(Real *c,Real *a,Real *b,int sw) +{ + if (VpIsNaN(a) || VpIsNaN(b)) { + /* at least a or b is NaN */ + VpSetNaN(c); + goto NaN; + } + + if (VpIsInf(a)) { + if (VpIsInf(b)) { + switch(sw) { + case 1: /* + */ + if (VpGetSign(a) == VpGetSign(b)) { + VpSetInf(c, VpGetSign(a)); + goto Inf; + } + else { + VpSetNaN(c); + goto NaN; + } + case 2: /* - */ + if (VpGetSign(a) != VpGetSign(b)) { + VpSetInf(c, VpGetSign(a)); + goto Inf; + } + else { + VpSetNaN(c); + goto NaN; + } + break; + case 3: /* * */ + VpSetInf(c, VpGetSign(a)*VpGetSign(b)); + goto Inf; + break; + case 4: /* / */ + VpSetNaN(c); + goto NaN; + } + VpSetNaN(c); + goto NaN; + } + /* Inf op Finite */ + switch(sw) { + case 1: /* + */ + case 2: /* - */ + VpSetInf(c, VpGetSign(a)); + break; + case 3: /* * */ + if (VpIsZero(b)) { + VpSetNaN(c); + goto NaN; + } + VpSetInf(c, VpGetSign(a)*VpGetSign(b)); + break; + case 4: /* / */ + VpSetInf(c, VpGetSign(a)*VpGetSign(b)); + } + goto Inf; + } + + if (VpIsInf(b)) { + switch(sw) { + case 1: /* + */ + VpSetInf(c, VpGetSign(b)); + break; + case 2: /* - */ + VpSetInf(c, -VpGetSign(b)); + break; + case 3: /* * */ + if (VpIsZero(a)) { + VpSetNaN(c); + goto NaN; + } + VpSetInf(c, VpGetSign(a)*VpGetSign(b)); + break; + case 4: /* / */ + VpSetZero(c, VpGetSign(a)*VpGetSign(b)); + } + goto Inf; + } + return 1; /* Results OK */ + +Inf: + return VpException(VP_EXCEPTION_INFINITY, "Computation results to 'Infinity'", 0); +NaN: + return VpException(VP_EXCEPTION_NaN, "Computation results to 'NaN'", 0); +} + +/* + ---------------------------------------------------------------- +*/ + +/* + * returns number of chars needed to represent vp in specified format. + */ +VP_EXPORT size_t +VpNumOfChars(Real *vp,const char *pszFmt) +{ + SIGNED_VALUE ex; + size_t nc; + + if (vp == NULL) return BASE_FIG*2+6; + if (!VpIsDef(vp)) return 32; /* not sure,may be OK */ + + switch(*pszFmt) { + case 'F': + nc = BASE_FIG*(vp->Prec + 1)+2; + ex = vp->exponent; + if (ex < 0) { + nc += BASE_FIG*(size_t)(-ex); + } + else { + if ((size_t)ex > vp->Prec) { + nc += BASE_FIG*((size_t)ex - vp->Prec); + } + } + break; + case 'E': + /* fall through */ + default: + nc = BASE_FIG*(vp->Prec + 2)+6; /* 3: sign + exponent chars */ + } + return nc; +} + +/* + * Initializer for Vp routines and constants used. + * [Input] + * BaseVal: Base value(assigned to BASE) for Vp calculation. + * It must be the form BaseVal=10**n.(n=1,2,3,...) + * If Base <= 0L,then the BASE will be calculated so + * that BASE is as large as possible satisfying the + * relation MaxVal <= BASE*(BASE+1). Where the value + * MaxVal is the largest value which can be represented + * by one BDIGIT word in the computer used. + * + * [Returns] + * 1+DBL_DIG ... OK + */ +VP_EXPORT size_t +VpInit(BDIGIT BaseVal) +{ + /* Setup +/- Inf NaN -0 */ + VpGetDoubleNaN(); + VpGetDoublePosInf(); + VpGetDoubleNegInf(); + VpGetDoubleNegZero(); + + /* Allocates Vp constants. */ + VpConstOne = VpAlloc(1UL, "1"); + VpPt5 = VpAlloc(1UL, ".5"); + +#ifdef BIGDECIMAL_DEBUG + gnAlloc = 0; +#endif /* BIGDECIMAL_DEBUG */ + +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + printf("VpInit: BaseVal = %lu\n", BaseVal); + printf(" BASE = %lu\n", BASE); + printf(" HALF_BASE = %lu\n", HALF_BASE); + printf(" BASE1 = %lu\n", BASE1); + printf(" BASE_FIG = %u\n", BASE_FIG); + printf(" DBLE_FIG = %d\n", DBLE_FIG); + } +#endif /* BIGDECIMAL_DEBUG */ + + return rmpd_double_figures(); +} + +VP_EXPORT Real * +VpOne(void) +{ + return VpConstOne; +} + +/* If exponent overflows,then raise exception or returns 0 */ +static int +AddExponent(Real *a, SIGNED_VALUE n) +{ + SIGNED_VALUE e = a->exponent; + SIGNED_VALUE m = e+n; + SIGNED_VALUE eb, mb; + if (e > 0) { + if (n > 0) { + if (MUL_OVERFLOW_SIGNED_VALUE_P(m, (SIGNED_VALUE)BASE_FIG) || + MUL_OVERFLOW_SIGNED_VALUE_P(e, (SIGNED_VALUE)BASE_FIG)) + goto overflow; + mb = m*(SIGNED_VALUE)BASE_FIG; + eb = e*(SIGNED_VALUE)BASE_FIG; + if (mb < eb) goto overflow; + } + } + else if (n < 0) { + if (MUL_OVERFLOW_SIGNED_VALUE_P(m, (SIGNED_VALUE)BASE_FIG) || + MUL_OVERFLOW_SIGNED_VALUE_P(e, (SIGNED_VALUE)BASE_FIG)) + goto underflow; + mb = m*(SIGNED_VALUE)BASE_FIG; + eb = e*(SIGNED_VALUE)BASE_FIG; + if (mb > eb) goto underflow; + } + a->exponent = m; + return 1; + +/* Overflow/Underflow ==> Raise exception or returns 0 */ +underflow: + VpSetZero(a, VpGetSign(a)); + return VpException(VP_EXCEPTION_UNDERFLOW, "Exponent underflow", 0); + +overflow: + VpSetInf(a, VpGetSign(a)); + return VpException(VP_EXCEPTION_OVERFLOW, "Exponent overflow", 0); +} + +/* + * Allocates variable. + * [Input] + * mx ... allocation unit, if zero then mx is determined by szVal. + * The mx is the number of effective digits can to be stored. + * szVal ... value assigned(char). If szVal==NULL,then zero is assumed. + * If szVal[0]=='#' then Max. Prec. will not be considered(1.1.7), + * full precision specified by szVal is allocated. + * + * [Returns] + * Pointer to the newly allocated variable, or + * NULL be returned if memory allocation is failed,or any error. + */ +VP_EXPORT Real * +VpAlloc(size_t mx, const char *szVal) +{ + size_t i, ni, ipn, ipf, nf, ipe, ne, nalloc; + char v, *psz; + int sign=1; + Real *vp = NULL; + size_t mf = VpGetPrecLimit(); + VALUE buf; + + mx = (mx + BASE_FIG - 1) / BASE_FIG; /* Determine allocation unit. */ + if (mx == 0) ++mx; + + if (szVal) { + while (ISSPACE(*szVal)) szVal++; + if (*szVal != '#') { + if (mf) { + mf = (mf + BASE_FIG - 1) / BASE_FIG + 2; /* Needs 1 more for div */ + if (mx > mf) { + mx = mf; + } + } + } + else { + ++szVal; + } + } + else { + /* necessary to be able to store */ + /* at least mx digits. */ + /* szVal==NULL ==> allocate zero value. */ + vp = VpAllocReal(mx); + /* xmalloc() alway returns(or throw interruption) */ + vp->MaxPrec = mx; /* set max precision */ + VpSetZero(vp, 1); /* initialize vp to zero. */ + return vp; + } + + /* Skip all '_' after digit: 2006-6-30 */ + ni = 0; + buf = rb_str_tmp_new(strlen(szVal) + 1); + psz = RSTRING_PTR(buf); + i = 0; + ipn = 0; + while ((psz[i] = szVal[ipn]) != 0) { + if (ISDIGIT(psz[i])) ++ni; + if (psz[i] == '_') { + if (ni > 0) { + ipn++; + continue; + } + psz[i] = 0; + break; + } + ++i; + ++ipn; + } + /* Skip trailing spaces */ + while (--i > 0) { + if (ISSPACE(psz[i])) psz[i] = 0; + else break; + } + szVal = psz; + + /* Check on Inf & NaN */ + if (StrCmp(szVal, SZ_PINF) == 0 || StrCmp(szVal, SZ_INF) == 0 ) { + vp = VpAllocReal(1); + vp->MaxPrec = 1; /* set max precision */ + VpSetPosInf(vp); + return vp; + } + if (StrCmp(szVal, SZ_NINF) == 0) { + vp = VpAllocReal(1); + vp->MaxPrec = 1; /* set max precision */ + VpSetNegInf(vp); + return vp; + } + if (StrCmp(szVal, SZ_NaN) == 0) { + vp = VpAllocReal(1); + vp->MaxPrec = 1; /* set max precision */ + VpSetNaN(vp); + return vp; + } + + /* check on number szVal[] */ + ipn = i = 0; + if (szVal[i] == '-') { sign=-1; ++i; } + else if (szVal[i] == '+') ++i; + /* Skip digits */ + ni = 0; /* digits in mantissa */ + while ((v = szVal[i]) != 0) { + if (!ISDIGIT(v)) break; + ++i; + ++ni; + } + nf = 0; + ipf = 0; + ipe = 0; + ne = 0; + if (v) { + /* other than digit nor \0 */ + if (szVal[i] == '.') { /* xxx. */ + ++i; + ipf = i; + while ((v = szVal[i]) != 0) { /* get fraction part. */ + if (!ISDIGIT(v)) break; + ++i; + ++nf; + } + } + ipe = 0; /* Exponent */ + + switch (szVal[i]) { + case '\0': + break; + case 'e': case 'E': + case 'd': case 'D': + ++i; + ipe = i; + v = szVal[i]; + if ((v == '-') || (v == '+')) ++i; + while ((v=szVal[i]) != 0) { + if (!ISDIGIT(v)) break; + ++i; + ++ne; + } + break; + default: + break; + } + } + nalloc = (ni + nf + BASE_FIG - 1) / BASE_FIG + 1; /* set effective allocation */ + /* units for szVal[] */ + if (mx == 0) mx = 1; + nalloc = Max(nalloc, mx); + mx = nalloc; + vp = VpAllocReal(mx); + /* xmalloc() alway returns(or throw interruption) */ + vp->MaxPrec = mx; /* set max precision */ + VpSetZero(vp, sign); + VpCtoV(vp, &szVal[ipn], ni, &szVal[ipf], nf, &szVal[ipe], ne); + rb_str_resize(buf, 0); + return vp; +} + +/* + * Assignment(c=a). + * [Input] + * a ... RHSV + * isw ... switch for assignment. + * c = a when isw > 0 + * c = -a when isw < 0 + * if c->MaxPrec < a->Prec,then round operation + * will be performed. + * [Output] + * c ... LHSV + */ +VP_EXPORT size_t +VpAsgn(Real *c, Real *a, int isw) +{ + size_t n; + if (VpIsNaN(a)) { + VpSetNaN(c); + return 0; + } + if (VpIsInf(a)) { + VpSetInf(c, isw * VpGetSign(a)); + return 0; + } + + /* check if the RHS is zero */ + if (!VpIsZero(a)) { + c->exponent = a->exponent; /* store exponent */ + VpSetSign(c, isw * VpGetSign(a)); /* set sign */ + n = (a->Prec < c->MaxPrec) ? (a->Prec) : (c->MaxPrec); + c->Prec = n; + memcpy(c->frac, a->frac, n * sizeof(BDIGIT)); + /* Needs round ? */ + if (isw != 10) { + /* Not in ActiveRound */ + if(c->Prec < a->Prec) { + VpInternalRound(c, n, (n>0) ? a->frac[n-1] : 0, a->frac[n]); + } + else { + VpLimitRound(c,0); + } + } + } + else { + /* The value of 'a' is zero. */ + VpSetZero(c, isw * VpGetSign(a)); + return 1; + } + return c->Prec * BASE_FIG; +} + +/* + * c = a + b when operation = 1 or 2 + * = a - b when operation = -1 or -2. + * Returns number of significant digits of c + */ +VP_EXPORT size_t +VpAddSub(Real *c, Real *a, Real *b, int operation) +{ + short sw, isw; + Real *a_ptr, *b_ptr; + size_t n, na, nb, i; + BDIGIT mrv; + +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + VPrint(stdout, "VpAddSub(enter) a=% \n", a); + VPrint(stdout, " b=% \n", b); + printf(" operation=%d\n", operation); + } +#endif /* BIGDECIMAL_DEBUG */ + + if (!VpIsDefOP(c, a, b, (operation > 0) ? 1 : 2)) return 0; /* No significant digits */ + + /* check if a or b is zero */ + if (VpIsZero(a)) { + /* a is zero,then assign b to c */ + if (!VpIsZero(b)) { + VpAsgn(c, b, operation); + } + else { + /* Both a and b are zero. */ + if (VpGetSign(a) < 0 && operation * VpGetSign(b) < 0) { + /* -0 -0 */ + VpSetZero(c, -1); + } + else { + VpSetZero(c, 1); + } + return 1; /* 0: 1 significant digits */ + } + return c->Prec * BASE_FIG; + } + if (VpIsZero(b)) { + /* b is zero,then assign a to c. */ + VpAsgn(c, a, 1); + return c->Prec*BASE_FIG; + } + + if (operation < 0) sw = -1; + else sw = 1; + + /* compare absolute value. As a result,|a_ptr|>=|b_ptr| */ + if (a->exponent > b->exponent) { + a_ptr = a; + b_ptr = b; + } /* |a|>|b| */ + else if (a->exponent < b->exponent) { + a_ptr = b; + b_ptr = a; + } /* |a|<|b| */ + else { + /* Exponent part of a and b is the same,then compare fraction */ + /* part */ + na = a->Prec; + nb = b->Prec; + n = Min(na, nb); + for (i=0; i < n; ++i) { + if (a->frac[i] > b->frac[i]) { + a_ptr = a; + b_ptr = b; + goto end_if; + } + else if (a->frac[i] < b->frac[i]) { + a_ptr = b; + b_ptr = a; + goto end_if; + } + } + if (na > nb) { + a_ptr = a; + b_ptr = b; + goto end_if; + } + else if (na < nb) { + a_ptr = b; + b_ptr = a; + goto end_if; + } + /* |a| == |b| */ + if (VpGetSign(a) + sw *VpGetSign(b) == 0) { + VpSetZero(c, 1); /* abs(a)=abs(b) and operation = '-' */ + return c->Prec * BASE_FIG; + } + a_ptr = a; + b_ptr = b; + } + +end_if: + isw = VpGetSign(a) + sw *VpGetSign(b); + /* + * isw = 0 ...( 1)+(-1),( 1)-( 1),(-1)+(1),(-1)-(-1) + * = 2 ...( 1)+( 1),( 1)-(-1) + * =-2 ...(-1)+(-1),(-1)-( 1) + * If isw==0, then c =(Sign a_ptr)(|a_ptr|-|b_ptr|) + * else c =(Sign ofisw)(|a_ptr|+|b_ptr|) + */ + if (isw) { /* addition */ + VpSetSign(c, 1); + mrv = VpAddAbs(a_ptr, b_ptr, c); + VpSetSign(c, isw / 2); + } + else { /* subtraction */ + VpSetSign(c, 1); + mrv = VpSubAbs(a_ptr, b_ptr, c); + if (a_ptr == a) { + VpSetSign(c,VpGetSign(a)); + } + else { + VpSetSign(c, VpGetSign(a_ptr) * sw); + } + } + VpInternalRound(c, 0, (c->Prec > 0) ? c->frac[c->Prec-1] : 0, mrv); + +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + VPrint(stdout, "VpAddSub(result) c=% \n", c); + VPrint(stdout, " a=% \n", a); + VPrint(stdout, " b=% \n", b); + printf(" operation=%d\n", operation); + } +#endif /* BIGDECIMAL_DEBUG */ + return c->Prec * BASE_FIG; +} + +/* + * Addition of two variable precisional variables + * a and b assuming abs(a)>abs(b). + * c = abs(a) + abs(b) ; where |a|>=|b| + */ +static BDIGIT +VpAddAbs(Real *a, Real *b, Real *c) +{ + size_t word_shift; + size_t ap; + size_t bp; + size_t cp; + size_t a_pos; + size_t b_pos, b_pos_with_word_shift; + size_t c_pos; + BDIGIT av, bv, carry, mrv; + +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + VPrint(stdout, "VpAddAbs called: a = %\n", a); + VPrint(stdout, " b = %\n", b); + } +#endif /* BIGDECIMAL_DEBUG */ + + word_shift = VpSetPTR(a, b, c, &ap, &bp, &cp, &av, &bv); + a_pos = ap; + b_pos = bp; + c_pos = cp; + + if (word_shift == (size_t)-1L) return 0; /* Overflow */ + if (b_pos == (size_t)-1L) goto Assign_a; + + mrv = av + bv; /* Most right val. Used for round. */ + + /* Just assign the last few digits of b to c because a has no */ + /* corresponding digits to be added. */ + if (b_pos > 0) { + while (b_pos > 0 && b_pos + word_shift > a_pos) { + c->frac[--c_pos] = b->frac[--b_pos]; + } + } + if (b_pos == 0 && word_shift > a_pos) { + while (word_shift-- > a_pos) { + c->frac[--c_pos] = 0; + } + } + + /* Just assign the last few digits of a to c because b has no */ + /* corresponding digits to be added. */ + b_pos_with_word_shift = b_pos + word_shift; + while (a_pos > b_pos_with_word_shift) { + c->frac[--c_pos] = a->frac[--a_pos]; + } + carry = 0; /* set first carry be zero */ + + /* Now perform addition until every digits of b will be */ + /* exhausted. */ + while (b_pos > 0) { + c->frac[--c_pos] = a->frac[--a_pos] + b->frac[--b_pos] + carry; + if (c->frac[c_pos] >= BASE) { + c->frac[c_pos] -= BASE; + carry = 1; + } + else { + carry = 0; + } + } + + /* Just assign the first few digits of a with considering */ + /* the carry obtained so far because b has been exhausted. */ + while (a_pos > 0) { + c->frac[--c_pos] = a->frac[--a_pos] + carry; + if (c->frac[c_pos] >= BASE) { + c->frac[c_pos] -= BASE; + carry = 1; + } + else { + carry = 0; + } + } + if (c_pos) c->frac[c_pos - 1] += carry; + goto Exit; + +Assign_a: + VpAsgn(c, a, 1); + mrv = 0; + +Exit: + +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + VPrint(stdout, "VpAddAbs exit: c=% \n", c); + } +#endif /* BIGDECIMAL_DEBUG */ + return mrv; +} + +/* + * c = abs(a) - abs(b) + */ +static BDIGIT +VpSubAbs(Real *a, Real *b, Real *c) +{ + size_t word_shift; + size_t ap; + size_t bp; + size_t cp; + size_t a_pos; + size_t b_pos, b_pos_with_word_shift; + size_t c_pos; + BDIGIT av, bv, borrow, mrv; + +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + VPrint(stdout, "VpSubAbs called: a = %\n", a); + VPrint(stdout, " b = %\n", b); + } +#endif /* BIGDECIMAL_DEBUG */ + + word_shift = VpSetPTR(a, b, c, &ap, &bp, &cp, &av, &bv); + a_pos = ap; + b_pos = bp; + c_pos = cp; + if (word_shift == (size_t)-1L) return 0; /* Overflow */ + if (b_pos == (size_t)-1L) goto Assign_a; + + if (av >= bv) { + mrv = av - bv; + borrow = 0; + } + else { + mrv = 0; + borrow = 1; + } + + /* Just assign the values which are the BASE subtracted by */ + /* each of the last few digits of the b because the a has no */ + /* corresponding digits to be subtracted. */ + if (b_pos + word_shift > a_pos) { + while (b_pos > 0 && b_pos + word_shift > a_pos) { + c->frac[--c_pos] = BASE - b->frac[--b_pos] - borrow; + borrow = 1; + } + if (b_pos == 0) { + while (word_shift > a_pos) { + --word_shift; + c->frac[--c_pos] = BASE - borrow; + borrow = 1; + } + } + } + /* Just assign the last few digits of a to c because b has no */ + /* corresponding digits to subtract. */ + + b_pos_with_word_shift = b_pos + word_shift; + while (a_pos > b_pos_with_word_shift) { + c->frac[--c_pos] = a->frac[--a_pos]; + } + + /* Now perform subtraction until every digits of b will be */ + /* exhausted. */ + while (b_pos > 0) { + --c_pos; + if (a->frac[--a_pos] < b->frac[--b_pos] + borrow) { + c->frac[c_pos] = BASE + a->frac[a_pos] - b->frac[b_pos] - borrow; + borrow = 1; + } + else { + c->frac[c_pos] = a->frac[a_pos] - b->frac[b_pos] - borrow; + borrow = 0; + } + } + + /* Just assign the first few digits of a with considering */ + /* the borrow obtained so far because b has been exhausted. */ + while (a_pos > 0) { + --c_pos; + if (a->frac[--a_pos] < borrow) { + c->frac[c_pos] = BASE + a->frac[a_pos] - borrow; + borrow = 1; + } + else { + c->frac[c_pos] = a->frac[a_pos] - borrow; + borrow = 0; + } + } + if (c_pos) c->frac[c_pos - 1] -= borrow; + goto Exit; + +Assign_a: + VpAsgn(c, a, 1); + mrv = 0; + +Exit: +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + VPrint(stdout, "VpSubAbs exit: c=% \n", c); + } +#endif /* BIGDECIMAL_DEBUG */ + return mrv; +} + +/* + * Note: If(av+bv)>= HALF_BASE,then 1 will be added to the least significant + * digit of c(In case of addition). + * ------------------------- figure of output ----------------------------------- + * a = xxxxxxxxxxx + * b = xxxxxxxxxx + * c =xxxxxxxxxxxxxxx + * word_shift = | | + * right_word = | | (Total digits in RHSV) + * left_word = | | (Total digits in LHSV) + * a_pos = | + * b_pos = | + * c_pos = | + */ +static size_t +VpSetPTR(Real *a, Real *b, Real *c, size_t *a_pos, size_t *b_pos, size_t *c_pos, BDIGIT *av, BDIGIT *bv) +{ + size_t left_word, right_word, word_shift; + + size_t const round_limit = (VpGetPrecLimit() + BASE_FIG - 1) / BASE_FIG; + + assert(a->exponent >= b->exponent); + + c->frac[0] = 0; + *av = *bv = 0; + + word_shift = (a->exponent - b->exponent); + left_word = b->Prec + word_shift; + right_word = Max(a->Prec, left_word); + left_word = c->MaxPrec - 1; /* -1 ... prepare for round up */ + + /* + * check if 'round' is needed. + */ + if (right_word > left_word) { /* round ? */ + /*--------------------------------- + * Actual size of a = xxxxxxAxx + * Actual size of b = xxxBxxxxx + * Max. size of c = xxxxxx + * Round off = |-----| + * c_pos = | + * right_word = | + * a_pos = | + */ + *c_pos = right_word = left_word + 1; /* Set resulting precision */ + /* be equal to that of c */ + if (a->Prec >= c->MaxPrec) { + /* + * a = xxxxxxAxxx + * c = xxxxxx + * a_pos = | + */ + *a_pos = left_word; + if (*a_pos <= round_limit) { + *av = a->frac[*a_pos]; /* av is 'A' shown in above. */ + } + } + else { + /* + * a = xxxxxxx + * c = xxxxxxxxxx + * a_pos = | + */ + *a_pos = a->Prec; + } + if (b->Prec + word_shift >= c->MaxPrec) { + /* + * a = xxxxxxxxx + * b = xxxxxxxBxxx + * c = xxxxxxxxxxx + * b_pos = | + */ + if (c->MaxPrec >= word_shift + 1) { + *b_pos = c->MaxPrec - word_shift - 1; + if (*b_pos + word_shift <= round_limit) { + *bv = b->frac[*b_pos]; + } + } + else { + *b_pos = -1L; + } + } + else { + /* + * a = xxxxxxxxxxxxxxxx + * b = xxxxxx + * c = xxxxxxxxxxxxx + * b_pos = | + */ + *b_pos = b->Prec; + } + } + else { /* The MaxPrec of c - 1 > The Prec of a + b */ + /* + * a = xxxxxxx + * b = xxxxxx + * c = xxxxxxxxxxx + * c_pos = | + */ + *b_pos = b->Prec; + *a_pos = a->Prec; + *c_pos = right_word + 1; + } + c->Prec = *c_pos; + c->exponent = a->exponent; + if (!AddExponent(c, 1)) return (size_t)-1L; + return word_shift; +} + +/* + * Return number of significant digits + * c = a * b , Where a = a0a1a2 ... an + * b = b0b1b2 ... bm + * c = c0c1c2 ... cl + * a0 a1 ... an * bm + * a0 a1 ... an * bm-1 + * . . . + * . . . + * a0 a1 .... an * b0 + * +_____________________________ + * c0 c1 c2 ...... cl + * nc <---| + * MaxAB |--------------------| + */ +VP_EXPORT size_t +VpMult(Real *c, Real *a, Real *b) +{ + size_t MxIndA, MxIndB, MxIndAB, MxIndC; + size_t ind_c, i, ii, nc; + size_t ind_as, ind_ae, ind_bs; + BDIGIT carry; + BDIGIT_DBL s; + Real *w; + +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + VPrint(stdout, "VpMult(Enter): a=% \n", a); + VPrint(stdout, " b=% \n", b); + } +#endif /* BIGDECIMAL_DEBUG */ + + if (!VpIsDefOP(c, a, b, 3)) return 0; /* No significant digit */ + + if (VpIsZero(a) || VpIsZero(b)) { + /* at least a or b is zero */ + VpSetZero(c, VpGetSign(a) * VpGetSign(b)); + return 1; /* 0: 1 significant digit */ + } + + if (VpIsOne(a)) { + VpAsgn(c, b, VpGetSign(a)); + goto Exit; + } + if (VpIsOne(b)) { + VpAsgn(c, a, VpGetSign(b)); + goto Exit; + } + if (b->Prec > a->Prec) { + /* Adjust so that digits(a)>digits(b) */ + w = a; + a = b; + b = w; + } + w = NULL; + MxIndA = a->Prec - 1; + MxIndB = b->Prec - 1; + MxIndC = c->MaxPrec - 1; + MxIndAB = a->Prec + b->Prec - 1; + + if (MxIndC < MxIndAB) { /* The Max. prec. of c < Prec(a)+Prec(b) */ + w = c; + c = VpAlloc((size_t)((MxIndAB + 1) * BASE_FIG), "#0"); + MxIndC = MxIndAB; + } + + /* set LHSV c info */ + + c->exponent = a->exponent; /* set exponent */ + if (!AddExponent(c, b->exponent)) { + if (w) VpFree(c); + return 0; + } + VpSetSign(c, VpGetSign(a) * VpGetSign(b)); /* set sign */ + carry = 0; + nc = ind_c = MxIndAB; + memset(c->frac, 0, (nc + 1) * sizeof(BDIGIT)); /* Initialize c */ + c->Prec = nc + 1; /* set precision */ + for (nc = 0; nc < MxIndAB; ++nc, --ind_c) { + if (nc < MxIndB) { /* The left triangle of the Fig. */ + ind_as = MxIndA - nc; + ind_ae = MxIndA; + ind_bs = MxIndB; + } + else if (nc <= MxIndA) { /* The middle rectangular of the Fig. */ + ind_as = MxIndA - nc; + ind_ae = MxIndA - (nc - MxIndB); + ind_bs = MxIndB; + } + else /* if (nc > MxIndA) */ { /* The right triangle of the Fig. */ + ind_as = 0; + ind_ae = MxIndAB - nc - 1; + ind_bs = MxIndB - (nc - MxIndA); + } + + for (i = ind_as; i <= ind_ae; ++i) { + s = (BDIGIT_DBL)a->frac[i] * b->frac[ind_bs--]; + carry = (BDIGIT)(s / BASE); + s -= (BDIGIT_DBL)carry * BASE; + c->frac[ind_c] += (BDIGIT)s; + if (c->frac[ind_c] >= BASE) { + s = c->frac[ind_c] / BASE; + carry += (BDIGIT)s; + c->frac[ind_c] -= (BDIGIT)(s * BASE); + } + if (carry) { + ii = ind_c; + while (ii-- > 0) { + c->frac[ii] += carry; + if (c->frac[ii] >= BASE) { + carry = c->frac[ii] / BASE; + c->frac[ii] -= (carry * BASE); + } + else { + break; + } + } + } + } + } + if (w != NULL) { /* free work variable */ + VpNmlz(c); + VpAsgn(w, c, 1); + VpFree(c); + c = w; + } + else { + VpLimitRound(c,0); + } + +Exit: +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + VPrint(stdout, "VpMult(c=a*b): c=% \n", c); + VPrint(stdout, " a=% \n", a); + VPrint(stdout, " b=% \n", b); + } +#endif /*BIGDECIMAL_DEBUG */ + return c->Prec*BASE_FIG; +} + +/* + * c = a / b, remainder = r + */ + VP_EXPORT size_t +VpDivd(Real *c, Real *r, Real *a, Real *b) +{ + size_t word_a, word_b, word_c, word_r; + size_t i, n, ind_a, ind_b, ind_c, ind_r; + size_t nLoop; + BDIGIT_DBL q, b1, b1p1, b1b2, b1b2p1, r1r2; + BDIGIT borrow, borrow1, borrow2; + BDIGIT_DBL qb; + +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + VPrint(stdout, " VpDivd(c=a/b) a=% \n", a); + VPrint(stdout, " b=% \n", b); + } +#endif /*BIGDECIMAL_DEBUG */ + + VpSetNaN(r); + if (!VpIsDefOP(c, a, b, 4)) goto Exit; + if (VpIsZero(a) && VpIsZero(b)) { + VpSetNaN(c); + return VpException(VP_EXCEPTION_NaN, "(VpDivd) 0/0 not defined(NaN)", 0); + } + if (VpIsZero(b)) { + VpSetInf(c, VpGetSign(a) * VpGetSign(b)); + return VpException(VP_EXCEPTION_ZERODIVIDE, "(VpDivd) Divide by zero", 0); + } + if (VpIsZero(a)) { + /* numerator a is zero */ + VpSetZero(c, VpGetSign(a) * VpGetSign(b)); + VpSetZero(r, VpGetSign(a) * VpGetSign(b)); + goto Exit; + } + if (VpIsOne(b)) { + /* divide by one */ + VpAsgn(c, a, VpGetSign(b)); + VpSetZero(r, VpGetSign(a)); + goto Exit; + } + + word_a = a->Prec; + word_b = b->Prec; + word_c = c->MaxPrec; + word_r = r->MaxPrec; + + ind_c = 0; + ind_r = 1; + + if (word_a >= word_r) goto space_error; + + r->frac[0] = 0; + while (ind_r <= word_a) { + r->frac[ind_r] = a->frac[ind_r - 1]; + ++ind_r; + } + + while (ind_r < word_r) r->frac[ind_r++] = 0; + while (ind_c < word_c) c->frac[ind_c++] = 0; + + /* initial procedure */ + b1 = b1p1 = b->frac[0]; + if (b->Prec <= 1) { + b1b2p1 = b1b2 = b1p1 * BASE; + } + else { + b1p1 = b1 + 1; + b1b2p1 = b1b2 = b1 * BASE + b->frac[1]; + if (b->Prec > 2) ++b1b2p1; + } + + /* */ + /* loop start */ + ind_c = word_r - 1; + nLoop = Min(word_c,ind_c); + ind_c = 1; + while (ind_c < nLoop) { + if (r->frac[ind_c] == 0) { + ++ind_c; + continue; + } + r1r2 = (BDIGIT_DBL)r->frac[ind_c] * BASE + r->frac[ind_c + 1]; + if (r1r2 == b1b2) { + /* The first two word digits is the same */ + ind_b = 2; + ind_a = ind_c + 2; + while (ind_b < word_b) { + if (r->frac[ind_a] < b->frac[ind_b]) goto div_b1p1; + if (r->frac[ind_a] > b->frac[ind_b]) break; + ++ind_a; + ++ind_b; + } + /* The first few word digits of r and b is the same and */ + /* the first different word digit of w is greater than that */ + /* of b, so quotient is 1 and just subtract b from r. */ + borrow = 0; /* quotient=1, then just r-b */ + ind_b = b->Prec - 1; + ind_r = ind_c + ind_b; + if (ind_r >= word_r) goto space_error; + n = ind_b; + for (i = 0; i <= n; ++i) { + if (r->frac[ind_r] < b->frac[ind_b] + borrow) { + r->frac[ind_r] += (BASE - (b->frac[ind_b] + borrow)); + borrow = 1; + } + else { + r->frac[ind_r] = r->frac[ind_r] - b->frac[ind_b] - borrow; + borrow = 0; + } + --ind_r; + --ind_b; + } + ++c->frac[ind_c]; + goto carry; + } + /* The first two word digits is not the same, */ + /* then compare magnitude, and divide actually. */ + if (r1r2 >= b1b2p1) { + q = r1r2 / b1b2p1; /* q == (BDIGIT)q */ + c->frac[ind_c] += (BDIGIT)q; + ind_r = b->Prec + ind_c - 1; + goto sub_mult; + } + +div_b1p1: + if (ind_c + 1 >= word_c) goto out_side; + q = r1r2 / b1p1; /* q == (BDIGIT)q */ + c->frac[ind_c + 1] += (BDIGIT)q; + ind_r = b->Prec + ind_c; + +sub_mult: + borrow1 = borrow2 = 0; + ind_b = word_b - 1; + if (ind_r >= word_r) goto space_error; + n = ind_b; + for (i = 0; i <= n; ++i) { + /* now, perform r = r - q * b */ + qb = q * b->frac[ind_b]; + if (qb < BASE) borrow1 = 0; + else { + borrow1 = (BDIGIT)(qb / BASE); + qb -= (BDIGIT_DBL)borrow1 * BASE; /* get qb < BASE */ + } + if(r->frac[ind_r] < qb) { + r->frac[ind_r] += (BDIGIT)(BASE - qb); + borrow2 = borrow2 + borrow1 + 1; + } + else { + r->frac[ind_r] -= (BDIGIT)qb; + borrow2 += borrow1; + } + if (borrow2) { + if(r->frac[ind_r - 1] < borrow2) { + r->frac[ind_r - 1] += (BASE - borrow2); + borrow2 = 1; + } + else { + r->frac[ind_r - 1] -= borrow2; + borrow2 = 0; + } + } + --ind_r; + --ind_b; + } + + r->frac[ind_r] -= borrow2; +carry: + ind_r = ind_c; + while (c->frac[ind_r] >= BASE) { + c->frac[ind_r] -= BASE; + --ind_r; + ++c->frac[ind_r]; + } + } + /* End of operation, now final arrangement */ +out_side: + c->Prec = word_c; + c->exponent = a->exponent; + if (!AddExponent(c, 2)) return 0; + if (!AddExponent(c, -(b->exponent))) return 0; + + VpSetSign(c, VpGetSign(a) * VpGetSign(b)); + VpNmlz(c); /* normalize c */ + r->Prec = word_r; + r->exponent = a->exponent; + if (!AddExponent(r, 1)) return 0; + VpSetSign(r, VpGetSign(a)); + VpNmlz(r); /* normalize r(remainder) */ + goto Exit; + +space_error: +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + printf(" word_a=%lu\n", word_a); + printf(" word_b=%lu\n", word_b); + printf(" word_c=%lu\n", word_c); + printf(" word_r=%lu\n", word_r); + printf(" ind_r =%lu\n", ind_r); + } +#endif /* BIGDECIMAL_DEBUG */ + rb_bug("ERROR(VpDivd): space for remainder too small."); + +Exit: +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + VPrint(stdout, " VpDivd(c=a/b), c=% \n", c); + VPrint(stdout, " r=% \n", r); + } +#endif /* BIGDECIMAL_DEBUG */ + return c->Prec * BASE_FIG; +} + +/* + * Input a = 00000xxxxxxxx En(5 preceding zeros) + * Output a = xxxxxxxx En-5 + */ +static int +VpNmlz(Real *a) +{ + size_t ind_a, i; + + if (!VpIsDef(a)) goto NoVal; + if (VpIsZero(a)) goto NoVal; + + ind_a = a->Prec; + while (ind_a--) { + if (a->frac[ind_a]) { + a->Prec = ind_a + 1; + i = 0; + while (a->frac[i] == 0) ++i; /* skip the first few zeros */ + if (i) { + a->Prec -= i; + if (!AddExponent(a, -(SIGNED_VALUE)i)) return 0; + memmove(&a->frac[0], &a->frac[i], a->Prec*sizeof(BDIGIT)); + } + return 1; + } + } + /* a is zero(no non-zero digit) */ + VpSetZero(a, VpGetSign(a)); + return 0; + +NoVal: + a->frac[0] = 0; + a->Prec = 1; + return 0; +} + +/* + * VpComp = 0 ... if a=b, + * Pos ... a>b, + * Neg ... asign - b->sign; + else e = a->sign; + + if (e > 0) return 1; + else if (e < 0) return -1; + else return 0; + } + if (!VpIsDef(b)) { + e = -b->sign; + if (e > 0) return 1; + else return -1; + } + /* Zero check */ + if (VpIsZero(a)) { + if (VpIsZero(b)) return 0; /* both zero */ + val = -VpGetSign(b); + goto Exit; + } + if (VpIsZero(b)) { + val = VpGetSign(a); + goto Exit; + } + + /* compare sign */ + if (VpGetSign(a) > VpGetSign(b)) { + val = 1; /* a>b */ + goto Exit; + } + if (VpGetSign(a) < VpGetSign(b)) { + val = -1; /* aexponent > b->exponent) { + val = VpGetSign(a); + goto Exit; + } + if (a->exponent < b->exponent) { + val = -VpGetSign(b); + goto Exit; + } + + /* a and b have same exponent, then compare significand. */ + mx = (a->Prec < b->Prec) ? a->Prec : b->Prec; + ind = 0; + while (ind < mx) { + if (a->frac[ind] > b->frac[ind]) { + val = VpGetSign(a); + goto Exit; + } + if (a->frac[ind] < b->frac[ind]) { + val = -VpGetSign(b); + goto Exit; + } + ++ind; + } + if (a->Prec > b->Prec) { + val = VpGetSign(a); + } + else if (a->Prec < b->Prec) { + val = -VpGetSign(b); + } + +Exit: + if (val > 1) val = 1; + else if (val < -1) val = -1; + +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + VPrint(stdout, " VpComp a=%\n", a); + VPrint(stdout, " b=%\n", b); + printf(" ans=%d\n", val); + } +#endif /* BIGDECIMAL_DEBUG */ + return (int)val; +} + +/* + * cntl_chr ... ASCIIZ Character, print control characters + * Available control codes: + * % ... VP variable. To print '%', use '%%'. + * \n ... new line + * \b ... backspace + * ... tab + * Note: % must must not appear more than once + * a ... VP variable to be printed + */ +#ifdef BIGDECIMAL_ENABLE_VPRINT +static int +VPrint(FILE *fp, const char *cntl_chr, Real *a) +{ + size_t i, j, nc, nd, ZeroSup, sep = 10; + BDIGIT m, e, nn; + + /* Check if NaN & Inf. */ + if (VpIsNaN(a)) { + fprintf(fp, SZ_NaN); + return 8; + } + if (VpIsPosInf(a)) { + fprintf(fp, SZ_INF); + return 8; + } + if (VpIsNegInf(a)) { + fprintf(fp, SZ_NINF); + return 9; + } + if (VpIsZero(a)) { + fprintf(fp, "0.0"); + return 3; + } + + j = 0; + nd = nc = 0; /* nd : number of digits in fraction part(every 10 digits, */ + /* nd<=10). */ + /* nc : number of characters printed */ + ZeroSup = 1; /* Flag not to print the leading zeros as 0.00xxxxEnn */ + while (*(cntl_chr + j)) { + if (*(cntl_chr + j) == '%' && *(cntl_chr + j + 1) != '%') { + nc = 0; + if (!VpIsZero(a)) { + if (VpGetSign(a) < 0) { + fprintf(fp, "-"); + ++nc; + } + nc += fprintf(fp, "0."); + switch (*(cntl_chr + j + 1)) { + default: + break; + + case '0': case 'z': + ZeroSup = 0; + ++j; + sep = cntl_chr[j] == 'z' ? RMPD_COMPONENT_FIGURES : 10; + break; + } + for (i = 0; i < a->Prec; ++i) { + m = BASE1; + e = a->frac[i]; + while (m) { + nn = e / m; + if (!ZeroSup || nn) { + nc += fprintf(fp, "%lu", (unsigned long)nn); /* The leading zero(s) */ + /* as 0.00xx will not */ + /* be printed. */ + ++nd; + ZeroSup = 0; /* Set to print succeeding zeros */ + } + if (nd >= sep) { /* print ' ' after every 10 digits */ + nd = 0; + nc += fprintf(fp, " "); + } + e = e - nn * m; + m /= 10; + } + } + nc += fprintf(fp, "E%"PRIdSIZE, VpExponent10(a)); + nc += fprintf(fp, " (%"PRIdVALUE", %lu, %lu)", a->exponent, a->Prec, a->MaxPrec); + } + else { + nc += fprintf(fp, "0.0"); + } + } + else { + ++nc; + if (*(cntl_chr + j) == '\\') { + switch (*(cntl_chr + j + 1)) { + case 'n': + fprintf(fp, "\n"); + ++j; + break; + case 't': + fprintf(fp, "\t"); + ++j; + break; + case 'b': + fprintf(fp, "\n"); + ++j; + break; + default: + fprintf(fp, "%c", *(cntl_chr + j)); + break; + } + } + else { + fprintf(fp, "%c", *(cntl_chr + j)); + if (*(cntl_chr + j) == '%') ++j; + } + } + j++; + } + + return (int)nc; +} +#endif + +static void +VpFormatSt(char *psz, size_t fFmt) +{ + size_t ie, i, nf = 0; + char ch; + + if (fFmt == 0) return; + + ie = strlen(psz); + for (i = 0; i < ie; ++i) { + ch = psz[i]; + if (!ch) break; + if (ISSPACE(ch) || ch=='-' || ch=='+') continue; + if (ch == '.') { nf = 0; continue; } + if (ch == 'E') break; + + if (++nf > fFmt) { + memmove(psz + i + 1, psz + i, ie - i + 1); + ++ie; + nf = 0; + psz[i] = ' '; + } + } +} + +VP_EXPORT ssize_t +VpExponent10(Real *a) +{ + ssize_t ex; + size_t n; + + if (!VpHasVal(a)) return 0; + + ex = a->exponent * (ssize_t)BASE_FIG; + n = BASE1; + while ((a->frac[0] / n) == 0) { + --ex; + n /= 10; + } + return ex; +} + +VP_EXPORT void +VpSzMantissa(Real *a,char *psz) +{ + size_t i, n, ZeroSup; + BDIGIT_DBL m, e, nn; + + if (VpIsNaN(a)) { + sprintf(psz, SZ_NaN); + return; + } + if (VpIsPosInf(a)) { + sprintf(psz, SZ_INF); + return; + } + if (VpIsNegInf(a)) { + sprintf(psz, SZ_NINF); + return; + } + + ZeroSup = 1; /* Flag not to print the leading zeros as 0.00xxxxEnn */ + if (!VpIsZero(a)) { + if (VpGetSign(a) < 0) *psz++ = '-'; + n = a->Prec; + for (i = 0; i < n; ++i) { + m = BASE1; + e = a->frac[i]; + while (m) { + nn = e / m; + if (!ZeroSup || nn) { + sprintf(psz, "%lu", (unsigned long)nn); /* The leading zero(s) */ + psz += strlen(psz); + /* as 0.00xx will be ignored. */ + ZeroSup = 0; /* Set to print succeeding zeros */ + } + e = e - nn * m; + m /= 10; + } + } + *psz = 0; + while (psz[-1] == '0') *(--psz) = 0; + } + else { + if (VpIsPosZero(a)) sprintf(psz, "0"); + else sprintf(psz, "-0"); + } +} + +VP_EXPORT int +VpToSpecialString(Real *a,char *psz,int fPlus) + /* fPlus =0:default, =1: set ' ' before digits , =2: set '+' before digits. */ +{ + if (VpIsNaN(a)) { + sprintf(psz,SZ_NaN); + return 1; + } + + if (VpIsPosInf(a)) { + if (fPlus == 1) { + *psz++ = ' '; + } + else if (fPlus == 2) { + *psz++ = '+'; + } + sprintf(psz, SZ_INF); + return 1; + } + if (VpIsNegInf(a)) { + sprintf(psz, SZ_NINF); + return 1; + } + if (VpIsZero(a)) { + if (VpIsPosZero(a)) { + if (fPlus == 1) sprintf(psz, " 0.0"); + else if (fPlus == 2) sprintf(psz, "+0.0"); + else sprintf(psz, "0.0"); + } + else sprintf(psz, "-0.0"); + return 1; + } + return 0; +} + +VP_EXPORT void +VpToString(Real *a, char *psz, size_t fFmt, int fPlus) +/* fPlus =0:default, =1: set ' ' before digits , =2:set '+' before digits. */ +{ + size_t i, n, ZeroSup; + BDIGIT shift, m, e, nn; + char *pszSav = psz; + ssize_t ex; + + if (VpToSpecialString(a, psz, fPlus)) return; + + ZeroSup = 1; /* Flag not to print the leading zeros as 0.00xxxxEnn */ + + if (VpGetSign(a) < 0) *psz++ = '-'; + else if (fPlus == 1) *psz++ = ' '; + else if (fPlus == 2) *psz++ = '+'; + + *psz++ = '0'; + *psz++ = '.'; + n = a->Prec; + for (i = 0; i < n; ++i) { + m = BASE1; + e = a->frac[i]; + while (m) { + nn = e / m; + if (!ZeroSup || nn) { + sprintf(psz, "%lu", (unsigned long)nn); /* The reading zero(s) */ + psz += strlen(psz); + /* as 0.00xx will be ignored. */ + ZeroSup = 0; /* Set to print succeeding zeros */ + } + e = e - nn * m; + m /= 10; + } + } + ex = a->exponent * (ssize_t)BASE_FIG; + shift = BASE1; + while (a->frac[0] / shift == 0) { + --ex; + shift /= 10; + } + while (psz[-1] == '0') { + *(--psz) = 0; + } + sprintf(psz, "E%"PRIdSIZE, ex); + if (fFmt) VpFormatSt(pszSav, fFmt); +} + +VP_EXPORT void +VpToFString(Real *a, char *psz, size_t fFmt, int fPlus) +/* fPlus =0:default,=1: set ' ' before digits ,set '+' before digits. */ +{ + size_t i, n; + BDIGIT m, e, nn; + char *pszSav = psz; + ssize_t ex; + + if (VpToSpecialString(a, psz, fPlus)) return; + + if (VpGetSign(a) < 0) *psz++ = '-'; + else if (fPlus == 1) *psz++ = ' '; + else if (fPlus == 2) *psz++ = '+'; + + n = a->Prec; + ex = a->exponent; + if (ex <= 0) { + *psz++ = '0';*psz++ = '.'; + while (ex < 0) { + for (i=0; i < BASE_FIG; ++i) *psz++ = '0'; + ++ex; + } + ex = -1; + } + + for (i = 0; i < n; ++i) { + --ex; + if (i == 0 && ex >= 0) { + sprintf(psz, "%lu", (unsigned long)a->frac[i]); + psz += strlen(psz); + } + else { + m = BASE1; + e = a->frac[i]; + while (m) { + nn = e / m; + *psz++ = (char)(nn + '0'); + e = e - nn * m; + m /= 10; + } + } + if (ex == 0) *psz++ = '.'; + } + while (--ex>=0) { + m = BASE; + while (m /= 10) *psz++ = '0'; + if (ex == 0) *psz++ = '.'; + } + *psz = 0; + while (psz[-1] == '0') *(--psz) = 0; + if (psz[-1] == '.') sprintf(psz, "0"); + if (fFmt) VpFormatSt(pszSav, fFmt); +} + +/* + * [Output] + * a[] ... variable to be assigned the value. + * [Input] + * int_chr[] ... integer part(may include '+/-'). + * ni ... number of characters in int_chr[],not including '+/-'. + * frac[] ... fraction part. + * nf ... number of characters in frac[]. + * exp_chr[] ... exponent part(including '+/-'). + * ne ... number of characters in exp_chr[],not including '+/-'. + */ +VP_EXPORT int +VpCtoV(Real *a, const char *int_chr, size_t ni, const char *frac, size_t nf, const char *exp_chr, size_t ne) +{ + size_t i, j, ind_a, ma, mi, me; + SIGNED_VALUE e, es, eb, ef; + int sign, signe, exponent_overflow; + + /* get exponent part */ + e = 0; + ma = a->MaxPrec; + mi = ni; + me = ne; + signe = 1; + exponent_overflow = 0; + memset(a->frac, 0, ma * sizeof(BDIGIT)); + if (ne > 0) { + i = 0; + if (exp_chr[0] == '-') { + signe = -1; + ++i; + ++me; + } + else if (exp_chr[0] == '+') { + ++i; + ++me; + } + while (i < me) { + if (MUL_OVERFLOW_SIGNED_VALUE_P(e, (SIGNED_VALUE)BASE_FIG)) { + es = e; + goto exp_overflow; + } + es = e * (SIGNED_VALUE)BASE_FIG; + if (MUL_OVERFLOW_SIGNED_VALUE_P(e, 10) || + SIGNED_VALUE_MAX - (exp_chr[i] - '0') < e * 10) + goto exp_overflow; + e = e * 10 + exp_chr[i] - '0'; + if (MUL_OVERFLOW_SIGNED_VALUE_P(e, (SIGNED_VALUE)BASE_FIG)) + goto exp_overflow; + if (es > (SIGNED_VALUE)(e * BASE_FIG)) { + exp_overflow: + exponent_overflow = 1; + e = es; /* keep sign */ + break; + } + ++i; + } + } + + /* get integer part */ + i = 0; + sign = 1; + if (1 /*ni >= 0*/) { + if (int_chr[0] == '-') { + sign = -1; + ++i; + ++mi; + } + else if (int_chr[0] == '+') { + ++i; + ++mi; + } + } + + e = signe * e; /* e: The value of exponent part. */ + e = e + ni; /* set actual exponent size. */ + + if (e > 0) signe = 1; + else signe = -1; + + /* Adjust the exponent so that it is the multiple of BASE_FIG. */ + j = 0; + ef = 1; + while (ef) { + if (e >= 0) eb = e; + else eb = -e; + ef = eb / (SIGNED_VALUE)BASE_FIG; + ef = eb - ef * (SIGNED_VALUE)BASE_FIG; + if (ef) { + ++j; /* Means to add one more preceding zero */ + ++e; + } + } + + eb = e / (SIGNED_VALUE)BASE_FIG; + + if (exponent_overflow) { + int zero = 1; + for ( ; i < mi && zero; i++) zero = int_chr[i] == '0'; + for (i = 0; i < nf && zero; i++) zero = frac[i] == '0'; + if (!zero && signe > 0) { + VpSetInf(a, sign); + VpException(VP_EXCEPTION_INFINITY, "exponent overflow",0); + } + else VpSetZero(a, sign); + return 1; + } + + ind_a = 0; + while (i < mi) { + a->frac[ind_a] = 0; + while (j < BASE_FIG && i < mi) { + a->frac[ind_a] = a->frac[ind_a] * 10 + int_chr[i] - '0'; + ++j; + ++i; + } + if (i < mi) { + ++ind_a; + if (ind_a >= ma) goto over_flow; + j = 0; + } + } + + /* get fraction part */ + + i = 0; + while (i < nf) { + while (j < BASE_FIG && i < nf) { + a->frac[ind_a] = a->frac[ind_a] * 10 + frac[i] - '0'; + ++j; + ++i; + } + if (i < nf) { + ++ind_a; + if (ind_a >= ma) goto over_flow; + j = 0; + } + } + goto Final; + +over_flow: + rb_warn("Conversion from String to BigDecimal overflow (last few digits discarded)."); + +Final: + if (ind_a >= ma) ind_a = ma - 1; + while (j < BASE_FIG) { + a->frac[ind_a] = a->frac[ind_a] * 10; + ++j; + } + a->Prec = ind_a + 1; + a->exponent = eb; + VpSetSign(a, sign); + VpNmlz(a); + return 1; +} + +/* + * [Input] + * *m ... Real + * [Output] + * *d ... fraction part of m(d = 0.xxxxxxx). where # of 'x's is fig. + * *e ... exponent of m. + * DBLE_FIG ... Number of digits in a double variable. + * + * m -> d*10**e, 0Prec); + *d = 0.0; + div = 1.; + while (ind_m < mm) { + div /= (double)BASE; + *d = *d + (double)m->frac[ind_m++] * div; + } + *e = m->exponent * (SIGNED_VALUE)BASE_FIG; + *d *= VpGetSign(m); + +Exit: +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + VPrint(stdout, " VpVtoD: m=%\n", m); + printf(" d=%e * 10 **%ld\n", *d, *e); + printf(" DBLE_FIG = %d\n", DBLE_FIG); + } +#endif /*BIGDECIMAL_DEBUG */ + return f; +} + +/* + * m <- d + */ +VP_EXPORT void +VpDtoV(Real *m, double d) +{ + size_t ind_m, mm; + SIGNED_VALUE ne; + BDIGIT i; + double val, val2; + + if (isnan(d)) { + VpSetNaN(m); + goto Exit; + } + if (isinf(d)) { + if (d > 0.0) VpSetPosInf(m); + else VpSetNegInf(m); + goto Exit; + } + + if (d == 0.0) { + VpSetZero(m, 1); + goto Exit; + } + val = (d > 0.) ? d : -d; + ne = 0; + if (val >= 1.0) { + while (val >= 1.0) { + val /= (double)BASE; + ++ne; + } + } + else { + val2 = 1.0 / (double)BASE; + while (val < val2) { + val *= (double)BASE; + --ne; + } + } + /* Now val = 0.xxxxx*BASE**ne */ + + mm = m->MaxPrec; + memset(m->frac, 0, mm * sizeof(BDIGIT)); + for (ind_m = 0; val > 0.0 && ind_m < mm; ind_m++) { + val *= (double)BASE; + i = (BDIGIT)val; + val -= (double)i; + m->frac[ind_m] = i; + } + if (ind_m >= mm) ind_m = mm - 1; + VpSetSign(m, (d > 0.0) ? 1 : -1); + m->Prec = ind_m + 1; + m->exponent = ne; + + VpInternalRound(m, 0, (m->Prec > 0) ? m->frac[m->Prec-1] : 0, + (BDIGIT)(val*(double)BASE)); + +Exit: +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + printf("VpDtoV d=%30.30e\n", d); + VPrint(stdout, " m=%\n", m); + } +#endif /* BIGDECIMAL_DEBUG */ + return; +} + +/* + * m <- ival + */ +#if 0 /* unused */ +VP_EXPORT void +VpItoV(Real *m, SIGNED_VALUE ival) +{ + size_t mm, ind_m; + size_t val, v1, v2, v; + int isign; + SIGNED_VALUE ne; + + if (ival == 0) { + VpSetZero(m, 1); + goto Exit; + } + isign = 1; + val = ival; + if (ival < 0) { + isign = -1; + val =(size_t)(-ival); + } + ne = 0; + ind_m = 0; + mm = m->MaxPrec; + while (ind_m < mm) { + m->frac[ind_m] = 0; + ++ind_m; + } + ind_m = 0; + while (val > 0) { + if (val) { + v1 = val; + v2 = 1; + while (v1 >= BASE) { + v1 /= BASE; + v2 *= BASE; + } + val = val - v2 * v1; + v = v1; + } + else { + v = 0; + } + m->frac[ind_m] = v; + ++ind_m; + ++ne; + } + m->Prec = ind_m - 1; + m->exponent = ne; + VpSetSign(m, isign); + VpNmlz(m); + +Exit: +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + printf(" VpItoV i=%d\n", ival); + VPrint(stdout, " m=%\n", m); + } +#endif /* BIGDECIMAL_DEBUG */ + return; +} +#endif + +/* + * y = SQRT(x), y*y - x =>0 + */ +VP_EXPORT int +VpSqrt(Real *y, Real *x) +{ + Real *f = NULL; + Real *r = NULL; + size_t y_prec; + SIGNED_VALUE n, e; + SIGNED_VALUE prec; + ssize_t nr; + double val; + + /* Zero, NaN or Infinity ? */ + if (!VpHasVal(x)) { + if (VpIsZero(x) || VpGetSign(x) > 0) { + VpAsgn(y,x,1); + goto Exit; + } + VpSetNaN(y); + return VpException(VP_EXCEPTION_OP, "(VpSqrt) SQRT(NaN or negative value)", 0); + goto Exit; + } + + /* Negative ? */ + if (VpGetSign(x) < 0) { + VpSetNaN(y); + return VpException(VP_EXCEPTION_OP, "(VpSqrt) SQRT(negative value)", 0); + } + + /* One ? */ + if (VpIsOne(x)) { + VpSetOne(y); + goto Exit; + } + + n = (SIGNED_VALUE)y->MaxPrec; + if (x->MaxPrec > (size_t)n) n = (ssize_t)x->MaxPrec; + + /* allocate temporally variables */ + f = VpAlloc(y->MaxPrec * (BASE_FIG + 2), "#1"); + r = VpAlloc((n + n) * (BASE_FIG + 2), "#1"); + + nr = 0; + y_prec = y->MaxPrec; + + prec = x->exponent - (ssize_t)y_prec; + if (x->exponent > 0) + ++prec; + else + --prec; + + VpVtoD(&val, &e, x); /* val <- x */ + e /= (SIGNED_VALUE)BASE_FIG; + n = e / 2; + if (e - n * 2 != 0) { + val /= BASE; + n = (e + 1) / 2; + } + VpDtoV(y, sqrt(val)); /* y <- sqrt(val) */ + y->exponent += n; + n = (SIGNED_VALUE)((DBLE_FIG + BASE_FIG - 1) / BASE_FIG); + y->MaxPrec = Min((size_t)n , y_prec); + f->MaxPrec = y->MaxPrec + 1; + n = (SIGNED_VALUE)(y_prec * BASE_FIG); + if (n < (SIGNED_VALUE)maxnr) n = (SIGNED_VALUE)maxnr; + do { + y->MaxPrec *= 2; + if (y->MaxPrec > y_prec) y->MaxPrec = y_prec; + f->MaxPrec = y->MaxPrec; + VpDivd(f, r, x, y); /* f = x/y */ + VpAddSub(r, f, y, -1); /* r = f - y */ + VpMult(f, VpPt5, r); /* f = 0.5*r */ + if (VpIsZero(f)) goto converge; + VpAddSub(r, f, y, 1); /* r = y + f */ + VpAsgn(y, r, 1); /* y = r */ + } while (++nr < n); + +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + printf("ERROR(VpSqrt): did not converge within %ld iterations.\n", nr); + } +#endif /* BIGDECIMAL_DEBUG */ + y->MaxPrec = y_prec; + +converge: + VpChangeSign(y, 1); +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + VpMult(r, y, y); + VpAddSub(f, x, r, -1); + printf("VpSqrt: iterations = %"PRIdSIZE"\n", nr); + VPrint(stdout, " y =% \n", y); + VPrint(stdout, " x =% \n", x); + VPrint(stdout, " x-y*y = % \n", f); + } +#endif /* BIGDECIMAL_DEBUG */ + y->MaxPrec = y_prec; + +Exit: + VpFree(f); + VpFree(r); + return 1; +} + +/* + * + * nf: digit position for operation. + * + */ +VP_EXPORT int +VpMidRound(Real *y, unsigned short f, ssize_t nf) +/* + * Round relatively from the decimal point. + * f: rounding mode + * nf: digit location to round from the decimal point. + */ +{ + /* fracf: any positive digit under rounding position? */ + /* fracf_1further: any positive digits under one further than the rounding position? */ + /* exptoadd: number of digits needed to compensate negative nf */ + int fracf, fracf_1further; + ssize_t n,i,ix,ioffset, exptoadd; + BDIGIT v, shifter; + BDIGIT div; + + nf += y->exponent * (ssize_t)BASE_FIG; + exptoadd=0; + if (nf < 0) { + /* rounding position too left(large). */ + if (f != VP_ROUND_CEIL && f != VP_ROUND_FLOOR) { + VpSetZero(y, VpGetSign(y)); /* truncate everything */ + return 0; + } + exptoadd = -nf; + nf = 0; + } + + ix = nf / (ssize_t)BASE_FIG; + if ((size_t)ix >= y->Prec) return 0; /* rounding position too right(small). */ + v = y->frac[ix]; + + ioffset = nf - ix*(ssize_t)BASE_FIG; + n = (ssize_t)BASE_FIG - ioffset - 1; + for (shifter = 1, i = 0; i < n; ++i) shifter *= 10; + + /* so the representation used (in y->frac) is an array of BDIGIT, where + each BDIGIT contains a value between 0 and BASE-1, consisting of BASE_FIG + decimal places. + + (that numbers of decimal places are typed as ssize_t is somewhat confusing) + + nf is now position (in decimal places) of the digit from the start of + the array. + + ix is the position (in BDIGITS) of the BDIGIT containing the decimal digit, + from the start of the array. + + v is the value of this BDIGIT + + ioffset is the number of extra decimal places along of this decimal digit + within v. + + n is the number of decimal digits remaining within v after this decimal digit + shifter is 10**n, + + v % shifter are the remaining digits within v + v % (shifter * 10) are the digit together with the remaining digits within v + v / shifter are the digit's predecessors together with the digit + div = v / shifter / 10 is just the digit's precessors + (v / shifter) - div*10 is just the digit, which is what v ends up being reassigned to. + */ + + fracf = (v % (shifter * 10) > 0); + fracf_1further = ((v % shifter) > 0); + + v /= shifter; + div = v / 10; + v = v - div*10; + /* now v is just the digit required. + now fracf is whether the digit or any of the remaining digits within v are non-zero + now fracf_1further is whether any of the remaining digits within v are non-zero + */ + + /* now check all the remaining BDIGITS for zero-ness a whole BDIGIT at a time. + if we spot any non-zeroness, that means that we found a positive digit under + rounding position, and we also found a positive digit under one further than + the rounding position, so both searches (to see if any such non-zero digit exists) + can stop */ + + for (i = ix + 1; (size_t)i < y->Prec; i++) { + if (y->frac[i] % BASE) { + fracf = fracf_1further = 1; + break; + } + } + + /* now fracf = does any positive digit exist under the rounding position? + now fracf_1further = does any positive digit exist under one further than the + rounding position? + now v = the first digit under the rounding position */ + + /* drop digits after pointed digit */ + memset(y->frac + ix + 1, 0, (y->Prec - (ix + 1)) * sizeof(BDIGIT)); + + switch (f) { + case VP_ROUND_DOWN: /* Truncate */ + break; + case VP_ROUND_UP: /* Roundup */ + if (fracf) ++div; + break; + case VP_ROUND_HALF_UP: + if (v>=5) ++div; + break; + case VP_ROUND_HALF_DOWN: + if (v > 5 || (v == 5 && fracf_1further)) ++div; + break; + case VP_ROUND_CEIL: + if (fracf && (VpGetSign(y) > 0)) ++div; + break; + case VP_ROUND_FLOOR: + if (fracf && (VpGetSign(y) < 0)) ++div; + break; + case VP_ROUND_HALF_EVEN: /* Banker's rounding */ + if (v > 5) ++div; + else if (v == 5) { + if (fracf_1further) { + ++div; + } + else { + if (ioffset == 0) { + /* v is the first decimal digit of its BDIGIT; + need to grab the previous BDIGIT if present + to check for evenness of the previous decimal + digit (which is same as that of the BDIGIT since + base 10 has a factor of 2) */ + if (ix && (y->frac[ix-1] % 2)) ++div; + } + else { + if (div % 2) ++div; + } + } + } + break; + } + for (i = 0; i <= n; ++i) div *= 10; + if (div >= BASE) { + if (ix) { + y->frac[ix] = 0; + VpRdup(y, ix); + } + else { + short s = VpGetSign(y); + SIGNED_VALUE e = y->exponent; + VpSetOne(y); + VpSetSign(y, s); + y->exponent = e + 1; + } + } + else { + y->frac[ix] = div; + VpNmlz(y); + } + if (exptoadd > 0) { + y->exponent += (SIGNED_VALUE)(exptoadd / BASE_FIG); + exptoadd %= (ssize_t)BASE_FIG; + for (i = 0; i < exptoadd; i++) { + y->frac[0] *= 10; + if (y->frac[0] >= BASE) { + y->frac[0] /= BASE; + y->exponent++; + } + } + } + return 1; +} + +VP_EXPORT int +VpLeftRound(Real *y, unsigned short f, ssize_t nf) +/* + * Round from the left hand side of the digits. + */ +{ + BDIGIT v; + if (!VpHasVal(y)) return 0; /* Unable to round */ + v = y->frac[0]; + nf -= VpExponent(y) * (ssize_t)BASE_FIG; + while ((v /= 10) != 0) nf--; + nf += (ssize_t)BASE_FIG-1; + return VpMidRound(y, f, nf); +} + +VP_EXPORT int +VpActiveRound(Real *y, Real *x, unsigned short f, ssize_t nf) +{ + /* First,assign whole value in truncation mode */ + if (VpAsgn(y, x, 10) <= 1) return 0; /* Zero,NaN,or Infinity */ + return VpMidRound(y, f, nf); +} + +static int +VpLimitRound(Real *c, size_t ixDigit) +{ + size_t ix = VpGetPrecLimit(); + if (!VpNmlz(c)) return -1; + if (!ix) return 0; + if (!ixDigit) ixDigit = c->Prec-1; + if ((ix + BASE_FIG - 1) / BASE_FIG > ixDigit + 1) return 0; + return VpLeftRound(c, VpGetRoundMode(), (ssize_t)ix); +} + +/* If I understand correctly, this is only ever used to round off the final decimal + digit of precision */ +static void +VpInternalRound(Real *c, size_t ixDigit, BDIGIT vPrev, BDIGIT v) +{ + int f = 0; + + unsigned short const rounding_mode = VpGetRoundMode(); + + if (VpLimitRound(c, ixDigit)) return; + if (!v) return; + + v /= BASE1; + switch (rounding_mode) { + case VP_ROUND_DOWN: + break; + case VP_ROUND_UP: + if (v) f = 1; + break; + case VP_ROUND_HALF_UP: + if (v >= 5) f = 1; + break; + case VP_ROUND_HALF_DOWN: + /* this is ok - because this is the last digit of precision, + the case where v == 5 and some further digits are nonzero + will never occur */ + if (v >= 6) f = 1; + break; + case VP_ROUND_CEIL: + if (v && (VpGetSign(c) > 0)) f = 1; + break; + case VP_ROUND_FLOOR: + if (v && (VpGetSign(c) < 0)) f = 1; + break; + case VP_ROUND_HALF_EVEN: /* Banker's rounding */ + /* as per VP_ROUND_HALF_DOWN, because this is the last digit of precision, + there is no case to worry about where v == 5 and some further digits are nonzero */ + if (v > 5) f = 1; + else if (v == 5 && vPrev % 2) f = 1; + break; + } + if (f) { + VpRdup(c, ixDigit); + VpNmlz(c); + } +} + +/* + * Rounds up m(plus one to final digit of m). + */ +static int +VpRdup(Real *m, size_t ind_m) +{ + BDIGIT carry; + + if (!ind_m) ind_m = m->Prec; + + carry = 1; + while (carry > 0 && ind_m--) { + m->frac[ind_m] += carry; + if (m->frac[ind_m] >= BASE) m->frac[ind_m] -= BASE; + else carry = 0; + } + if (carry > 0) { /* Overflow,count exponent and set fraction part be 1 */ + if (!AddExponent(m, 1)) return 0; + m->Prec = m->frac[0] = 1; + } + else { + VpNmlz(m); + } + return 1; +} + +/* + * y = x - fix(x) + */ +VP_EXPORT void +VpFrac(Real *y, Real *x) +{ + size_t my, ind_y, ind_x; + + if (!VpHasVal(x)) { + VpAsgn(y, x, 1); + goto Exit; + } + + if (x->exponent > 0 && (size_t)x->exponent >= x->Prec) { + VpSetZero(y, VpGetSign(x)); + goto Exit; + } + else if (x->exponent <= 0) { + VpAsgn(y, x, 1); + goto Exit; + } + + /* satisfy: x->exponent > 0 */ + + y->Prec = x->Prec - (size_t)x->exponent; + y->Prec = Min(y->Prec, y->MaxPrec); + y->exponent = 0; + VpSetSign(y, VpGetSign(x)); + ind_y = 0; + my = y->Prec; + ind_x = x->exponent; + while (ind_y < my) { + y->frac[ind_y] = x->frac[ind_x]; + ++ind_y; + ++ind_x; + } + VpNmlz(y); + +Exit: +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + VPrint(stdout, "VpFrac y=%\n", y); + VPrint(stdout, " x=%\n", x); + } +#endif /* BIGDECIMAL_DEBUG */ + return; +} + +/* + * y = x ** n + */ +VP_EXPORT int +VpPower(Real *y, Real *x, SIGNED_VALUE n) +{ + size_t s, ss; + ssize_t sign; + Real *w1 = NULL; + Real *w2 = NULL; + + if (VpIsZero(x)) { + if (n == 0) { + VpSetOne(y); + goto Exit; + } + sign = VpGetSign(x); + if (n < 0) { + n = -n; + if (sign < 0) sign = (n % 2) ? -1 : 1; + VpSetInf(y, sign); + } + else { + if (sign < 0) sign = (n % 2) ? -1 : 1; + VpSetZero(y,sign); + } + goto Exit; + } + if (VpIsNaN(x)) { + VpSetNaN(y); + goto Exit; + } + if (VpIsInf(x)) { + if (n == 0) { + VpSetOne(y); + goto Exit; + } + if (n > 0) { + VpSetInf(y, (n % 2 == 0 || VpIsPosInf(x)) ? 1 : -1); + goto Exit; + } + VpSetZero(y, (n % 2 == 0 || VpIsPosInf(x)) ? 1 : -1); + goto Exit; + } + + if (x->exponent == 1 && x->Prec == 1 && x->frac[0] == 1) { + /* abs(x) = 1 */ + VpSetOne(y); + if (VpGetSign(x) > 0) goto Exit; + if ((n % 2) == 0) goto Exit; + VpSetSign(y, -1); + goto Exit; + } + + if (n > 0) sign = 1; + else if (n < 0) { + sign = -1; + n = -n; + } + else { + VpSetOne(y); + goto Exit; + } + + /* Allocate working variables */ + + w1 = VpAlloc((y->MaxPrec + 2) * BASE_FIG, "#0"); + w2 = VpAlloc((w1->MaxPrec * 2 + 1) * BASE_FIG, "#0"); + /* calculation start */ + + VpAsgn(y, x, 1); + --n; + while (n > 0) { + VpAsgn(w1, x, 1); + s = 1; + while (ss = s, (s += s) <= (size_t)n) { + VpMult(w2, w1, w1); + VpAsgn(w1, w2, 1); + } + n -= (SIGNED_VALUE)ss; + VpMult(w2, y, w1); + VpAsgn(y, w2, 1); + } + if (sign < 0) { + VpDivd(w1, w2, VpConstOne, y); + VpAsgn(y, w1, 1); + } + +Exit: +#ifdef BIGDECIMAL_DEBUG + if (gfDebug) { + VPrint(stdout, "VpPower y=%\n", y); + VPrint(stdout, "VpPower x=%\n", x); + printf(" n=%d\n", n); + } +#endif /* BIGDECIMAL_DEBUG */ + VpFree(w2); + VpFree(w1); + return 1; +} + +#ifdef BIGDECIMAL_DEBUG +int +VpVarCheck(Real * v) +/* + * Checks the validity of the Real variable v. + * [Input] + * v ... Real *, variable to be checked. + * [Returns] + * 0 ... correct v. + * other ... error + */ +{ + size_t i; + + if (v->MaxPrec == 0) { + printf("ERROR(VpVarCheck): Illegal Max. Precision(=%"PRIuSIZE")\n", + v->MaxPrec); + return 1; + } + if (v->Prec == 0 || v->Prec > v->MaxPrec) { + printf("ERROR(VpVarCheck): Illegal Precision(=%"PRIuSIZE")\n", v->Prec); + printf(" Max. Prec.=%"PRIuSIZE"\n", v->MaxPrec); + return 2; + } + for (i = 0; i < v->Prec; ++i) { + if (v->frac[i] >= BASE) { + printf("ERROR(VpVarCheck): Illegal fraction\n"); + printf(" Frac[%"PRIuSIZE"]=%lu\n", i, v->frac[i]); + printf(" Prec. =%"PRIuSIZE"\n", v->Prec); + printf(" Exp. =%"PRIdVALUE"\n", v->exponent); + printf(" BASE =%lu\n", BASE); + return 3; + } + } + return 0; +} +#endif /* BIGDECIMAL_DEBUG */ -- cgit v1.2.3