From fcbf63e62c627deae76c1b8cb8c0876c536ed811 Mon Sep 17 00:00:00 2001 From: Jari Vetoniemi Date: Mon, 16 Mar 2020 18:49:26 +0900 Subject: Fresh start --- jni/ruby/test/lib/minitest/benchmark.rb | 417 ++++++++++++++++++++++++++++++++ 1 file changed, 417 insertions(+) create mode 100644 jni/ruby/test/lib/minitest/benchmark.rb (limited to 'jni/ruby/test/lib/minitest/benchmark.rb') diff --git a/jni/ruby/test/lib/minitest/benchmark.rb b/jni/ruby/test/lib/minitest/benchmark.rb new file mode 100644 index 0000000..5195fc0 --- /dev/null +++ b/jni/ruby/test/lib/minitest/benchmark.rb @@ -0,0 +1,417 @@ +# encoding: utf-8 + +require 'minitest/unit' + +class MiniTest::Unit # :nodoc: + def run_benchmarks # :nodoc: + _run_anything :benchmark + end + + def benchmark_suite_header suite # :nodoc: + "\n#{suite}\t#{suite.bench_range.join("\t")}" + end + + class TestCase + ## + # Returns a set of ranges stepped exponentially from +min+ to + # +max+ by powers of +base+. Eg: + # + # bench_exp(2, 16, 2) # => [2, 4, 8, 16] + + def self.bench_exp min, max, base = 10 + min = (Math.log10(min) / Math.log10(base)).to_i + max = (Math.log10(max) / Math.log10(base)).to_i + + (min..max).map { |m| base ** m }.to_a + end + + ## + # Returns a set of ranges stepped linearly from +min+ to +max+ by + # +step+. Eg: + # + # bench_linear(20, 40, 10) # => [20, 30, 40] + + def self.bench_linear min, max, step = 10 + (min..max).step(step).to_a + rescue LocalJumpError # 1.8.6 + r = []; (min..max).step(step) { |n| r << n }; r + end + + ## + # Returns the benchmark methods (methods that start with bench_) + # for that class. + + def self.benchmark_methods # :nodoc: + public_instance_methods(true).grep(/^bench_/).map { |m| m.to_s }.sort + end + + ## + # Returns all test suites that have benchmark methods. + + def self.benchmark_suites + TestCase.test_suites.reject { |s| s.benchmark_methods.empty? } + end + + ## + # Specifies the ranges used for benchmarking for that class. + # Defaults to exponential growth from 1 to 10k by powers of 10. + # Override if you need different ranges for your benchmarks. + # + # See also: ::bench_exp and ::bench_linear. + + def self.bench_range + bench_exp 1, 10_000 + end + + ## + # Runs the given +work+, gathering the times of each run. Range + # and times are then passed to a given +validation+ proc. Outputs + # the benchmark name and times in tab-separated format, making it + # easy to paste into a spreadsheet for graphing or further + # analysis. + # + # Ranges are specified by ::bench_range. + # + # Eg: + # + # def bench_algorithm + # validation = proc { |x, y| ... } + # assert_performance validation do |n| + # @obj.algorithm(n) + # end + # end + + def assert_performance validation, &work + range = self.class.bench_range + + io.print "#{__name__}" + + times = [] + + range.each do |x| + GC.start + t0 = Time.now + instance_exec(x, &work) + t = Time.now - t0 + + io.print "\t%9.6f" % t + times << t + end + io.puts + + validation[range, times] + end + + ## + # Runs the given +work+ and asserts that the times gathered fit to + # match a constant rate (eg, linear slope == 0) within a given + # +threshold+. Note: because we're testing for a slope of 0, R^2 + # is not a good determining factor for the fit, so the threshold + # is applied against the slope itself. As such, you probably want + # to tighten it from the default. + # + # See http://www.graphpad.com/curvefit/goodness_of_fit.htm for + # more details. + # + # Fit is calculated by #fit_linear. + # + # Ranges are specified by ::bench_range. + # + # Eg: + # + # def bench_algorithm + # assert_performance_constant 0.9999 do |n| + # @obj.algorithm(n) + # end + # end + + def assert_performance_constant threshold = 0.99, &work + validation = proc do |range, times| + a, b, rr = fit_linear range, times + assert_in_delta 0, b, 1 - threshold + [a, b, rr] + end + + assert_performance validation, &work + end + + ## + # Runs the given +work+ and asserts that the times gathered fit to + # match a exponential curve within a given error +threshold+. + # + # Fit is calculated by #fit_exponential. + # + # Ranges are specified by ::bench_range. + # + # Eg: + # + # def bench_algorithm + # assert_performance_exponential 0.9999 do |n| + # @obj.algorithm(n) + # end + # end + + def assert_performance_exponential threshold = 0.99, &work + assert_performance validation_for_fit(:exponential, threshold), &work + end + + ## + # Runs the given +work+ and asserts that the times gathered fit to + # match a logarithmic curve within a given error +threshold+. + # + # Fit is calculated by #fit_logarithmic. + # + # Ranges are specified by ::bench_range. + # + # Eg: + # + # def bench_algorithm + # assert_performance_logarithmic 0.9999 do |n| + # @obj.algorithm(n) + # end + # end + + def assert_performance_logarithmic threshold = 0.99, &work + assert_performance validation_for_fit(:logarithmic, threshold), &work + end + + ## + # Runs the given +work+ and asserts that the times gathered fit to + # match a straight line within a given error +threshold+. + # + # Fit is calculated by #fit_linear. + # + # Ranges are specified by ::bench_range. + # + # Eg: + # + # def bench_algorithm + # assert_performance_linear 0.9999 do |n| + # @obj.algorithm(n) + # end + # end + + def assert_performance_linear threshold = 0.99, &work + assert_performance validation_for_fit(:linear, threshold), &work + end + + ## + # Runs the given +work+ and asserts that the times gathered curve + # fit to match a power curve within a given error +threshold+. + # + # Fit is calculated by #fit_power. + # + # Ranges are specified by ::bench_range. + # + # Eg: + # + # def bench_algorithm + # assert_performance_power 0.9999 do |x| + # @obj.algorithm + # end + # end + + def assert_performance_power threshold = 0.99, &work + assert_performance validation_for_fit(:power, threshold), &work + end + + ## + # Takes an array of x/y pairs and calculates the general R^2 value. + # + # See: http://en.wikipedia.org/wiki/Coefficient_of_determination + + def fit_error xys + y_bar = sigma(xys) { |x, y| y } / xys.size.to_f + ss_tot = sigma(xys) { |x, y| (y - y_bar) ** 2 } + ss_err = sigma(xys) { |x, y| (yield(x) - y) ** 2 } + + 1 - (ss_err / ss_tot) + end + + ## + # To fit a functional form: y = ae^(bx). + # + # Takes x and y values and returns [a, b, r^2]. + # + # See: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html + + def fit_exponential xs, ys + n = xs.size + xys = xs.zip(ys) + sxlny = sigma(xys) { |x,y| x * Math.log(y) } + slny = sigma(xys) { |x,y| Math.log(y) } + sx2 = sigma(xys) { |x,y| x * x } + sx = sigma xs + + c = n * sx2 - sx ** 2 + a = (slny * sx2 - sx * sxlny) / c + b = ( n * sxlny - sx * slny ) / c + + return Math.exp(a), b, fit_error(xys) { |x| Math.exp(a + b * x) } + end + + ## + # To fit a functional form: y = a + b*ln(x). + # + # Takes x and y values and returns [a, b, r^2]. + # + # See: http://mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html + + def fit_logarithmic xs, ys + n = xs.size + xys = xs.zip(ys) + slnx2 = sigma(xys) { |x,y| Math.log(x) ** 2 } + slnx = sigma(xys) { |x,y| Math.log(x) } + sylnx = sigma(xys) { |x,y| y * Math.log(x) } + sy = sigma(xys) { |x,y| y } + + c = n * slnx2 - slnx ** 2 + b = ( n * sylnx - sy * slnx ) / c + a = (sy - b * slnx) / n + + return a, b, fit_error(xys) { |x| a + b * Math.log(x) } + end + + + ## + # Fits the functional form: a + bx. + # + # Takes x and y values and returns [a, b, r^2]. + # + # See: http://mathworld.wolfram.com/LeastSquaresFitting.html + + def fit_linear xs, ys + n = xs.size + xys = xs.zip(ys) + sx = sigma xs + sy = sigma ys + sx2 = sigma(xs) { |x| x ** 2 } + sxy = sigma(xys) { |x,y| x * y } + + c = n * sx2 - sx**2 + a = (sy * sx2 - sx * sxy) / c + b = ( n * sxy - sx * sy ) / c + + return a, b, fit_error(xys) { |x| a + b * x } + end + + ## + # To fit a functional form: y = ax^b. + # + # Takes x and y values and returns [a, b, r^2]. + # + # See: http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html + + def fit_power xs, ys + n = xs.size + xys = xs.zip(ys) + slnxlny = sigma(xys) { |x, y| Math.log(x) * Math.log(y) } + slnx = sigma(xs) { |x | Math.log(x) } + slny = sigma(ys) { | y| Math.log(y) } + slnx2 = sigma(xs) { |x | Math.log(x) ** 2 } + + b = (n * slnxlny - slnx * slny) / (n * slnx2 - slnx ** 2); + a = (slny - b * slnx) / n + + return Math.exp(a), b, fit_error(xys) { |x| (Math.exp(a) * (x ** b)) } + end + + ## + # Enumerates over +enum+ mapping +block+ if given, returning the + # sum of the result. Eg: + # + # sigma([1, 2, 3]) # => 1 + 2 + 3 => 7 + # sigma([1, 2, 3]) { |n| n ** 2 } # => 1 + 4 + 9 => 14 + + def sigma enum, &block + enum = enum.map(&block) if block + enum.inject { |sum, n| sum + n } + end + + ## + # Returns a proc that calls the specified fit method and asserts + # that the error is within a tolerable threshold. + + def validation_for_fit msg, threshold + proc do |range, times| + a, b, rr = send "fit_#{msg}", range, times + assert_operator rr, :>=, threshold + [a, b, rr] + end + end + end +end + +class MiniTest::Spec + ## + # This is used to define a new benchmark method. You usually don't + # use this directly and is intended for those needing to write new + # performance curve fits (eg: you need a specific polynomial fit). + # + # See ::bench_performance_linear for an example of how to use this. + + def self.bench name, &block + define_method "bench_#{name.gsub(/\W+/, '_')}", &block + end + + ## + # Specifies the ranges used for benchmarking for that class. + # + # bench_range do + # bench_exp(2, 16, 2) + # end + # + # See Unit::TestCase.bench_range for more details. + + def self.bench_range &block + return super unless block + + meta = (class << self; self; end) + meta.send :define_method, "bench_range", &block + end + + ## + # Create a benchmark that verifies that the performance is linear. + # + # describe "my class" do + # bench_performance_linear "fast_algorithm", 0.9999 do |n| + # @obj.fast_algorithm(n) + # end + # end + + def self.bench_performance_linear name, threshold = 0.99, &work + bench name do + assert_performance_linear threshold, &work + end + end + + ## + # Create a benchmark that verifies that the performance is constant. + # + # describe "my class" do + # bench_performance_constant "zoom_algorithm!" do |n| + # @obj.zoom_algorithm!(n) + # end + # end + + def self.bench_performance_constant name, threshold = 0.99, &work + bench name do + assert_performance_constant threshold, &work + end + end + + ## + # Create a benchmark that verifies that the performance is exponential. + # + # describe "my class" do + # bench_performance_exponential "algorithm" do |n| + # @obj.algorithm(n) + # end + # end + + def self.bench_performance_exponential name, threshold = 0.99, &work + bench name do + assert_performance_exponential threshold, &work + end + end +end -- cgit v1.2.3