/* * $Id: ossl_asn1.c 50837 2015-06-11 16:38:12Z nagachika $ * 'OpenSSL for Ruby' team members * Copyright (C) 2003 * All rights reserved. */ /* * This program is licenced under the same licence as Ruby. * (See the file 'LICENCE'.) */ #include "ossl.h" #if defined(HAVE_SYS_TIME_H) # include #elif !defined(NT) && !defined(_WIN32) struct timeval { long tv_sec; /* seconds */ long tv_usec; /* and microseconds */ }; #endif static VALUE join_der(VALUE enumerable); static VALUE ossl_asn1_decode0(unsigned char **pp, long length, long *offset, int depth, int yield, long *num_read); static VALUE ossl_asn1_initialize(int argc, VALUE *argv, VALUE self); static VALUE ossl_asn1eoc_initialize(VALUE self); /* * DATE conversion */ VALUE asn1time_to_time(ASN1_TIME *time) { struct tm tm; VALUE argv[6]; int count; if (!time || !time->data) return Qnil; memset(&tm, 0, sizeof(struct tm)); switch (time->type) { case V_ASN1_UTCTIME: count = sscanf((const char *)time->data, "%2d%2d%2d%2d%2d%2dZ", &tm.tm_year, &tm.tm_mon, &tm.tm_mday, &tm.tm_hour, &tm.tm_min, &tm.tm_sec); if (count == 5) { tm.tm_sec = 0; } else if (count != 6) { ossl_raise(rb_eTypeError, "bad UTCTIME format: \"%s\"", time->data); } if (tm.tm_year < 69) { tm.tm_year += 2000; } else { tm.tm_year += 1900; } break; case V_ASN1_GENERALIZEDTIME: if (sscanf((const char *)time->data, "%4d%2d%2d%2d%2d%2dZ", &tm.tm_year, &tm.tm_mon, &tm.tm_mday, &tm.tm_hour, &tm.tm_min, &tm.tm_sec) != 6) { ossl_raise(rb_eTypeError, "bad GENERALIZEDTIME format" ); } break; default: rb_warning("unknown time format"); return Qnil; } argv[0] = INT2NUM(tm.tm_year); argv[1] = INT2NUM(tm.tm_mon); argv[2] = INT2NUM(tm.tm_mday); argv[3] = INT2NUM(tm.tm_hour); argv[4] = INT2NUM(tm.tm_min); argv[5] = INT2NUM(tm.tm_sec); return rb_funcall2(rb_cTime, rb_intern("utc"), 6, argv); } /* * This function is not exported in Ruby's *.h */ extern struct timeval rb_time_timeval(VALUE); time_t time_to_time_t(VALUE time) { return (time_t)NUM2LONG(rb_Integer(time)); } /* * STRING conversion */ VALUE asn1str_to_str(ASN1_STRING *str) { return rb_str_new((const char *)str->data, str->length); } /* * ASN1_INTEGER conversions * TODO: Make a decision what's the right way to do this. */ #define DO_IT_VIA_RUBY 0 VALUE asn1integer_to_num(ASN1_INTEGER *ai) { BIGNUM *bn; #if DO_IT_VIA_RUBY char *txt; #endif VALUE num; if (!ai) { ossl_raise(rb_eTypeError, "ASN1_INTEGER is NULL!"); } if (!(bn = ASN1_INTEGER_to_BN(ai, NULL))) { ossl_raise(eOSSLError, NULL); } #if DO_IT_VIA_RUBY if (!(txt = BN_bn2dec(bn))) { BN_free(bn); ossl_raise(eOSSLError, NULL); } num = rb_cstr_to_inum(txt, 10, Qtrue); OPENSSL_free(txt); #else num = ossl_bn_new(bn); #endif BN_free(bn); return num; } #if DO_IT_VIA_RUBY ASN1_INTEGER * num_to_asn1integer(VALUE obj, ASN1_INTEGER *ai) { BIGNUM *bn = NULL; if (RTEST(rb_obj_is_kind_of(obj, cBN))) { bn = GetBNPtr(obj); } else { obj = rb_String(obj); if (!BN_dec2bn(&bn, StringValuePtr(obj))) { ossl_raise(eOSSLError, NULL); } } if (!(ai = BN_to_ASN1_INTEGER(bn, ai))) { BN_free(bn); ossl_raise(eOSSLError, NULL); } BN_free(bn); return ai; } #else ASN1_INTEGER * num_to_asn1integer(VALUE obj, ASN1_INTEGER *ai) { BIGNUM *bn; if (NIL_P(obj)) ossl_raise(rb_eTypeError, "Can't convert nil into Integer"); bn = GetBNPtr(obj); if (!(ai = BN_to_ASN1_INTEGER(bn, ai))) ossl_raise(eOSSLError, NULL); return ai; } #endif /********/ /* * ASN1 module */ #define ossl_asn1_get_value(o) rb_attr_get((o),sivVALUE) #define ossl_asn1_get_tag(o) rb_attr_get((o),sivTAG) #define ossl_asn1_get_tagging(o) rb_attr_get((o),sivTAGGING) #define ossl_asn1_get_tag_class(o) rb_attr_get((o),sivTAG_CLASS) #define ossl_asn1_get_infinite_length(o) rb_attr_get((o),sivINFINITE_LENGTH) #define ossl_asn1_set_value(o,v) rb_ivar_set((o),sivVALUE,(v)) #define ossl_asn1_set_tag(o,v) rb_ivar_set((o),sivTAG,(v)) #define ossl_asn1_set_tagging(o,v) rb_ivar_set((o),sivTAGGING,(v)) #define ossl_asn1_set_tag_class(o,v) rb_ivar_set((o),sivTAG_CLASS,(v)) #define ossl_asn1_set_infinite_length(o,v) rb_ivar_set((o),sivINFINITE_LENGTH,(v)) VALUE mASN1; VALUE eASN1Error; VALUE cASN1Data; VALUE cASN1Primitive; VALUE cASN1Constructive; VALUE cASN1EndOfContent; VALUE cASN1Boolean; /* BOOLEAN */ VALUE cASN1Integer, cASN1Enumerated; /* INTEGER */ VALUE cASN1BitString; /* BIT STRING */ VALUE cASN1OctetString, cASN1UTF8String; /* STRINGs */ VALUE cASN1NumericString, cASN1PrintableString; VALUE cASN1T61String, cASN1VideotexString; VALUE cASN1IA5String, cASN1GraphicString; VALUE cASN1ISO64String, cASN1GeneralString; VALUE cASN1UniversalString, cASN1BMPString; VALUE cASN1Null; /* NULL */ VALUE cASN1ObjectId; /* OBJECT IDENTIFIER */ VALUE cASN1UTCTime, cASN1GeneralizedTime; /* TIME */ VALUE cASN1Sequence, cASN1Set; /* CONSTRUCTIVE */ static ID sIMPLICIT, sEXPLICIT; static ID sUNIVERSAL, sAPPLICATION, sCONTEXT_SPECIFIC, sPRIVATE; static ID sivVALUE, sivTAG, sivTAG_CLASS, sivTAGGING, sivINFINITE_LENGTH, sivUNUSED_BITS; /* * We need to implement these for backward compatibility * reasons, behavior of ASN1_put_object and ASN1_object_size * for infinite length values is different in OpenSSL <= 0.9.7 */ #if OPENSSL_VERSION_NUMBER < 0x00908000L #define ossl_asn1_object_size(cons, len, tag) (cons) == 2 ? (len) + ASN1_object_size((cons), 0, (tag)) : ASN1_object_size((cons), (len), (tag)) #define ossl_asn1_put_object(pp, cons, len, tag, xc) (cons) == 2 ? ASN1_put_object((pp), (cons), 0, (tag), (xc)) : ASN1_put_object((pp), (cons), (len), (tag), (xc)) #else #define ossl_asn1_object_size(cons, len, tag) ASN1_object_size((cons), (len), (tag)) #define ossl_asn1_put_object(pp, cons, len, tag, xc) ASN1_put_object((pp), (cons), (len), (tag), (xc)) #endif /* * Ruby to ASN1 converters */ static ASN1_BOOLEAN obj_to_asn1bool(VALUE obj) { if (NIL_P(obj)) ossl_raise(rb_eTypeError, "Can't convert nil into Boolean"); #if OPENSSL_VERSION_NUMBER < 0x00907000L return RTEST(obj) ? 0xff : 0x100; #else return RTEST(obj) ? 0xff : 0x0; #endif } static ASN1_INTEGER* obj_to_asn1int(VALUE obj) { return num_to_asn1integer(obj, NULL); } static ASN1_BIT_STRING* obj_to_asn1bstr(VALUE obj, long unused_bits) { ASN1_BIT_STRING *bstr; if(unused_bits < 0) unused_bits = 0; StringValue(obj); if(!(bstr = ASN1_BIT_STRING_new())) ossl_raise(eASN1Error, NULL); ASN1_BIT_STRING_set(bstr, (unsigned char *)RSTRING_PTR(obj), RSTRING_LENINT(obj)); bstr->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT|0x07); /* clear */ bstr->flags |= ASN1_STRING_FLAG_BITS_LEFT|(unused_bits&0x07); return bstr; } static ASN1_STRING* obj_to_asn1str(VALUE obj) { ASN1_STRING *str; StringValue(obj); if(!(str = ASN1_STRING_new())) ossl_raise(eASN1Error, NULL); ASN1_STRING_set(str, RSTRING_PTR(obj), RSTRING_LENINT(obj)); return str; } static ASN1_NULL* obj_to_asn1null(VALUE obj) { ASN1_NULL *null; if(!NIL_P(obj)) ossl_raise(eASN1Error, "nil expected"); if(!(null = ASN1_NULL_new())) ossl_raise(eASN1Error, NULL); return null; } static ASN1_OBJECT* obj_to_asn1obj(VALUE obj) { ASN1_OBJECT *a1obj; StringValue(obj); a1obj = OBJ_txt2obj(RSTRING_PTR(obj), 0); if(!a1obj) a1obj = OBJ_txt2obj(RSTRING_PTR(obj), 1); if(!a1obj) ossl_raise(eASN1Error, "invalid OBJECT ID"); return a1obj; } static ASN1_UTCTIME* obj_to_asn1utime(VALUE time) { time_t sec; ASN1_UTCTIME *t; sec = time_to_time_t(time); if(!(t = ASN1_UTCTIME_set(NULL, sec))) ossl_raise(eASN1Error, NULL); return t; } static ASN1_GENERALIZEDTIME* obj_to_asn1gtime(VALUE time) { time_t sec; ASN1_GENERALIZEDTIME *t; sec = time_to_time_t(time); if(!(t =ASN1_GENERALIZEDTIME_set(NULL, sec))) ossl_raise(eASN1Error, NULL); return t; } static ASN1_STRING* obj_to_asn1derstr(VALUE obj) { ASN1_STRING *a1str; VALUE str; str = ossl_to_der(obj); if(!(a1str = ASN1_STRING_new())) ossl_raise(eASN1Error, NULL); ASN1_STRING_set(a1str, RSTRING_PTR(str), RSTRING_LENINT(str)); return a1str; } /* * DER to Ruby converters */ static VALUE decode_bool(unsigned char* der, long length) { int val; const unsigned char *p; p = der; if((val = d2i_ASN1_BOOLEAN(NULL, &p, length)) < 0) ossl_raise(eASN1Error, NULL); return val ? Qtrue : Qfalse; } static VALUE decode_int(unsigned char* der, long length) { ASN1_INTEGER *ai; const unsigned char *p; VALUE ret; int status = 0; p = der; if(!(ai = d2i_ASN1_INTEGER(NULL, &p, length))) ossl_raise(eASN1Error, NULL); ret = rb_protect((VALUE(*)_((VALUE)))asn1integer_to_num, (VALUE)ai, &status); ASN1_INTEGER_free(ai); if(status) rb_jump_tag(status); return ret; } static VALUE decode_bstr(unsigned char* der, long length, long *unused_bits) { ASN1_BIT_STRING *bstr; const unsigned char *p; long len; VALUE ret; p = der; if(!(bstr = d2i_ASN1_BIT_STRING(NULL, &p, length))) ossl_raise(eASN1Error, NULL); len = bstr->length; *unused_bits = 0; if(bstr->flags & ASN1_STRING_FLAG_BITS_LEFT) *unused_bits = bstr->flags & 0x07; ret = rb_str_new((const char *)bstr->data, len); ASN1_BIT_STRING_free(bstr); return ret; } static VALUE decode_enum(unsigned char* der, long length) { ASN1_ENUMERATED *ai; const unsigned char *p; VALUE ret; int status = 0; p = der; if(!(ai = d2i_ASN1_ENUMERATED(NULL, &p, length))) ossl_raise(eASN1Error, NULL); ret = rb_protect((VALUE(*)_((VALUE)))asn1integer_to_num, (VALUE)ai, &status); ASN1_ENUMERATED_free(ai); if(status) rb_jump_tag(status); return ret; } static VALUE decode_null(unsigned char* der, long length) { ASN1_NULL *null; const unsigned char *p; p = der; if(!(null = d2i_ASN1_NULL(NULL, &p, length))) ossl_raise(eASN1Error, NULL); ASN1_NULL_free(null); return Qnil; } static VALUE decode_obj(unsigned char* der, long length) { ASN1_OBJECT *obj; const unsigned char *p; VALUE ret; int nid; BIO *bio; p = der; if(!(obj = d2i_ASN1_OBJECT(NULL, &p, length))) ossl_raise(eASN1Error, NULL); if((nid = OBJ_obj2nid(obj)) != NID_undef){ ASN1_OBJECT_free(obj); ret = rb_str_new2(OBJ_nid2sn(nid)); } else{ if(!(bio = BIO_new(BIO_s_mem()))){ ASN1_OBJECT_free(obj); ossl_raise(eASN1Error, NULL); } i2a_ASN1_OBJECT(bio, obj); ASN1_OBJECT_free(obj); ret = ossl_membio2str(bio); } return ret; } static VALUE decode_time(unsigned char* der, long length) { ASN1_TIME *time; const unsigned char *p; VALUE ret; int status = 0; p = der; if(!(time = d2i_ASN1_TIME(NULL, &p, length))) ossl_raise(eASN1Error, NULL); ret = rb_protect((VALUE(*)_((VALUE)))asn1time_to_time, (VALUE)time, &status); ASN1_TIME_free(time); if(status) rb_jump_tag(status); return ret; } static VALUE decode_eoc(unsigned char *der, long length) { if (length != 2 || !(der[0] == 0x00 && der[1] == 0x00)) ossl_raise(eASN1Error, NULL); return rb_str_new("", 0); } /********/ typedef struct { const char *name; VALUE *klass; } ossl_asn1_info_t; static const ossl_asn1_info_t ossl_asn1_info[] = { { "EOC", &cASN1EndOfContent, }, /* 0 */ { "BOOLEAN", &cASN1Boolean, }, /* 1 */ { "INTEGER", &cASN1Integer, }, /* 2 */ { "BIT_STRING", &cASN1BitString, }, /* 3 */ { "OCTET_STRING", &cASN1OctetString, }, /* 4 */ { "NULL", &cASN1Null, }, /* 5 */ { "OBJECT", &cASN1ObjectId, }, /* 6 */ { "OBJECT_DESCRIPTOR", NULL, }, /* 7 */ { "EXTERNAL", NULL, }, /* 8 */ { "REAL", NULL, }, /* 9 */ { "ENUMERATED", &cASN1Enumerated, }, /* 10 */ { "EMBEDDED_PDV", NULL, }, /* 11 */ { "UTF8STRING", &cASN1UTF8String, }, /* 12 */ { "RELATIVE_OID", NULL, }, /* 13 */ { "[UNIVERSAL 14]", NULL, }, /* 14 */ { "[UNIVERSAL 15]", NULL, }, /* 15 */ { "SEQUENCE", &cASN1Sequence, }, /* 16 */ { "SET", &cASN1Set, }, /* 17 */ { "NUMERICSTRING", &cASN1NumericString, }, /* 18 */ { "PRINTABLESTRING", &cASN1PrintableString, }, /* 19 */ { "T61STRING", &cASN1T61String, }, /* 20 */ { "VIDEOTEXSTRING", &cASN1VideotexString, }, /* 21 */ { "IA5STRING", &cASN1IA5String, }, /* 22 */ { "UTCTIME", &cASN1UTCTime, }, /* 23 */ { "GENERALIZEDTIME", &cASN1GeneralizedTime, }, /* 24 */ { "GRAPHICSTRING", &cASN1GraphicString, }, /* 25 */ { "ISO64STRING", &cASN1ISO64String, }, /* 26 */ { "GENERALSTRING", &cASN1GeneralString, }, /* 27 */ { "UNIVERSALSTRING", &cASN1UniversalString, }, /* 28 */ { "CHARACTER_STRING", NULL, }, /* 29 */ { "BMPSTRING", &cASN1BMPString, }, /* 30 */ }; enum {ossl_asn1_info_size = (sizeof(ossl_asn1_info)/sizeof(ossl_asn1_info[0]))}; static VALUE class_tag_map; static int ossl_asn1_default_tag(VALUE obj); ASN1_TYPE* ossl_asn1_get_asn1type(VALUE obj) { ASN1_TYPE *ret; VALUE value, rflag; void *ptr; void (*free_func)(); int tag, flag; tag = ossl_asn1_default_tag(obj); value = ossl_asn1_get_value(obj); switch(tag){ case V_ASN1_BOOLEAN: ptr = (void*)(VALUE)obj_to_asn1bool(value); free_func = NULL; break; case V_ASN1_INTEGER: /* FALLTHROUGH */ case V_ASN1_ENUMERATED: ptr = obj_to_asn1int(value); free_func = ASN1_INTEGER_free; break; case V_ASN1_BIT_STRING: rflag = rb_attr_get(obj, sivUNUSED_BITS); flag = NIL_P(rflag) ? -1 : NUM2INT(rflag); ptr = obj_to_asn1bstr(value, flag); free_func = ASN1_BIT_STRING_free; break; case V_ASN1_NULL: ptr = obj_to_asn1null(value); free_func = ASN1_NULL_free; break; case V_ASN1_OCTET_STRING: /* FALLTHROUGH */ case V_ASN1_UTF8STRING: /* FALLTHROUGH */ case V_ASN1_NUMERICSTRING: /* FALLTHROUGH */ case V_ASN1_PRINTABLESTRING: /* FALLTHROUGH */ case V_ASN1_T61STRING: /* FALLTHROUGH */ case V_ASN1_VIDEOTEXSTRING: /* FALLTHROUGH */ case V_ASN1_IA5STRING: /* FALLTHROUGH */ case V_ASN1_GRAPHICSTRING: /* FALLTHROUGH */ case V_ASN1_ISO64STRING: /* FALLTHROUGH */ case V_ASN1_GENERALSTRING: /* FALLTHROUGH */ case V_ASN1_UNIVERSALSTRING: /* FALLTHROUGH */ case V_ASN1_BMPSTRING: ptr = obj_to_asn1str(value); free_func = ASN1_STRING_free; break; case V_ASN1_OBJECT: ptr = obj_to_asn1obj(value); free_func = ASN1_OBJECT_free; break; case V_ASN1_UTCTIME: ptr = obj_to_asn1utime(value); free_func = ASN1_TIME_free; break; case V_ASN1_GENERALIZEDTIME: ptr = obj_to_asn1gtime(value); free_func = ASN1_TIME_free; break; case V_ASN1_SET: /* FALLTHROUGH */ case V_ASN1_SEQUENCE: ptr = obj_to_asn1derstr(obj); free_func = ASN1_STRING_free; break; default: ossl_raise(eASN1Error, "unsupported ASN.1 type"); } if(!(ret = OPENSSL_malloc(sizeof(ASN1_TYPE)))){ if(free_func) free_func(ptr); ossl_raise(eASN1Error, "ASN1_TYPE alloc failure"); } memset(ret, 0, sizeof(ASN1_TYPE)); ASN1_TYPE_set(ret, tag, ptr); return ret; } static int ossl_asn1_default_tag(VALUE obj) { VALUE tmp_class, tag; tmp_class = CLASS_OF(obj); while (tmp_class) { tag = rb_hash_lookup(class_tag_map, tmp_class); if (tag != Qnil) { return NUM2INT(tag); } tmp_class = rb_class_superclass(tmp_class); } ossl_raise(eASN1Error, "universal tag for %"PRIsVALUE" not found", rb_obj_class(obj)); return -1; /* dummy */ } static int ossl_asn1_tag(VALUE obj) { VALUE tag; tag = ossl_asn1_get_tag(obj); if(NIL_P(tag)) ossl_raise(eASN1Error, "tag number not specified"); return NUM2INT(tag); } static int ossl_asn1_is_explicit(VALUE obj) { VALUE s; int ret = -1; s = ossl_asn1_get_tagging(obj); if(NIL_P(s)) return 0; else if(SYMBOL_P(s)){ if (SYM2ID(s) == sIMPLICIT) ret = 0; else if (SYM2ID(s) == sEXPLICIT) ret = 1; } if(ret < 0){ ossl_raise(eASN1Error, "invalid tag default"); } return ret; } static int ossl_asn1_tag_class(VALUE obj) { VALUE s; int ret = -1; s = ossl_asn1_get_tag_class(obj); if(NIL_P(s)) ret = V_ASN1_UNIVERSAL; else if(SYMBOL_P(s)){ if (SYM2ID(s) == sUNIVERSAL) ret = V_ASN1_UNIVERSAL; else if (SYM2ID(s) == sAPPLICATION) ret = V_ASN1_APPLICATION; else if (SYM2ID(s) == sCONTEXT_SPECIFIC) ret = V_ASN1_CONTEXT_SPECIFIC; else if (SYM2ID(s) == sPRIVATE) ret = V_ASN1_PRIVATE; } if(ret < 0){ ossl_raise(eASN1Error, "invalid tag class"); } return ret; } static VALUE ossl_asn1_class2sym(int tc) { if((tc & V_ASN1_PRIVATE) == V_ASN1_PRIVATE) return ID2SYM(sPRIVATE); else if((tc & V_ASN1_CONTEXT_SPECIFIC) == V_ASN1_CONTEXT_SPECIFIC) return ID2SYM(sCONTEXT_SPECIFIC); else if((tc & V_ASN1_APPLICATION) == V_ASN1_APPLICATION) return ID2SYM(sAPPLICATION); else return ID2SYM(sUNIVERSAL); } /* * call-seq: * OpenSSL::ASN1::ASN1Data.new(value, tag, tag_class) => ASN1Data * * +value+: Please have a look at Constructive and Primitive to see how Ruby * types are mapped to ASN.1 types and vice versa. * * +tag+: A +Number+ indicating the tag number. * * +tag_class+: A +Symbol+ indicating the tag class. Please cf. ASN1 for * possible values. * * == Example * asn1_int = OpenSSL::ASN1Data.new(42, 2, :UNIVERSAL) # => Same as OpenSSL::ASN1::Integer.new(42) * tagged_int = OpenSSL::ASN1Data.new(42, 0, :CONTEXT_SPECIFIC) # implicitly 0-tagged INTEGER */ static VALUE ossl_asn1data_initialize(VALUE self, VALUE value, VALUE tag, VALUE tag_class) { if(!SYMBOL_P(tag_class)) ossl_raise(eASN1Error, "invalid tag class"); if((SYM2ID(tag_class) == sUNIVERSAL) && NUM2INT(tag) > 31) ossl_raise(eASN1Error, "tag number for Universal too large"); ossl_asn1_set_tag(self, tag); ossl_asn1_set_value(self, value); ossl_asn1_set_tag_class(self, tag_class); ossl_asn1_set_infinite_length(self, Qfalse); return self; } static VALUE join_der_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, str)) { i = ossl_to_der_if_possible(i); StringValue(i); rb_str_append(str, i); return Qnil; } static VALUE join_der(VALUE enumerable) { VALUE str = rb_str_new(0, 0); rb_block_call(enumerable, rb_intern("each"), 0, 0, join_der_i, str); return str; } /* * call-seq: * asn1.to_der => DER-encoded String * * Encodes this ASN1Data into a DER-encoded String value. The result is * DER-encoded except for the possibility of infinite length encodings. * Infinite length encodings are not allowed in strict DER, so strictly * speaking the result of such an encoding would be a BER-encoding. */ static VALUE ossl_asn1data_to_der(VALUE self) { VALUE value, der, inf_length; int tag, tag_class, is_cons = 0; long length; unsigned char *p; value = ossl_asn1_get_value(self); if(rb_obj_is_kind_of(value, rb_cArray)){ is_cons = 1; value = join_der(value); } StringValue(value); tag = ossl_asn1_tag(self); tag_class = ossl_asn1_tag_class(self); inf_length = ossl_asn1_get_infinite_length(self); if (inf_length == Qtrue) { is_cons = 2; } if((length = ossl_asn1_object_size(is_cons, RSTRING_LENINT(value), tag)) <= 0) ossl_raise(eASN1Error, NULL); der = rb_str_new(0, length); p = (unsigned char *)RSTRING_PTR(der); ossl_asn1_put_object(&p, is_cons, RSTRING_LENINT(value), tag, tag_class); memcpy(p, RSTRING_PTR(value), RSTRING_LEN(value)); p += RSTRING_LEN(value); ossl_str_adjust(der, p); return der; } static VALUE int_ossl_asn1_decode0_prim(unsigned char **pp, long length, long hlen, int tag, VALUE tc, long *num_read) { VALUE value, asn1data; unsigned char *p; long flag = 0; p = *pp; if(tc == sUNIVERSAL && tag < ossl_asn1_info_size) { switch(tag){ case V_ASN1_EOC: value = decode_eoc(p, hlen+length); break; case V_ASN1_BOOLEAN: value = decode_bool(p, hlen+length); break; case V_ASN1_INTEGER: value = decode_int(p, hlen+length); break; case V_ASN1_BIT_STRING: value = decode_bstr(p, hlen+length, &flag); break; case V_ASN1_NULL: value = decode_null(p, hlen+length); break; case V_ASN1_ENUMERATED: value = decode_enum(p, hlen+length); break; case V_ASN1_OBJECT: value = decode_obj(p, hlen+length); break; case V_ASN1_UTCTIME: /* FALLTHROUGH */ case V_ASN1_GENERALIZEDTIME: value = decode_time(p, hlen+length); break; default: /* use original value */ p += hlen; value = rb_str_new((const char *)p, length); break; } } else { p += hlen; value = rb_str_new((const char *)p, length); } *pp += hlen + length; *num_read = hlen + length; if (tc == sUNIVERSAL && tag < ossl_asn1_info_size && ossl_asn1_info[tag].klass) { VALUE klass = *ossl_asn1_info[tag].klass; VALUE args[4]; args[0] = value; args[1] = INT2NUM(tag); args[2] = Qnil; args[3] = ID2SYM(tc); asn1data = rb_obj_alloc(klass); ossl_asn1_initialize(4, args, asn1data); if(tag == V_ASN1_BIT_STRING){ rb_ivar_set(asn1data, sivUNUSED_BITS, LONG2NUM(flag)); } } else { asn1data = rb_obj_alloc(cASN1Data); ossl_asn1data_initialize(asn1data, value, INT2NUM(tag), ID2SYM(tc)); } return asn1data; } static VALUE int_ossl_asn1_decode0_cons(unsigned char **pp, long max_len, long length, long *offset, int depth, int yield, int j, int tag, VALUE tc, long *num_read) { VALUE value, asn1data, ary; int infinite; long off = *offset; infinite = (j == 0x21); ary = rb_ary_new(); while (length > 0 || infinite) { long inner_read = 0; value = ossl_asn1_decode0(pp, max_len, &off, depth + 1, yield, &inner_read); *num_read += inner_read; max_len -= inner_read; rb_ary_push(ary, value); if (length > 0) length -= inner_read; if (infinite && NUM2INT(ossl_asn1_get_tag(value)) == V_ASN1_EOC && SYM2ID(ossl_asn1_get_tag_class(value)) == sUNIVERSAL) { break; } } if (tc == sUNIVERSAL) { VALUE args[4]; int not_sequence_or_set; not_sequence_or_set = tag != V_ASN1_SEQUENCE && tag != V_ASN1_SET; if (not_sequence_or_set) { if (infinite) { asn1data = rb_obj_alloc(cASN1Constructive); } else { ossl_raise(eASN1Error, "invalid non-infinite tag"); return Qnil; } } else { VALUE klass = *ossl_asn1_info[tag].klass; asn1data = rb_obj_alloc(klass); } args[0] = ary; args[1] = INT2NUM(tag); args[2] = Qnil; args[3] = ID2SYM(tc); ossl_asn1_initialize(4, args, asn1data); } else { asn1data = rb_obj_alloc(cASN1Data); ossl_asn1data_initialize(asn1data, ary, INT2NUM(tag), ID2SYM(tc)); } if (infinite) ossl_asn1_set_infinite_length(asn1data, Qtrue); else ossl_asn1_set_infinite_length(asn1data, Qfalse); *offset = off; return asn1data; } static VALUE ossl_asn1_decode0(unsigned char **pp, long length, long *offset, int depth, int yield, long *num_read) { unsigned char *start, *p; const unsigned char *p0; long len = 0, inner_read = 0, off = *offset, hlen; int tag, tc, j; VALUE asn1data, tag_class; p = *pp; start = p; p0 = p; j = ASN1_get_object(&p0, &len, &tag, &tc, length); p = (unsigned char *)p0; if(j & 0x80) ossl_raise(eASN1Error, NULL); if(len > length) ossl_raise(eASN1Error, "value is too short"); if((tc & V_ASN1_PRIVATE) == V_ASN1_PRIVATE) tag_class = sPRIVATE; else if((tc & V_ASN1_CONTEXT_SPECIFIC) == V_ASN1_CONTEXT_SPECIFIC) tag_class = sCONTEXT_SPECIFIC; else if((tc & V_ASN1_APPLICATION) == V_ASN1_APPLICATION) tag_class = sAPPLICATION; else tag_class = sUNIVERSAL; hlen = p - start; if(yield) { VALUE arg = rb_ary_new(); rb_ary_push(arg, LONG2NUM(depth)); rb_ary_push(arg, LONG2NUM(*offset)); rb_ary_push(arg, LONG2NUM(hlen)); rb_ary_push(arg, LONG2NUM(len)); rb_ary_push(arg, (j & V_ASN1_CONSTRUCTED) ? Qtrue : Qfalse); rb_ary_push(arg, ossl_asn1_class2sym(tc)); rb_ary_push(arg, INT2NUM(tag)); rb_yield(arg); } if(j & V_ASN1_CONSTRUCTED) { *pp += hlen; off += hlen; asn1data = int_ossl_asn1_decode0_cons(pp, length, len, &off, depth, yield, j, tag, tag_class, &inner_read); inner_read += hlen; } else { if ((j & 0x01) && (len == 0)) ossl_raise(eASN1Error, "Infinite length for primitive value"); asn1data = int_ossl_asn1_decode0_prim(pp, len, hlen, tag, tag_class, &inner_read); off += hlen + len; } if (num_read) *num_read = inner_read; if (len != 0 && inner_read != hlen + len) { ossl_raise(eASN1Error, "Type mismatch. Bytes read: %ld Bytes available: %ld", inner_read, hlen + len); } *offset = off; return asn1data; } static void int_ossl_decode_sanity_check(long len, long read, long offset) { if (len != 0 && (read != len || offset != len)) { ossl_raise(eASN1Error, "Type mismatch. Total bytes read: %ld Bytes available: %ld Offset: %ld", read, len, offset); } } /* * call-seq: * OpenSSL::ASN1.traverse(asn1) -> nil * * If a block is given, it prints out each of the elements encountered. * Block parameters are (in that order): * * depth: The recursion depth, plus one with each constructed value being encountered (Number) * * offset: Current byte offset (Number) * * header length: Combined length in bytes of the Tag and Length headers. (Number) * * length: The overall remaining length of the entire data (Number) * * constructed: Whether this value is constructed or not (Boolean) * * tag_class: Current tag class (Symbol) * * tag: The current tag (Number) * * == Example * der = File.binread('asn1data.der') * OpenSSL::ASN1.traverse(der) do | depth, offset, header_len, length, constructed, tag_class, tag| * puts "Depth: #{depth} Offset: #{offset} Length: #{length}" * puts "Header length: #{header_len} Tag: #{tag} Tag class: #{tag_class} Constructed: #{constructed}" * end */ static VALUE ossl_asn1_traverse(VALUE self, VALUE obj) { unsigned char *p; VALUE tmp; long len, read = 0, offset = 0; obj = ossl_to_der_if_possible(obj); tmp = rb_str_new4(StringValue(obj)); p = (unsigned char *)RSTRING_PTR(tmp); len = RSTRING_LEN(tmp); ossl_asn1_decode0(&p, len, &offset, 0, 1, &read); RB_GC_GUARD(tmp); int_ossl_decode_sanity_check(len, read, offset); return Qnil; } /* * call-seq: * OpenSSL::ASN1.decode(der) -> ASN1Data * * Decodes a BER- or DER-encoded value and creates an ASN1Data instance. +der+ * may be a +String+ or any object that features a +#to_der+ method transforming * it into a BER-/DER-encoded +String+. * * == Example * der = File.binread('asn1data') * asn1 = OpenSSL::ASN1.decode(der) */ static VALUE ossl_asn1_decode(VALUE self, VALUE obj) { VALUE ret; unsigned char *p; VALUE tmp; long len, read = 0, offset = 0; obj = ossl_to_der_if_possible(obj); tmp = rb_str_new4(StringValue(obj)); p = (unsigned char *)RSTRING_PTR(tmp); len = RSTRING_LEN(tmp); ret = ossl_asn1_decode0(&p, len, &offset, 0, 0, &read); RB_GC_GUARD(tmp); int_ossl_decode_sanity_check(len, read, offset); return ret; } /* * call-seq: * OpenSSL::ASN1.decode_all(der) -> Array of ASN1Data * * Similar to +decode+ with the difference that +decode+ expects one * distinct value represented in +der+. +decode_all+ on the contrary * decodes a sequence of sequential BER/DER values lined up in +der+ * and returns them as an array. * * == Example * ders = File.binread('asn1data_seq') * asn1_ary = OpenSSL::ASN1.decode_all(ders) */ static VALUE ossl_asn1_decode_all(VALUE self, VALUE obj) { VALUE ary, val; unsigned char *p; long len, tmp_len = 0, read = 0, offset = 0; VALUE tmp; obj = ossl_to_der_if_possible(obj); tmp = rb_str_new4(StringValue(obj)); p = (unsigned char *)RSTRING_PTR(tmp); len = RSTRING_LEN(tmp); tmp_len = len; ary = rb_ary_new(); while (tmp_len > 0) { long tmp_read = 0; val = ossl_asn1_decode0(&p, tmp_len, &offset, 0, 0, &tmp_read); rb_ary_push(ary, val); read += tmp_read; tmp_len -= tmp_read; } RB_GC_GUARD(tmp); int_ossl_decode_sanity_check(len, read, offset); return ary; } /* * call-seq: * OpenSSL::ASN1::Primitive.new( value [, tag, tagging, tag_class ]) => Primitive * * +value+: is mandatory. * * +tag+: optional, may be specified for tagged values. If no +tag+ is * specified, the UNIVERSAL tag corresponding to the Primitive sub-class * is used by default. * * +tagging+: may be used as an encoding hint to encode a value either * explicitly or implicitly, see ASN1 for possible values. * * +tag_class+: if +tag+ and +tagging+ are +nil+ then this is set to * +:UNIVERSAL+ by default. If either +tag+ or +tagging+ are set then * +:CONTEXT_SPECIFIC+ is used as the default. For possible values please * cf. ASN1. * * == Example * int = OpenSSL::ASN1::Integer.new(42) * zero_tagged_int = OpenSSL::ASN1::Integer.new(42, 0, :IMPLICIT) * private_explicit_zero_tagged_int = OpenSSL::ASN1::Integer.new(42, 0, :EXPLICIT, :PRIVATE) */ static VALUE ossl_asn1_initialize(int argc, VALUE *argv, VALUE self) { VALUE value, tag, tagging, tag_class; rb_scan_args(argc, argv, "13", &value, &tag, &tagging, &tag_class); if(argc > 1){ if(NIL_P(tag)) ossl_raise(eASN1Error, "must specify tag number"); if(!NIL_P(tagging) && !SYMBOL_P(tagging)) ossl_raise(eASN1Error, "invalid tagging method"); if(NIL_P(tag_class)) { if (NIL_P(tagging)) tag_class = ID2SYM(sUNIVERSAL); else tag_class = ID2SYM(sCONTEXT_SPECIFIC); } if(!SYMBOL_P(tag_class)) ossl_raise(eASN1Error, "invalid tag class"); if(!NIL_P(tagging) && SYM2ID(tagging) == sIMPLICIT && NUM2INT(tag) > 31) ossl_raise(eASN1Error, "tag number for Universal too large"); } else{ tag = INT2NUM(ossl_asn1_default_tag(self)); tagging = Qnil; tag_class = ID2SYM(sUNIVERSAL); } ossl_asn1_set_tag(self, tag); ossl_asn1_set_value(self, value); ossl_asn1_set_tagging(self, tagging); ossl_asn1_set_tag_class(self, tag_class); ossl_asn1_set_infinite_length(self, Qfalse); return self; } static VALUE ossl_asn1eoc_initialize(VALUE self) { VALUE tag, tagging, tag_class, value; tag = INT2NUM(ossl_asn1_default_tag(self)); tagging = Qnil; tag_class = ID2SYM(sUNIVERSAL); value = rb_str_new("", 0); ossl_asn1_set_tag(self, tag); ossl_asn1_set_value(self, value); ossl_asn1_set_tagging(self, tagging); ossl_asn1_set_tag_class(self, tag_class); ossl_asn1_set_infinite_length(self, Qfalse); return self; } static int ossl_i2d_ASN1_TYPE(ASN1_TYPE *a, unsigned char **pp) { #if OPENSSL_VERSION_NUMBER < 0x00907000L if(!a) return 0; if(a->type == V_ASN1_BOOLEAN) return i2d_ASN1_BOOLEAN(a->value.boolean, pp); #endif return i2d_ASN1_TYPE(a, pp); } static void ossl_ASN1_TYPE_free(ASN1_TYPE *a) { #if OPENSSL_VERSION_NUMBER < 0x00907000L if(!a) return; if(a->type == V_ASN1_BOOLEAN){ OPENSSL_free(a); return; } #endif ASN1_TYPE_free(a); } /* * call-seq: * asn1.to_der => DER-encoded String * * See ASN1Data#to_der for details. * */ static VALUE ossl_asn1prim_to_der(VALUE self) { ASN1_TYPE *asn1; int tn, tc, explicit; long len, reallen; unsigned char *buf, *p; VALUE str; tn = NUM2INT(ossl_asn1_get_tag(self)); tc = ossl_asn1_tag_class(self); explicit = ossl_asn1_is_explicit(self); asn1 = ossl_asn1_get_asn1type(self); len = ossl_asn1_object_size(1, ossl_i2d_ASN1_TYPE(asn1, NULL), tn); if(!(buf = OPENSSL_malloc(len))){ ossl_ASN1_TYPE_free(asn1); ossl_raise(eASN1Error, "cannot alloc buffer"); } p = buf; if (tc == V_ASN1_UNIVERSAL) { ossl_i2d_ASN1_TYPE(asn1, &p); } else if (explicit) { ossl_asn1_put_object(&p, 1, ossl_i2d_ASN1_TYPE(asn1, NULL), tn, tc); ossl_i2d_ASN1_TYPE(asn1, &p); } else { ossl_i2d_ASN1_TYPE(asn1, &p); *buf = tc | tn | (*buf & V_ASN1_CONSTRUCTED); } ossl_ASN1_TYPE_free(asn1); reallen = p - buf; assert(reallen <= len); str = ossl_buf2str((char *)buf, rb_long2int(reallen)); /* buf will be free in ossl_buf2str */ return str; } /* * call-seq: * asn1.to_der => DER-encoded String * * See ASN1Data#to_der for details. */ static VALUE ossl_asn1cons_to_der(VALUE self) { int tag, tn, tc, explicit, constructed = 1; int found_prim = 0, seq_len; long length; unsigned char *p; VALUE value, str, inf_length; tn = NUM2INT(ossl_asn1_get_tag(self)); tc = ossl_asn1_tag_class(self); inf_length = ossl_asn1_get_infinite_length(self); if (inf_length == Qtrue) { VALUE ary, example; constructed = 2; if (CLASS_OF(self) == cASN1Sequence || CLASS_OF(self) == cASN1Set) { tag = ossl_asn1_default_tag(self); } else { /* must be a constructive encoding of a primitive value */ ary = ossl_asn1_get_value(self); if (!rb_obj_is_kind_of(ary, rb_cArray)) ossl_raise(eASN1Error, "Constructive value must be an Array"); /* Recursively descend until a primitive value is found. The overall value of the entire constructed encoding is of the type of the first primitive encoding to be found. */ while (!found_prim){ example = rb_ary_entry(ary, 0); if (rb_obj_is_kind_of(example, cASN1Primitive)){ found_prim = 1; } else { /* example is another ASN1Constructive */ if (!rb_obj_is_kind_of(example, cASN1Constructive)){ ossl_raise(eASN1Error, "invalid constructed encoding"); return Qnil; /* dummy */ } ary = ossl_asn1_get_value(example); } } tag = ossl_asn1_default_tag(example); } } else { if (CLASS_OF(self) == cASN1Constructive) ossl_raise(eASN1Error, "Constructive shall only be used with infinite length"); tag = ossl_asn1_default_tag(self); } explicit = ossl_asn1_is_explicit(self); value = join_der(ossl_asn1_get_value(self)); seq_len = ossl_asn1_object_size(constructed, RSTRING_LENINT(value), tag); length = ossl_asn1_object_size(constructed, seq_len, tn); str = rb_str_new(0, length); p = (unsigned char *)RSTRING_PTR(str); if(tc == V_ASN1_UNIVERSAL) ossl_asn1_put_object(&p, constructed, RSTRING_LENINT(value), tn, tc); else{ if(explicit){ ossl_asn1_put_object(&p, constructed, seq_len, tn, tc); ossl_asn1_put_object(&p, constructed, RSTRING_LENINT(value), tag, V_ASN1_UNIVERSAL); } else{ ossl_asn1_put_object(&p, constructed, RSTRING_LENINT(value), tn, tc); } } memcpy(p, RSTRING_PTR(value), RSTRING_LEN(value)); p += RSTRING_LEN(value); /* In this case we need an additional EOC (one for the explicit part and * one for the Constructive itself. The EOC for the Constructive is * supplied by the user, but that for the "explicit wrapper" must be * added here. */ if (explicit && inf_length == Qtrue) { ASN1_put_eoc(&p); } ossl_str_adjust(str, p); return str; } /* * call-seq: * asn1_ary.each { |asn1| block } => asn1_ary * * Calls block once for each element in +self+, passing that element * as parameter +asn1+. If no block is given, an enumerator is returned * instead. * * == Example * asn1_ary.each do |asn1| * puts asn1 * end */ static VALUE ossl_asn1cons_each(VALUE self) { rb_ary_each(ossl_asn1_get_value(self)); return self; } /* * call-seq: * ObjectId.register(object_id, short_name, long_name) * * This adds a new ObjectId to the internal tables. Where +object_id+ is the * numerical form, +short_name+ is the short name, and +long_name+ is the long * name. * * Returns +true+ if successful. Raises an ASN1Error otherwise. * */ static VALUE ossl_asn1obj_s_register(VALUE self, VALUE oid, VALUE sn, VALUE ln) { StringValue(oid); StringValue(sn); StringValue(ln); if(!OBJ_create(RSTRING_PTR(oid), RSTRING_PTR(sn), RSTRING_PTR(ln))) ossl_raise(eASN1Error, NULL); return Qtrue; } /* Document-method: OpenSSL::ASN1::ObjectId#sn * * The short name of the ObjectId, as defined in +openssl/objects.h+. */ /* Document-method: OpenSSL::ASN1::ObjectId#short_name * * #short_name is an alias to #sn */ static VALUE ossl_asn1obj_get_sn(VALUE self) { VALUE val, ret = Qnil; int nid; val = ossl_asn1_get_value(self); if ((nid = OBJ_txt2nid(StringValuePtr(val))) != NID_undef) ret = rb_str_new2(OBJ_nid2sn(nid)); return ret; } /* Document-method: OpenSSL::ASN1::ObjectId#ln * * The long name of the ObjectId, as defined in +openssl/objects.h+. */ /* Document-method: OpenSSL::ASN1::ObjectId.long_name * * #long_name is an alias to #ln */ static VALUE ossl_asn1obj_get_ln(VALUE self) { VALUE val, ret = Qnil; int nid; val = ossl_asn1_get_value(self); if ((nid = OBJ_txt2nid(StringValuePtr(val))) != NID_undef) ret = rb_str_new2(OBJ_nid2ln(nid)); return ret; } /* Document-method: OpenSSL::ASN1::ObjectId#oid * * The object identifier as a String. */ static VALUE ossl_asn1obj_get_oid(VALUE self) { VALUE val; ASN1_OBJECT *a1obj; char buf[128]; val = ossl_asn1_get_value(self); a1obj = obj_to_asn1obj(val); OBJ_obj2txt(buf, sizeof(buf), a1obj, 1); ASN1_OBJECT_free(a1obj); return rb_str_new2(buf); } #define OSSL_ASN1_IMPL_FACTORY_METHOD(klass) \ static VALUE ossl_asn1_##klass(int argc, VALUE *argv, VALUE self)\ { return rb_funcall3(cASN1##klass, rb_intern("new"), argc, argv); } OSSL_ASN1_IMPL_FACTORY_METHOD(Boolean) OSSL_ASN1_IMPL_FACTORY_METHOD(Integer) OSSL_ASN1_IMPL_FACTORY_METHOD(Enumerated) OSSL_ASN1_IMPL_FACTORY_METHOD(BitString) OSSL_ASN1_IMPL_FACTORY_METHOD(OctetString) OSSL_ASN1_IMPL_FACTORY_METHOD(UTF8String) OSSL_ASN1_IMPL_FACTORY_METHOD(NumericString) OSSL_ASN1_IMPL_FACTORY_METHOD(PrintableString) OSSL_ASN1_IMPL_FACTORY_METHOD(T61String) OSSL_ASN1_IMPL_FACTORY_METHOD(VideotexString) OSSL_ASN1_IMPL_FACTORY_METHOD(IA5String) OSSL_ASN1_IMPL_FACTORY_METHOD(GraphicString) OSSL_ASN1_IMPL_FACTORY_METHOD(ISO64String) OSSL_ASN1_IMPL_FACTORY_METHOD(GeneralString) OSSL_ASN1_IMPL_FACTORY_METHOD(UniversalString) OSSL_ASN1_IMPL_FACTORY_METHOD(BMPString) OSSL_ASN1_IMPL_FACTORY_METHOD(Null) OSSL_ASN1_IMPL_FACTORY_METHOD(ObjectId) OSSL_ASN1_IMPL_FACTORY_METHOD(UTCTime) OSSL_ASN1_IMPL_FACTORY_METHOD(GeneralizedTime) OSSL_ASN1_IMPL_FACTORY_METHOD(Sequence) OSSL_ASN1_IMPL_FACTORY_METHOD(Set) OSSL_ASN1_IMPL_FACTORY_METHOD(EndOfContent) void Init_ossl_asn1(void) { VALUE ary; int i; #if 0 mOSSL = rb_define_module("OpenSSL"); /* let rdoc know about mOSSL */ #endif sUNIVERSAL = rb_intern("UNIVERSAL"); sCONTEXT_SPECIFIC = rb_intern("CONTEXT_SPECIFIC"); sAPPLICATION = rb_intern("APPLICATION"); sPRIVATE = rb_intern("PRIVATE"); sEXPLICIT = rb_intern("EXPLICIT"); sIMPLICIT = rb_intern("IMPLICIT"); sivVALUE = rb_intern("@value"); sivTAG = rb_intern("@tag"); sivTAGGING = rb_intern("@tagging"); sivTAG_CLASS = rb_intern("@tag_class"); sivINFINITE_LENGTH = rb_intern("@infinite_length"); sivUNUSED_BITS = rb_intern("@unused_bits"); /* * Document-module: OpenSSL::ASN1 * * Abstract Syntax Notation One (or ASN.1) is a notation syntax to * describe data structures and is defined in ITU-T X.680. ASN.1 itself * does not mandate any encoding or parsing rules, but usually ASN.1 data * structures are encoded using the Distinguished Encoding Rules (DER) or * less often the Basic Encoding Rules (BER) described in ITU-T X.690. DER * and BER encodings are binary Tag-Length-Value (TLV) encodings that are * quite concise compared to other popular data description formats such * as XML, JSON etc. * ASN.1 data structures are very common in cryptographic applications, * e.g. X.509 public key certificates or certificate revocation lists * (CRLs) are all defined in ASN.1 and DER-encoded. ASN.1, DER and BER are * the building blocks of applied cryptography. * The ASN1 module provides the necessary classes that allow generation * of ASN.1 data structures and the methods to encode them using a DER * encoding. The decode method allows parsing arbitrary BER-/DER-encoded * data to a Ruby object that can then be modified and re-encoded at will. * * == ASN.1 class hierarchy * * The base class representing ASN.1 structures is ASN1Data. ASN1Data offers * attributes to read and set the +tag+, the +tag_class+ and finally the * +value+ of a particular ASN.1 item. Upon parsing, any tagged values * (implicit or explicit) will be represented by ASN1Data instances because * their "real type" can only be determined using out-of-band information * from the ASN.1 type declaration. Since this information is normally * known when encoding a type, all sub-classes of ASN1Data offer an * additional attribute +tagging+ that allows to encode a value implicitly * (+:IMPLICIT+) or explicitly (+:EXPLICIT+). * * === Constructive * * Constructive is, as its name implies, the base class for all * constructed encodings, i.e. those that consist of several values, * opposed to "primitive" encodings with just one single value. * Primitive values that are encoded with "infinite length" are typically * constructed (their values come in multiple chunks) and are therefore * represented by instances of Constructive. The value of an Constructive * is always an Array. * * ==== ASN1::Set and ASN1::Sequence * * The most common constructive encodings are SETs and SEQUENCEs, which is * why there are two sub-classes of Constructive representing each of * them. * * === Primitive * * This is the super class of all primitive values. Primitive * itself is not used when parsing ASN.1 data, all values are either * instances of a corresponding sub-class of Primitive or they are * instances of ASN1Data if the value was tagged implicitly or explicitly. * Please cf. Primitive documentation for details on sub-classes and * their respective mappings of ASN.1 data types to Ruby objects. * * == Possible values for +tagging+ * * When constructing an ASN1Data object the ASN.1 type definition may * require certain elements to be either implicitly or explicitly tagged. * This can be achieved by setting the +tagging+ attribute manually for * sub-classes of ASN1Data. Use the symbol +:IMPLICIT+ for implicit * tagging and +:EXPLICIT+ if the element requires explicit tagging. * * == Possible values for +tag_class+ * * It is possible to create arbitrary ASN1Data objects that also support * a PRIVATE or APPLICATION tag class. Possible values for the +tag_class+ * attribute are: * * +:UNIVERSAL+ (the default for untagged values) * * +:CONTEXT_SPECIFIC+ (the default for tagged values) * * +:APPLICATION+ * * +:PRIVATE+ * * == Tag constants * * There is a constant defined for each universal tag: * * OpenSSL::ASN1::EOC (0) * * OpenSSL::ASN1::BOOLEAN (1) * * OpenSSL::ASN1::INTEGER (2) * * OpenSSL::ASN1::BIT_STRING (3) * * OpenSSL::ASN1::OCTET_STRING (4) * * OpenSSL::ASN1::NULL (5) * * OpenSSL::ASN1::OBJECT (6) * * OpenSSL::ASN1::ENUMERATED (10) * * OpenSSL::ASN1::UTF8STRING (12) * * OpenSSL::ASN1::SEQUENCE (16) * * OpenSSL::ASN1::SET (17) * * OpenSSL::ASN1::NUMERICSTRING (18) * * OpenSSL::ASN1::PRINTABLESTRING (19) * * OpenSSL::ASN1::T61STRING (20) * * OpenSSL::ASN1::VIDEOTEXSTRING (21) * * OpenSSL::ASN1::IA5STRING (22) * * OpenSSL::ASN1::UTCTIME (23) * * OpenSSL::ASN1::GENERALIZEDTIME (24) * * OpenSSL::ASN1::GRAPHICSTRING (25) * * OpenSSL::ASN1::ISO64STRING (26) * * OpenSSL::ASN1::GENERALSTRING (27) * * OpenSSL::ASN1::UNIVERSALSTRING (28) * * OpenSSL::ASN1::BMPSTRING (30) * * == UNIVERSAL_TAG_NAME constant * * An Array that stores the name of a given tag number. These names are * the same as the name of the tag constant that is additionally defined, * e.g. UNIVERSAL_TAG_NAME[2] = "INTEGER" and OpenSSL::ASN1::INTEGER = 2. * * == Example usage * * === Decoding and viewing a DER-encoded file * require 'openssl' * require 'pp' * der = File.binread('data.der') * asn1 = OpenSSL::ASN1.decode(der) * pp der * * === Creating an ASN.1 structure and DER-encoding it * require 'openssl' * version = OpenSSL::ASN1::Integer.new(1) * # Explicitly 0-tagged implies context-specific tag class * serial = OpenSSL::ASN1::Integer.new(12345, 0, :EXPLICIT, :CONTEXT_SPECIFIC) * name = OpenSSL::ASN1::PrintableString.new('Data 1') * sequence = OpenSSL::ASN1::Sequence.new( [ version, serial, name ] ) * der = sequence.to_der */ mASN1 = rb_define_module_under(mOSSL, "ASN1"); /* Document-class: OpenSSL::ASN1::ASN1Error * * Generic error class for all errors raised in ASN1 and any of the * classes defined in it. */ eASN1Error = rb_define_class_under(mASN1, "ASN1Error", eOSSLError); rb_define_module_function(mASN1, "traverse", ossl_asn1_traverse, 1); rb_define_module_function(mASN1, "decode", ossl_asn1_decode, 1); rb_define_module_function(mASN1, "decode_all", ossl_asn1_decode_all, 1); ary = rb_ary_new(); /* * Array storing tag names at the tag's index. */ rb_define_const(mASN1, "UNIVERSAL_TAG_NAME", ary); for(i = 0; i < ossl_asn1_info_size; i++){ if(ossl_asn1_info[i].name[0] == '[') continue; rb_define_const(mASN1, ossl_asn1_info[i].name, INT2NUM(i)); rb_ary_store(ary, i, rb_str_new2(ossl_asn1_info[i].name)); } /* Document-class: OpenSSL::ASN1::ASN1Data * * The top-level class representing any ASN.1 object. When parsed by * ASN1.decode, tagged values are always represented by an instance * of ASN1Data. * * == The role of ASN1Data for parsing tagged values * * When encoding an ASN.1 type it is inherently clear what original * type (e.g. INTEGER, OCTET STRING etc.) this value has, regardless * of its tagging. * But opposed to the time an ASN.1 type is to be encoded, when parsing * them it is not possible to deduce the "real type" of tagged * values. This is why tagged values are generally parsed into ASN1Data * instances, but with a different outcome for implicit and explicit * tagging. * * === Example of a parsed implicitly tagged value * * An implicitly 1-tagged INTEGER value will be parsed as an * ASN1Data with * * +tag+ equal to 1 * * +tag_class+ equal to +:CONTEXT_SPECIFIC+ * * +value+ equal to a +String+ that carries the raw encoding * of the INTEGER. * This implies that a subsequent decoding step is required to * completely decode implicitly tagged values. * * === Example of a parsed explicitly tagged value * * An explicitly 1-tagged INTEGER value will be parsed as an * ASN1Data with * * +tag+ equal to 1 * * +tag_class+ equal to +:CONTEXT_SPECIFIC+ * * +value+ equal to an +Array+ with one single element, an * instance of OpenSSL::ASN1::Integer, i.e. the inner element * is the non-tagged primitive value, and the tagging is represented * in the outer ASN1Data * * == Example - Decoding an implicitly tagged INTEGER * int = OpenSSL::ASN1::Integer.new(1, 0, :IMPLICIT) # implicit 0-tagged * seq = OpenSSL::ASN1::Sequence.new( [int] ) * der = seq.to_der * asn1 = OpenSSL::ASN1.decode(der) * # pp asn1 => #]> * raw_int = asn1.value[0] * # manually rewrite tag and tag class to make it an UNIVERSAL value * raw_int.tag = OpenSSL::ASN1::INTEGER * raw_int.tag_class = :UNIVERSAL * int2 = OpenSSL::ASN1.decode(raw_int) * puts int2.value # => 1 * * == Example - Decoding an explicitly tagged INTEGER * int = OpenSSL::ASN1::Integer.new(1, 0, :EXPLICIT) # explicit 0-tagged * seq = OpenSSL::ASN1::Sequence.new( [int] ) * der = seq.to_der * asn1 = OpenSSL::ASN1.decode(der) * # pp asn1 => #]>]> * int2 = asn1.value[0].value[0] * puts int2.value # => 1 */ cASN1Data = rb_define_class_under(mASN1, "ASN1Data", rb_cObject); /* * Carries the value of a ASN.1 type. * Please confer Constructive and Primitive for the mappings between * ASN.1 data types and Ruby classes. */ rb_attr(cASN1Data, rb_intern("value"), 1, 1, 0); /* * A +Number+ representing the tag number of this ASN1Data. Never +nil+. */ rb_attr(cASN1Data, rb_intern("tag"), 1, 1, 0); /* * A +Symbol+ representing the tag class of this ASN1Data. Never +nil+. * See ASN1Data for possible values. */ rb_attr(cASN1Data, rb_intern("tag_class"), 1, 1, 0); /* * Never +nil+. A +Boolean+ indicating whether the encoding was infinite * length (in the case of parsing) or whether an infinite length encoding * shall be used (in the encoding case). * In DER, every value has a finite length associated with it. But in * scenarios where large amounts of data need to be transferred it * might be desirable to have some kind of streaming support available. * For example, huge OCTET STRINGs are preferably sent in smaller-sized * chunks, each at a time. * This is possible in BER by setting the length bytes of an encoding * to zero and by this indicating that the following value will be * sent in chunks. Infinite length encodings are always constructed. * The end of such a stream of chunks is indicated by sending a EOC * (End of Content) tag. SETs and SEQUENCEs may use an infinite length * encoding, but also primitive types such as e.g. OCTET STRINGS or * BIT STRINGS may leverage this functionality (cf. ITU-T X.690). */ rb_attr(cASN1Data, rb_intern("infinite_length"), 1, 1, 0); rb_define_method(cASN1Data, "initialize", ossl_asn1data_initialize, 3); rb_define_method(cASN1Data, "to_der", ossl_asn1data_to_der, 0); /* Document-class: OpenSSL::ASN1::Primitive * * The parent class for all primitive encodings. Attributes are the same as * for ASN1Data, with the addition of +tagging+. * Primitive values can never be infinite length encodings, thus it is not * possible to set the +infinite_length+ attribute for Primitive and its * sub-classes. * * == Primitive sub-classes and their mapping to Ruby classes * * OpenSSL::ASN1::EndOfContent <=> +value+ is always +nil+ * * OpenSSL::ASN1::Boolean <=> +value+ is a +Boolean+ * * OpenSSL::ASN1::Integer <=> +value+ is a +Number+ * * OpenSSL::ASN1::BitString <=> +value+ is a +String+ * * OpenSSL::ASN1::OctetString <=> +value+ is a +String+ * * OpenSSL::ASN1::Null <=> +value+ is always +nil+ * * OpenSSL::ASN1::Object <=> +value+ is a +String+ * * OpenSSL::ASN1::Enumerated <=> +value+ is a +Number+ * * OpenSSL::ASN1::UTF8String <=> +value+ is a +String+ * * OpenSSL::ASN1::NumericString <=> +value+ is a +String+ * * OpenSSL::ASN1::PrintableString <=> +value+ is a +String+ * * OpenSSL::ASN1::T61String <=> +value+ is a +String+ * * OpenSSL::ASN1::VideotexString <=> +value+ is a +String+ * * OpenSSL::ASN1::IA5String <=> +value+ is a +String+ * * OpenSSL::ASN1::UTCTime <=> +value+ is a +Time+ * * OpenSSL::ASN1::GeneralizedTime <=> +value+ is a +Time+ * * OpenSSL::ASN1::GraphicString <=> +value+ is a +String+ * * OpenSSL::ASN1::ISO64String <=> +value+ is a +String+ * * OpenSSL::ASN1::GeneralString <=> +value+ is a +String+ * * OpenSSL::ASN1::UniversalString <=> +value+ is a +String+ * * OpenSSL::ASN1::BMPString <=> +value+ is a +String+ * * == OpenSSL::ASN1::BitString * * === Additional attributes * +unused_bits+: if the underlying BIT STRING's * length is a multiple of 8 then +unused_bits+ is 0. Otherwise * +unused_bits+ indicates the number of bits that are to be ignored in * the final octet of the +BitString+'s +value+. * * == OpenSSL::ASN1::ObjectId * * While OpenSSL::ASN1::ObjectId.new will allocate a new ObjectId, it is * not typically allocated this way, but rather that are received from * parsed ASN1 encodings. * * === Additional attributes * * +sn+: the short name as defined in . * * +ln+: the long name as defined in . * * +oid+: the object identifier as a +String+, e.g. "1.2.3.4.5" * * +short_name+: alias for +sn+. * * +long_name+: alias for +ln+. * * == Examples * With the Exception of OpenSSL::ASN1::EndOfContent, each Primitive class * constructor takes at least one parameter, the +value+. * * === Creating EndOfContent * eoc = OpenSSL::ASN1::EndOfContent.new * * === Creating any other Primitive * prim = .new(value) # being one of the sub-classes except EndOfContent * prim_zero_tagged_implicit = .new(value, 0, :IMPLICIT) * prim_zero_tagged_explicit = .new(value, 0, :EXPLICIT) */ cASN1Primitive = rb_define_class_under(mASN1, "Primitive", cASN1Data); /* * May be used as a hint for encoding a value either implicitly or * explicitly by setting it either to +:IMPLICIT+ or to +:EXPLICIT+. * +tagging+ is not set when a ASN.1 structure is parsed using * OpenSSL::ASN1.decode. */ rb_attr(cASN1Primitive, rb_intern("tagging"), 1, 1, Qtrue); rb_undef_method(cASN1Primitive, "infinite_length="); rb_define_method(cASN1Primitive, "initialize", ossl_asn1_initialize, -1); rb_define_method(cASN1Primitive, "to_der", ossl_asn1prim_to_der, 0); /* Document-class: OpenSSL::ASN1::Constructive * * The parent class for all constructed encodings. The +value+ attribute * of a Constructive is always an +Array+. Attributes are the same as * for ASN1Data, with the addition of +tagging+. * * == SET and SEQUENCE * * Most constructed encodings come in the form of a SET or a SEQUENCE. * These encodings are represented by one of the two sub-classes of * Constructive: * * OpenSSL::ASN1::Set * * OpenSSL::ASN1::Sequence * Please note that tagged sequences and sets are still parsed as * instances of ASN1Data. Find further details on tagged values * there. * * === Example - constructing a SEQUENCE * int = OpenSSL::ASN1::Integer.new(1) * str = OpenSSL::ASN1::PrintableString.new('abc') * sequence = OpenSSL::ASN1::Sequence.new( [ int, str ] ) * * === Example - constructing a SET * int = OpenSSL::ASN1::Integer.new(1) * str = OpenSSL::ASN1::PrintableString.new('abc') * set = OpenSSL::ASN1::Set.new( [ int, str ] ) * * == Infinite length primitive values * * The only case where Constructive is used directly is for infinite * length encodings of primitive values. These encodings are always * constructed, with the contents of the +value+ +Array+ being either * UNIVERSAL non-infinite length partial encodings of the actual value * or again constructive encodings with infinite length (i.e. infinite * length primitive encodings may be constructed recursively with another * infinite length value within an already infinite length value). Each * partial encoding must be of the same UNIVERSAL type as the overall * encoding. The value of the overall encoding consists of the * concatenation of each partial encoding taken in sequence. The +value+ * array of the outer infinite length value must end with a * OpenSSL::ASN1::EndOfContent instance. * * Please note that it is not possible to encode Constructive without * the +infinite_length+ attribute being set to +true+, use * OpenSSL::ASN1::Sequence or OpenSSL::ASN1::Set in these cases instead. * * === Example - Infinite length OCTET STRING * partial1 = OpenSSL::ASN1::OctetString.new("\x01") * partial2 = OpenSSL::ASN1::OctetString.new("\x02") * inf_octets = OpenSSL::ASN1::Constructive.new( [ partial1, * partial2, * OpenSSL::ASN1::EndOfContent.new ], * OpenSSL::ASN1::OCTET_STRING, * nil, * :UNIVERSAL ) * # The real value of inf_octets is "\x01\x02", i.e. the concatenation * # of partial1 and partial2 * inf_octets.infinite_length = true * der = inf_octets.to_der * asn1 = OpenSSL::ASN1.decode(der) * puts asn1.infinite_length # => true */ cASN1Constructive = rb_define_class_under(mASN1,"Constructive", cASN1Data); rb_include_module(cASN1Constructive, rb_mEnumerable); /* * May be used as a hint for encoding a value either implicitly or * explicitly by setting it either to +:IMPLICIT+ or to +:EXPLICIT+. * +tagging+ is not set when a ASN.1 structure is parsed using * OpenSSL::ASN1.decode. */ rb_attr(cASN1Constructive, rb_intern("tagging"), 1, 1, Qtrue); rb_define_method(cASN1Constructive, "initialize", ossl_asn1_initialize, -1); rb_define_method(cASN1Constructive, "to_der", ossl_asn1cons_to_der, 0); rb_define_method(cASN1Constructive, "each", ossl_asn1cons_each, 0); #define OSSL_ASN1_DEFINE_CLASS(name, super) \ do{\ cASN1##name = rb_define_class_under(mASN1, #name, cASN1##super);\ rb_define_module_function(mASN1, #name, ossl_asn1_##name, -1);\ }while(0) OSSL_ASN1_DEFINE_CLASS(Boolean, Primitive); OSSL_ASN1_DEFINE_CLASS(Integer, Primitive); OSSL_ASN1_DEFINE_CLASS(Enumerated, Primitive); OSSL_ASN1_DEFINE_CLASS(BitString, Primitive); OSSL_ASN1_DEFINE_CLASS(OctetString, Primitive); OSSL_ASN1_DEFINE_CLASS(UTF8String, Primitive); OSSL_ASN1_DEFINE_CLASS(NumericString, Primitive); OSSL_ASN1_DEFINE_CLASS(PrintableString, Primitive); OSSL_ASN1_DEFINE_CLASS(T61String, Primitive); OSSL_ASN1_DEFINE_CLASS(VideotexString, Primitive); OSSL_ASN1_DEFINE_CLASS(IA5String, Primitive); OSSL_ASN1_DEFINE_CLASS(GraphicString, Primitive); OSSL_ASN1_DEFINE_CLASS(ISO64String, Primitive); OSSL_ASN1_DEFINE_CLASS(GeneralString, Primitive); OSSL_ASN1_DEFINE_CLASS(UniversalString, Primitive); OSSL_ASN1_DEFINE_CLASS(BMPString, Primitive); OSSL_ASN1_DEFINE_CLASS(Null, Primitive); OSSL_ASN1_DEFINE_CLASS(ObjectId, Primitive); OSSL_ASN1_DEFINE_CLASS(UTCTime, Primitive); OSSL_ASN1_DEFINE_CLASS(GeneralizedTime, Primitive); OSSL_ASN1_DEFINE_CLASS(Sequence, Constructive); OSSL_ASN1_DEFINE_CLASS(Set, Constructive); OSSL_ASN1_DEFINE_CLASS(EndOfContent, Data); /* Document-class: OpenSSL::ASN1::ObjectId * * Represents the primitive object id for OpenSSL::ASN1 */ #if 0 cASN1ObjectId = rb_define_class_under(mASN1, "ObjectId", cASN1Primitive); /* let rdoc know */ #endif rb_define_singleton_method(cASN1ObjectId, "register", ossl_asn1obj_s_register, 3); rb_define_method(cASN1ObjectId, "sn", ossl_asn1obj_get_sn, 0); rb_define_method(cASN1ObjectId, "ln", ossl_asn1obj_get_ln, 0); rb_define_method(cASN1ObjectId, "oid", ossl_asn1obj_get_oid, 0); rb_define_alias(cASN1ObjectId, "short_name", "sn"); rb_define_alias(cASN1ObjectId, "long_name", "ln"); rb_attr(cASN1BitString, rb_intern("unused_bits"), 1, 1, 0); rb_define_method(cASN1EndOfContent, "initialize", ossl_asn1eoc_initialize, 0); class_tag_map = rb_hash_new(); rb_hash_aset(class_tag_map, cASN1EndOfContent, INT2NUM(V_ASN1_EOC)); rb_hash_aset(class_tag_map, cASN1Boolean, INT2NUM(V_ASN1_BOOLEAN)); rb_hash_aset(class_tag_map, cASN1Integer, INT2NUM(V_ASN1_INTEGER)); rb_hash_aset(class_tag_map, cASN1BitString, INT2NUM(V_ASN1_BIT_STRING)); rb_hash_aset(class_tag_map, cASN1OctetString, INT2NUM(V_ASN1_OCTET_STRING)); rb_hash_aset(class_tag_map, cASN1Null, INT2NUM(V_ASN1_NULL)); rb_hash_aset(class_tag_map, cASN1ObjectId, INT2NUM(V_ASN1_OBJECT)); rb_hash_aset(class_tag_map, cASN1Enumerated, INT2NUM(V_ASN1_ENUMERATED)); rb_hash_aset(class_tag_map, cASN1UTF8String, INT2NUM(V_ASN1_UTF8STRING)); rb_hash_aset(class_tag_map, cASN1Sequence, INT2NUM(V_ASN1_SEQUENCE)); rb_hash_aset(class_tag_map, cASN1Set, INT2NUM(V_ASN1_SET)); rb_hash_aset(class_tag_map, cASN1NumericString, INT2NUM(V_ASN1_NUMERICSTRING)); rb_hash_aset(class_tag_map, cASN1PrintableString, INT2NUM(V_ASN1_PRINTABLESTRING)); rb_hash_aset(class_tag_map, cASN1T61String, INT2NUM(V_ASN1_T61STRING)); rb_hash_aset(class_tag_map, cASN1VideotexString, INT2NUM(V_ASN1_VIDEOTEXSTRING)); rb_hash_aset(class_tag_map, cASN1IA5String, INT2NUM(V_ASN1_IA5STRING)); rb_hash_aset(class_tag_map, cASN1UTCTime, INT2NUM(V_ASN1_UTCTIME)); rb_hash_aset(class_tag_map, cASN1GeneralizedTime, INT2NUM(V_ASN1_GENERALIZEDTIME)); rb_hash_aset(class_tag_map, cASN1GraphicString, INT2NUM(V_ASN1_GRAPHICSTRING)); rb_hash_aset(class_tag_map, cASN1ISO64String, INT2NUM(V_ASN1_ISO64STRING)); rb_hash_aset(class_tag_map, cASN1GeneralString, INT2NUM(V_ASN1_GENERALSTRING)); rb_hash_aset(class_tag_map, cASN1UniversalString, INT2NUM(V_ASN1_UNIVERSALSTRING)); rb_hash_aset(class_tag_map, cASN1BMPString, INT2NUM(V_ASN1_BMPSTRING)); rb_global_variable(&class_tag_map); }