summaryrefslogtreecommitdiff
path: root/jni/ruby/siphash.c
blob: 0df96f8320af6c9e0a5e7d23a135b87583692af1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
#include <string.h>
#include <stdio.h>
#include "siphash.h"
#ifndef SIP_HASH_STREAMING
  #define SIP_HASH_STREAMING 1
#endif

#ifdef _WIN32
  #define BYTE_ORDER __LITTLE_ENDIAN
#elif !defined BYTE_ORDER
  #include <endian.h>
#endif
#ifndef LITTLE_ENDIAN
#define LITTLE_ENDIAN __LITTLE_ENDIAN
#endif
#ifndef BIG_ENDIAN
#define BIG_ENDIAN __BIG_ENDIAN
#endif

#if BYTE_ORDER == LITTLE_ENDIAN
  #define lo u32[0]
  #define hi u32[1]
#elif BYTE_ORDER == BIG_ENDIAN
  #define hi u32[0]
  #define lo u32[1]
#else
  #error "Only strictly little or big endian supported"
#endif

#ifndef UNALIGNED_WORD_ACCESS
# if defined(__i386) || defined(__i386__) || defined(_M_IX86) || \
     defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || \
     defined(__powerpc64__) || \
     defined(__mc68020__)
#   define UNALIGNED_WORD_ACCESS 1
# endif
#endif
#ifndef UNALIGNED_WORD_ACCESS
# define UNALIGNED_WORD_ACCESS 0
#endif

#define U8TO32_LE(p)                                                    \
    (((uint32_t)((p)[0])       ) | ((uint32_t)((p)[1]) <<  8) |         \
     ((uint32_t)((p)[2]) <<  16) | ((uint32_t)((p)[3]) << 24))          \

#define U32TO8_LE(p, v)                 \
do {                                    \
    (p)[0] = (uint8_t)((v)      );      \
    (p)[1] = (uint8_t)((v) >>  8);      \
    (p)[2] = (uint8_t)((v) >> 16);      \
    (p)[3] = (uint8_t)((v) >> 24);      \
while (0)

#ifdef HAVE_UINT64_T
#define U8TO64_LE(p)                                                    \
    ((uint64_t)U8TO32_LE(p) | ((uint64_t)U8TO32_LE((p) + 4)) << 32 )

#define U64TO8_LE(p, v) \
do {                                            \
    U32TO8_LE((p),     (uint32_t)((v)      ));  \
    U32TO8_LE((p) + 4, (uint32_t)((v) >> 32));  \
while (0)

#define ROTL64(v, s)                    \
    ((v) << (s)) | ((v) >> (64 - (s)))

#define ROTL64_TO(v, s) ((v) = ROTL64((v), (s)))

#define ADD64_TO(v, s) ((v) += (s))
#define XOR64_TO(v, s) ((v) ^= (s))
#define XOR64_INT(v, x) ((v) ^= (x))
#else
#define U8TO64_LE(p) u8to64_le(p)
static inline uint64_t
u8to64_le(const uint8_t *p)
{
    uint64_t ret;
    ret.lo = U8TO32_LE(p);
    ret.hi = U8TO32_LE(p + 4);
    return ret;
}

#define U64TO8_LE(p, v) u64to8_le(p, v)
static inline void
u64to8_le(uint8_t *p, uint64_t v)
{
    U32TO8_LE(p,     v.lo);
    U32TO8_LE(p + 4, v.hi);
}

#define ROTL64_TO(v, s) ((s) > 32 ? rotl64_swap(rotl64_to(&(v), (s) - 32)) : \
                         (s) == 32 ? rotl64_swap(&(v)) : rotl64_to(&(v), (s)))
static inline uint64_t *
rotl64_to(uint64_t *v, unsigned int s)
{
    uint32_t uhi = (v->hi << s) | (v->lo >> (32 - s));
    uint32_t ulo = (v->lo << s) | (v->hi >> (32 - s));
    v->hi = uhi;
    v->lo = ulo;
    return v;
}

static inline uint64_t *
rotl64_swap(uint64_t *v)
{
    uint32_t t = v->lo;
    v->lo = v->hi;
    v->hi = t;
    return v;
}

#define ADD64_TO(v, s) add64_to(&(v), (s))
static inline uint64_t *
add64_to(uint64_t *v, const uint64_t s)
{
    v->lo += s.lo;
    v->hi += s.hi;
    if (v->lo < s.lo) v->hi++;
    return v;
}

#define XOR64_TO(v, s) xor64_to(&(v), (s))
static inline uint64_t *
xor64_to(uint64_t *v, const uint64_t s)
{
    v->lo ^= s.lo;
    v->hi ^= s.hi;
    return v;
}

#define XOR64_INT(v, x) ((v).lo ^= (x))
#endif

static const union {
    char bin[32];
    uint64_t u64[4];
} sip_init_state_bin = {"uespemos""modnarod""arenegyl""setybdet"};
#define sip_init_state sip_init_state_bin.u64

#if SIP_HASH_STREAMING
struct sip_interface_st {
    void (*init)(sip_state *s, const uint8_t *key);
    void (*update)(sip_state *s, const uint8_t *data, size_t len);
    void (*final)(sip_state *s, uint64_t *digest);
};

static void int_sip_init(sip_state *state, const uint8_t *key);
static void int_sip_update(sip_state *state, const uint8_t *data, size_t len);
static void int_sip_final(sip_state *state, uint64_t *digest);

static const sip_interface sip_methods = {
    int_sip_init,
    int_sip_update,
    int_sip_final
};
#endif /* SIP_HASH_STREAMING */

#define SIP_COMPRESS(v0, v1, v2, v3)    \
do {                                    \
    ADD64_TO((v0), (v1));               \
    ADD64_TO((v2), (v3));               \
    ROTL64_TO((v1), 13);                \
    ROTL64_TO((v3), 16);                \
    XOR64_TO((v1), (v0));               \
    XOR64_TO((v3), (v2));               \
    ROTL64_TO((v0), 32);                \
    ADD64_TO((v2), (v1));               \
    ADD64_TO((v0), (v3));               \
    ROTL64_TO((v1), 17);                \
    ROTL64_TO((v3), 21);                \
    XOR64_TO((v1), (v2));               \
    XOR64_TO((v3), (v0));               \
    ROTL64_TO((v2), 32);                \
while(0)

#if SIP_HASH_STREAMING
static void
int_sip_dump(sip_state *state)
{
    int v;

    for (v = 0; v < 4; v++) {
#if HAVE_UINT64_T
        printf("v%d: %" PRIx64 "\n", v, state->v[v]);
#else
        printf("v%d: %" PRIx32 "%.8" PRIx32 "\n", v, state->v[v].hi, state->v[v].lo);
#endif
    }
}

static void
int_sip_init(sip_state *state, const uint8_t key[16])
{
    uint64_t k0, k1;

    k0 = U8TO64_LE(key);
    k1 = U8TO64_LE(key + sizeof(uint64_t));

    state->v[0] = k0; XOR64_TO(state->v[0], sip_init_state[0]);
    state->v[1] = k1; XOR64_TO(state->v[1], sip_init_state[1]);
    state->v[2] = k0; XOR64_TO(state->v[2], sip_init_state[2]);
    state->v[3] = k1; XOR64_TO(state->v[3], sip_init_state[3]);
}

static inline void
int_sip_round(sip_state *state, int n)
{
    int i;

    for (i = 0; i < n; i++) {
        SIP_COMPRESS(state->v[0], state->v[1], state->v[2], state->v[3]);
    }
}

static inline void
int_sip_update_block(sip_state *state, uint64_t m)
{
    XOR64_TO(state->v[3], m);
    int_sip_round(state, state->c);
    XOR64_TO(state->v[0], m);
}

static inline void
int_sip_pre_update(sip_state *state, const uint8_t **pdata, size_t *plen)
{
    int to_read;
    uint64_t m;

    if (!state->buflen) return;

    to_read = sizeof(uint64_t) - state->buflen;
    memcpy(state->buf + state->buflen, *pdata, to_read);
    m = U8TO64_LE(state->buf);
    int_sip_update_block(state, m);
    *pdata += to_read;
    *plen -= to_read;
    state->buflen = 0;
}

static inline void
int_sip_post_update(sip_state *state, const uint8_t *data, size_t len)
{
    uint8_t r = len % sizeof(uint64_t);
    if (r) {
        memcpy(state->buf, data + len - r, r);
        state->buflen = r;
    }
}

static void
int_sip_update(sip_state *state, const uint8_t *data, size_t len)
{
    uint64_t *end;
    uint64_t *data64;

    state->msglen_byte = state->msglen_byte + (len % 256);
    data64 = (uint64_t *) data;

    int_sip_pre_update(state, &data, &len);

    end = data64 + (len / sizeof(uint64_t));

#if BYTE_ORDER == LITTLE_ENDIAN
    while (data64 != end) {
        int_sip_update_block(state, *data64++);
    }
#elif BYTE_ORDER == BIG_ENDIAN
    {
        uint64_t m;
        uint8_t *data8 = data;
        for (; data8 != (uint8_t *) end; data8 += sizeof(uint64_t)) {
            m = U8TO64_LE(data8);
            int_sip_update_block(state, m);
        }
    }
#endif

    int_sip_post_update(state, data, len);
}

static inline void
int_sip_pad_final_block(sip_state *state)
{
    int i;
    /* pad with 0's and finalize with msg_len mod 256 */
    for (i = state->buflen; i < sizeof(uint64_t); i++) {
        state->buf[i] = 0x00;
    }
    state->buf[sizeof(uint64_t) - 1] = state->msglen_byte;
}

static void
int_sip_final(sip_state *state, uint64_t *digest)
{
    uint64_t m;

    int_sip_pad_final_block(state);

    m = U8TO64_LE(state->buf);
    int_sip_update_block(state, m);

    XOR64_INT(state->v[2], 0xff);

    int_sip_round(state, state->d);

    *digest = state->v[0];
    XOR64_TO(*digest, state->v[1]);
    XOR64_TO(*digest, state->v[2]);
    XOR64_TO(*digest, state->v[3]);
}

sip_hash *
sip_hash_new(const uint8_t key[16], int c, int d)
{
    sip_hash *h = NULL;

    if (!(h = (sip_hash *) malloc(sizeof(sip_hash)))) return NULL;
    return sip_hash_init(h, key, c, d);
}

sip_hash *
sip_hash_init(sip_hash *h, const uint8_t key[16], int c, int d)
{
    h->state->c = c;
    h->state->d = d;
    h->state->buflen = 0;
    h->state->msglen_byte = 0;
    h->methods = &sip_methods;
    h->methods->init(h->state, key);
    return h;
}

int
sip_hash_update(sip_hash *h, const uint8_t *msg, size_t len)
{
    h->methods->update(h->state, msg, len);
    return 1;
}

int
sip_hash_final(sip_hash *h, uint8_t **digest, size_t* len)
{
    uint64_t digest64;
    uint8_t *ret;

    h->methods->final(h->state, &digest64);
    if (!(ret = (uint8_t *)malloc(sizeof(uint64_t)))) return 0;
    U64TO8_LE(ret, digest64);
    *len = sizeof(uint64_t);
    *digest = ret;

    return 1;
}

int
sip_hash_final_integer(sip_hash *h, uint64_t *digest)
{
    h->methods->final(h->state, digest);
    return 1;
}

int
sip_hash_digest(sip_hash *h, const uint8_t *data, size_t data_len, uint8_t **digest, size_t *digest_len)
{
    if (!sip_hash_update(h, data, data_len)) return 0;
    return sip_hash_final(h, digest, digest_len);
}

int
sip_hash_digest_integer(sip_hash *h, const uint8_t *data, size_t data_len, uint64_t *digest)
{
    if (!sip_hash_update(h, data, data_len)) return 0;
    return sip_hash_final_integer(h, digest);
}

void
sip_hash_free(sip_hash *h)
{
    free(h);
}

void
sip_hash_dump(sip_hash *h)
{
    int_sip_dump(h->state);
}
#endif /* SIP_HASH_STREAMING */

#define SIP_2_ROUND(m, v0, v1, v2, v3)  \
do {                                    \
    XOR64_TO((v3), (m));                \
    SIP_COMPRESS(v0, v1, v2, v3);       \
    SIP_COMPRESS(v0, v1, v2, v3);       \
    XOR64_TO((v0), (m));                \
while (0)

uint64_t
sip_hash24(const uint8_t key[16], const uint8_t *data, size_t len)
{
    uint64_t k0, k1;
    uint64_t v0, v1, v2, v3;
    uint64_t m, last;
    const uint8_t *end = data + len - (len % sizeof(uint64_t));

    k0 = U8TO64_LE(key);
    k1 = U8TO64_LE(key + sizeof(uint64_t));

    v0 = k0; XOR64_TO(v0, sip_init_state[0]);
    v1 = k1; XOR64_TO(v1, sip_init_state[1]);
    v2 = k0; XOR64_TO(v2, sip_init_state[2]);
    v3 = k1; XOR64_TO(v3, sip_init_state[3]);

#if BYTE_ORDER == LITTLE_ENDIAN && UNALIGNED_WORD_ACCESS
    {
        uint64_t *data64 = (uint64_t *)data;
        while (data64 != (uint64_t *) end) {
            m = *data64++;
            SIP_2_ROUND(m, v0, v1, v2, v3);
        }
    }
#else
    for (; data != end; data += sizeof(uint64_t)) {
        m = U8TO64_LE(data);
        SIP_2_ROUND(m, v0, v1, v2, v3);
    }
#endif

#ifdef HAVE_UINT64_T
    last = (uint64_t)len << 56;
#define OR_BYTE(n) (last |= ((uint64_t) end[n]) << ((n) * 8))
#else
    last.hi = len << 24;
    last.lo = 0;
#define OR_BYTE(n) do { \
        if (n >= 4) \
            last.hi |= ((uint32_t) end[n]) << ((n) >= 4 ? (n) * 8 - 32 : 0); \
        else \
            last.lo |= ((uint32_t) end[n]) << ((n) >= 4 ? 0 : (n) * 8); \
    } while (0)
#endif

    switch (len % sizeof(uint64_t)) {
        case 7:
            OR_BYTE(6);
        case 6:
            OR_BYTE(5);
        case 5:
            OR_BYTE(4);
        case 4:
#if BYTE_ORDER == LITTLE_ENDIAN && UNALIGNED_WORD_ACCESS
  #if HAVE_UINT64_T
            last |= (uint64_t) ((uint32_t *) end)[0];
  #else
            last.lo |= ((uint32_t *) end)[0];
  #endif
            break;
#else
            OR_BYTE(3);
#endif
        case 3:
            OR_BYTE(2);
        case 2:
            OR_BYTE(1);
        case 1:
            OR_BYTE(0);
            break;
        case 0:
            break;
    }

    SIP_2_ROUND(last, v0, v1, v2, v3);

    XOR64_INT(v2, 0xff);

    SIP_COMPRESS(v0, v1, v2, v3);
    SIP_COMPRESS(v0, v1, v2, v3);
    SIP_COMPRESS(v0, v1, v2, v3);
    SIP_COMPRESS(v0, v1, v2, v3);

    XOR64_TO(v0, v1);
    XOR64_TO(v0, v2);
    XOR64_TO(v0, v3);
    return v0;
}