summaryrefslogtreecommitdiff
path: root/jni/ruby/enum.c
diff options
context:
space:
mode:
authorJari Vetoniemi <jari.vetoniemi@indooratlas.com>2020-03-16 18:49:26 +0900
committerJari Vetoniemi <jari.vetoniemi@indooratlas.com>2020-03-30 00:39:06 +0900
commitfcbf63e62c627deae76c1b8cb8c0876c536ed811 (patch)
tree64cb17de3f41a2b6fef2368028fbd00349946994 /jni/ruby/enum.c
Fresh start
Diffstat (limited to 'jni/ruby/enum.c')
-rw-r--r--jni/ruby/enum.c3446
1 files changed, 3446 insertions, 0 deletions
diff --git a/jni/ruby/enum.c b/jni/ruby/enum.c
new file mode 100644
index 0000000..f8eb9d6
--- /dev/null
+++ b/jni/ruby/enum.c
@@ -0,0 +1,3446 @@
+/**********************************************************************
+
+ enum.c -
+
+ $Author: akr $
+ created at: Fri Oct 1 15:15:19 JST 1993
+
+ Copyright (C) 1993-2007 Yukihiro Matsumoto
+
+**********************************************************************/
+
+#include "internal.h"
+#include "ruby/util.h"
+#include "node.h"
+#include "id.h"
+
+VALUE rb_mEnumerable;
+
+static ID id_next;
+static ID id_div;
+static ID id_call;
+static ID id_size;
+
+#define id_each idEach
+#define id_eqq idEqq
+#define id_cmp idCmp
+#define id_lshift idLTLT
+
+VALUE
+rb_enum_values_pack(int argc, const VALUE *argv)
+{
+ if (argc == 0) return Qnil;
+ if (argc == 1) return argv[0];
+ return rb_ary_new4(argc, argv);
+}
+
+#define ENUM_WANT_SVALUE() do { \
+ i = rb_enum_values_pack(argc, argv); \
+} while (0)
+
+#define enum_yield rb_yield_values2
+
+static VALUE
+grep_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ NODE *memo = RNODE(args);
+ ENUM_WANT_SVALUE();
+
+ if (RTEST(rb_funcall(memo->u1.value, id_eqq, 1, i))) {
+ rb_ary_push(memo->u2.value, i);
+ }
+ return Qnil;
+}
+
+static VALUE
+grep_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ NODE *memo = RNODE(args);
+ ENUM_WANT_SVALUE();
+
+ if (RTEST(rb_funcall(memo->u1.value, id_eqq, 1, i))) {
+ rb_ary_push(memo->u2.value, rb_yield(i));
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.grep(pattern) -> array
+ * enum.grep(pattern) { |obj| block } -> array
+ *
+ * Returns an array of every element in <i>enum</i> for which
+ * <code>Pattern === element</code>. If the optional <em>block</em> is
+ * supplied, each matching element is passed to it, and the block's
+ * result is stored in the output array.
+ *
+ * (1..100).grep 38..44 #=> [38, 39, 40, 41, 42, 43, 44]
+ * c = IO.constants
+ * c.grep(/SEEK/) #=> [:SEEK_SET, :SEEK_CUR, :SEEK_END]
+ * res = c.grep(/SEEK/) { |v| IO.const_get(v) }
+ * res #=> [0, 1, 2]
+ *
+ */
+
+static VALUE
+enum_grep(VALUE obj, VALUE pat)
+{
+ VALUE ary = rb_ary_new();
+ NODE *memo = NEW_MEMO(pat, ary, 0);
+
+ rb_block_call(obj, id_each, 0, 0, rb_block_given_p() ? grep_iter_i : grep_i, (VALUE)memo);
+
+ return ary;
+}
+
+static VALUE
+count_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
+{
+ NODE *memo = RNODE(memop);
+
+ ENUM_WANT_SVALUE();
+
+ if (rb_equal(i, memo->u1.value)) {
+ memo->u3.cnt++;
+ }
+ return Qnil;
+}
+
+static VALUE
+count_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
+{
+ NODE *memo = RNODE(memop);
+
+ if (RTEST(enum_yield(argc, argv))) {
+ memo->u3.cnt++;
+ }
+ return Qnil;
+}
+
+static VALUE
+count_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
+{
+ NODE *memo = RNODE(memop);
+
+ memo->u3.cnt++;
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.count -> int
+ * enum.count(item) -> int
+ * enum.count { |obj| block } -> int
+ *
+ * Returns the number of items in +enum+ through enumeration.
+ * If an argument is given, the number of items in +enum+ that
+ * are equal to +item+ are counted. If a block is given, it
+ * counts the number of elements yielding a true value.
+ *
+ * ary = [1, 2, 4, 2]
+ * ary.count #=> 4
+ * ary.count(2) #=> 2
+ * ary.count{ |x| x%2==0 } #=> 3
+ *
+ */
+
+static VALUE
+enum_count(int argc, VALUE *argv, VALUE obj)
+{
+ VALUE item = Qnil;
+ NODE *memo;
+ rb_block_call_func *func;
+
+ if (argc == 0) {
+ if (rb_block_given_p()) {
+ func = count_iter_i;
+ }
+ else {
+ func = count_all_i;
+ }
+ }
+ else {
+ rb_scan_args(argc, argv, "1", &item);
+ if (rb_block_given_p()) {
+ rb_warn("given block not used");
+ }
+ func = count_i;
+ }
+
+ memo = NEW_MEMO(item, 0, 0);
+ rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
+ return INT2NUM(memo->u3.cnt);
+}
+
+static VALUE
+find_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
+{
+ ENUM_WANT_SVALUE();
+
+ if (RTEST(rb_yield(i))) {
+ NODE *memo = RNODE(memop);
+ memo->u1.value = i;
+ memo->u3.cnt = 1;
+ rb_iter_break();
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.detect(ifnone = nil) { |obj| block } -> obj or nil
+ * enum.find(ifnone = nil) { |obj| block } -> obj or nil
+ * enum.detect(ifnone = nil) -> an_enumerator
+ * enum.find(ifnone = nil) -> an_enumerator
+ *
+ * Passes each entry in <i>enum</i> to <em>block</em>. Returns the
+ * first for which <em>block</em> is not false. If no
+ * object matches, calls <i>ifnone</i> and returns its result when it
+ * is specified, or returns <code>nil</code> otherwise.
+ *
+ * If no block is given, an enumerator is returned instead.
+ *
+ * (1..10).detect { |i| i % 5 == 0 and i % 7 == 0 } #=> nil
+ * (1..100).find { |i| i % 5 == 0 and i % 7 == 0 } #=> 35
+ *
+ */
+
+static VALUE
+enum_find(int argc, VALUE *argv, VALUE obj)
+{
+ NODE *memo;
+ VALUE if_none;
+
+ rb_scan_args(argc, argv, "01", &if_none);
+ RETURN_ENUMERATOR(obj, argc, argv);
+ memo = NEW_MEMO(Qundef, 0, 0);
+ rb_block_call(obj, id_each, 0, 0, find_i, (VALUE)memo);
+ if (memo->u3.cnt) {
+ return memo->u1.value;
+ }
+ if (!NIL_P(if_none)) {
+ return rb_funcall(if_none, id_call, 0, 0);
+ }
+ return Qnil;
+}
+
+static VALUE
+find_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
+{
+ NODE *memo = RNODE(memop);
+
+ ENUM_WANT_SVALUE();
+
+ if (rb_equal(i, memo->u2.value)) {
+ memo->u1.value = UINT2NUM(memo->u3.cnt);
+ rb_iter_break();
+ }
+ memo->u3.cnt++;
+ return Qnil;
+}
+
+static VALUE
+find_index_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memop))
+{
+ NODE *memo = RNODE(memop);
+
+ if (RTEST(enum_yield(argc, argv))) {
+ memo->u1.value = UINT2NUM(memo->u3.cnt);
+ rb_iter_break();
+ }
+ memo->u3.cnt++;
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.find_index(value) -> int or nil
+ * enum.find_index { |obj| block } -> int or nil
+ * enum.find_index -> an_enumerator
+ *
+ * Compares each entry in <i>enum</i> with <em>value</em> or passes
+ * to <em>block</em>. Returns the index for the first for which the
+ * evaluated value is non-false. If no object matches, returns
+ * <code>nil</code>
+ *
+ * If neither block nor argument is given, an enumerator is returned instead.
+ *
+ * (1..10).find_index { |i| i % 5 == 0 and i % 7 == 0 } #=> nil
+ * (1..100).find_index { |i| i % 5 == 0 and i % 7 == 0 } #=> 34
+ * (1..100).find_index(50) #=> 49
+ *
+ */
+
+static VALUE
+enum_find_index(int argc, VALUE *argv, VALUE obj)
+{
+ NODE *memo; /* [return value, current index, ] */
+ VALUE condition_value = Qnil;
+ rb_block_call_func *func;
+
+ if (argc == 0) {
+ RETURN_ENUMERATOR(obj, 0, 0);
+ func = find_index_iter_i;
+ }
+ else {
+ rb_scan_args(argc, argv, "1", &condition_value);
+ if (rb_block_given_p()) {
+ rb_warn("given block not used");
+ }
+ func = find_index_i;
+ }
+
+ memo = NEW_MEMO(Qnil, condition_value, 0);
+ rb_block_call(obj, id_each, 0, 0, func, (VALUE)memo);
+ return memo->u1.value;
+}
+
+static VALUE
+find_all_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
+{
+ ENUM_WANT_SVALUE();
+
+ if (RTEST(rb_yield(i))) {
+ rb_ary_push(ary, i);
+ }
+ return Qnil;
+}
+
+static VALUE
+enum_size(VALUE self, VALUE args, VALUE eobj)
+{
+ VALUE r;
+ r = rb_check_funcall(self, id_size, 0, 0);
+ return (r == Qundef) ? Qnil : r;
+}
+
+/*
+ * call-seq:
+ * enum.find_all { |obj| block } -> array
+ * enum.select { |obj| block } -> array
+ * enum.find_all -> an_enumerator
+ * enum.select -> an_enumerator
+ *
+ * Returns an array containing all elements of +enum+
+ * for which the given +block+ returns a true value.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ *
+ * (1..10).find_all { |i| i % 3 == 0 } #=> [3, 6, 9]
+ *
+ * [1,2,3,4,5].select { |num| num.even? } #=> [2, 4]
+ *
+ * See also Enumerable#reject.
+ */
+
+static VALUE
+enum_find_all(VALUE obj)
+{
+ VALUE ary;
+
+ RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
+
+ ary = rb_ary_new();
+ rb_block_call(obj, id_each, 0, 0, find_all_i, ary);
+
+ return ary;
+}
+
+static VALUE
+reject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
+{
+ ENUM_WANT_SVALUE();
+
+ if (!RTEST(rb_yield(i))) {
+ rb_ary_push(ary, i);
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.reject { |obj| block } -> array
+ * enum.reject -> an_enumerator
+ *
+ * Returns an array for all elements of +enum+ for which the given
+ * +block+ returns false.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ * (1..10).reject { |i| i % 3 == 0 } #=> [1, 2, 4, 5, 7, 8, 10]
+ *
+ * [1, 2, 3, 4, 5].reject { |num| num.even? } #=> [1, 3, 5]
+ *
+ * See also Enumerable#find_all.
+ */
+
+static VALUE
+enum_reject(VALUE obj)
+{
+ VALUE ary;
+
+ RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
+
+ ary = rb_ary_new();
+ rb_block_call(obj, id_each, 0, 0, reject_i, ary);
+
+ return ary;
+}
+
+static VALUE
+collect_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
+{
+ rb_ary_push(ary, enum_yield(argc, argv));
+
+ return Qnil;
+}
+
+static VALUE
+collect_all(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
+{
+ rb_thread_check_ints();
+ rb_ary_push(ary, rb_enum_values_pack(argc, argv));
+
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.collect { |obj| block } -> array
+ * enum.map { |obj| block } -> array
+ * enum.collect -> an_enumerator
+ * enum.map -> an_enumerator
+ *
+ * Returns a new array with the results of running <em>block</em> once
+ * for every element in <i>enum</i>.
+ *
+ * If no block is given, an enumerator is returned instead.
+ *
+ * (1..4).map { |i| i*i } #=> [1, 4, 9, 16]
+ * (1..4).collect { "cat" } #=> ["cat", "cat", "cat", "cat"]
+ *
+ */
+
+static VALUE
+enum_collect(VALUE obj)
+{
+ VALUE ary;
+
+ RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
+
+ ary = rb_ary_new();
+ rb_block_call(obj, id_each, 0, 0, collect_i, ary);
+
+ return ary;
+}
+
+static VALUE
+flat_map_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
+{
+ VALUE tmp;
+
+ i = enum_yield(argc, argv);
+ tmp = rb_check_array_type(i);
+
+ if (NIL_P(tmp)) {
+ rb_ary_push(ary, i);
+ }
+ else {
+ rb_ary_concat(ary, tmp);
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.flat_map { |obj| block } -> array
+ * enum.collect_concat { |obj| block } -> array
+ * enum.flat_map -> an_enumerator
+ * enum.collect_concat -> an_enumerator
+ *
+ * Returns a new array with the concatenated results of running
+ * <em>block</em> once for every element in <i>enum</i>.
+ *
+ * If no block is given, an enumerator is returned instead.
+ *
+ * [1, 2, 3, 4].flat_map { |e| [e, -e] } #=> [1, -1, 2, -2, 3, -3, 4, -4]
+ * [[1, 2], [3, 4]].flat_map { |e| e + [100] } #=> [1, 2, 100, 3, 4, 100]
+ *
+ */
+
+static VALUE
+enum_flat_map(VALUE obj)
+{
+ VALUE ary;
+
+ RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
+
+ ary = rb_ary_new();
+ rb_block_call(obj, id_each, 0, 0, flat_map_i, ary);
+
+ return ary;
+}
+
+/*
+ * call-seq:
+ * enum.to_a(*args) -> array
+ * enum.entries(*args) -> array
+ *
+ * Returns an array containing the items in <i>enum</i>.
+ *
+ * (1..7).to_a #=> [1, 2, 3, 4, 5, 6, 7]
+ * { 'a'=>1, 'b'=>2, 'c'=>3 }.to_a #=> [["a", 1], ["b", 2], ["c", 3]]
+ *
+ * require 'prime'
+ * Prime.entries 10 #=> [2, 3, 5, 7]
+ */
+static VALUE
+enum_to_a(int argc, VALUE *argv, VALUE obj)
+{
+ VALUE ary = rb_ary_new();
+
+ rb_block_call(obj, id_each, argc, argv, collect_all, ary);
+ OBJ_INFECT(ary, obj);
+
+ return ary;
+}
+
+static VALUE
+enum_to_h_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
+{
+ VALUE key_value_pair;
+ ENUM_WANT_SVALUE();
+ rb_thread_check_ints();
+ key_value_pair = rb_check_array_type(i);
+ if (NIL_P(key_value_pair)) {
+ rb_raise(rb_eTypeError, "wrong element type %s (expected array)",
+ rb_builtin_class_name(i));
+ }
+ if (RARRAY_LEN(key_value_pair) != 2) {
+ rb_raise(rb_eArgError, "element has wrong array length (expected 2, was %ld)",
+ RARRAY_LEN(key_value_pair));
+ }
+ rb_hash_aset(hash, RARRAY_AREF(key_value_pair, 0), RARRAY_AREF(key_value_pair, 1));
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.to_h(*args) -> hash
+ *
+ * Returns the result of interpreting <i>enum</i> as a list of
+ * <tt>[key, value]</tt> pairs.
+ *
+ * %i[hello world].each_with_index.to_h
+ * # => {:hello => 0, :world => 1}
+ */
+
+static VALUE
+enum_to_h(int argc, VALUE *argv, VALUE obj)
+{
+ VALUE hash = rb_hash_new();
+ rb_block_call(obj, id_each, argc, argv, enum_to_h_i, hash);
+ OBJ_INFECT(hash, obj);
+ return hash;
+}
+
+static VALUE
+inject_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
+{
+ NODE *memo = RNODE(p);
+
+ ENUM_WANT_SVALUE();
+
+ if (memo->u1.value == Qundef) {
+ memo->u1.value = i;
+ }
+ else {
+ memo->u1.value = rb_yield_values(2, memo->u1.value, i);
+ }
+ return Qnil;
+}
+
+static VALUE
+inject_op_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
+{
+ NODE *memo = RNODE(p);
+ VALUE name;
+
+ ENUM_WANT_SVALUE();
+
+ if (memo->u1.value == Qundef) {
+ memo->u1.value = i;
+ }
+ else if (SYMBOL_P(name = memo->u3.value)) {
+ const ID mid = SYM2ID(name);
+ memo->u1.value = rb_funcall(memo->u1.value, mid, 1, i);
+ }
+ else {
+ VALUE args[2];
+ args[0] = name;
+ args[1] = i;
+ memo->u1.value = rb_f_send(numberof(args), args, memo->u1.value);
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.inject(initial, sym) -> obj
+ * enum.inject(sym) -> obj
+ * enum.inject(initial) { |memo, obj| block } -> obj
+ * enum.inject { |memo, obj| block } -> obj
+ * enum.reduce(initial, sym) -> obj
+ * enum.reduce(sym) -> obj
+ * enum.reduce(initial) { |memo, obj| block } -> obj
+ * enum.reduce { |memo, obj| block } -> obj
+ *
+ * Combines all elements of <i>enum</i> by applying a binary
+ * operation, specified by a block or a symbol that names a
+ * method or operator.
+ *
+ * If you specify a block, then for each element in <i>enum</i>
+ * the block is passed an accumulator value (<i>memo</i>) and the element.
+ * If you specify a symbol instead, then each element in the collection
+ * will be passed to the named method of <i>memo</i>.
+ * In either case, the result becomes the new value for <i>memo</i>.
+ * At the end of the iteration, the final value of <i>memo</i> is the
+ * return value for the method.
+ *
+ * If you do not explicitly specify an <i>initial</i> value for <i>memo</i>,
+ * then the first element of collection is used as the initial value
+ * of <i>memo</i>.
+ *
+ *
+ * # Sum some numbers
+ * (5..10).reduce(:+) #=> 45
+ * # Same using a block and inject
+ * (5..10).inject { |sum, n| sum + n } #=> 45
+ * # Multiply some numbers
+ * (5..10).reduce(1, :*) #=> 151200
+ * # Same using a block
+ * (5..10).inject(1) { |product, n| product * n } #=> 151200
+ * # find the longest word
+ * longest = %w{ cat sheep bear }.inject do |memo, word|
+ * memo.length > word.length ? memo : word
+ * end
+ * longest #=> "sheep"
+ *
+ */
+static VALUE
+enum_inject(int argc, VALUE *argv, VALUE obj)
+{
+ NODE *memo;
+ VALUE init, op;
+ rb_block_call_func *iter = inject_i;
+ ID id;
+
+ switch (rb_scan_args(argc, argv, "02", &init, &op)) {
+ case 0:
+ init = Qundef;
+ break;
+ case 1:
+ if (rb_block_given_p()) {
+ break;
+ }
+ id = rb_check_id(&init);
+ op = id ? ID2SYM(id) : init;
+ init = Qundef;
+ iter = inject_op_i;
+ break;
+ case 2:
+ if (rb_block_given_p()) {
+ rb_warning("given block not used");
+ }
+ id = rb_check_id(&op);
+ if (id) op = ID2SYM(id);
+ iter = inject_op_i;
+ break;
+ }
+ memo = NEW_MEMO(init, Qnil, op);
+ rb_block_call(obj, id_each, 0, 0, iter, (VALUE)memo);
+ if (memo->u1.value == Qundef) return Qnil;
+ return memo->u1.value;
+}
+
+static VALUE
+partition_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, arys))
+{
+ NODE *memo = RNODE(arys);
+ VALUE ary;
+ ENUM_WANT_SVALUE();
+
+ if (RTEST(rb_yield(i))) {
+ ary = memo->u1.value;
+ }
+ else {
+ ary = memo->u2.value;
+ }
+ rb_ary_push(ary, i);
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.partition { |obj| block } -> [ true_array, false_array ]
+ * enum.partition -> an_enumerator
+ *
+ * Returns two arrays, the first containing the elements of
+ * <i>enum</i> for which the block evaluates to true, the second
+ * containing the rest.
+ *
+ * If no block is given, an enumerator is returned instead.
+ *
+ * (1..6).partition { |v| v.even? } #=> [[2, 4, 6], [1, 3, 5]]
+ *
+ */
+
+static VALUE
+enum_partition(VALUE obj)
+{
+ NODE *memo;
+
+ RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
+
+ memo = NEW_MEMO(rb_ary_new(), rb_ary_new(), 0);
+ rb_block_call(obj, id_each, 0, 0, partition_i, (VALUE)memo);
+
+ return rb_assoc_new(memo->u1.value, memo->u2.value);
+}
+
+static VALUE
+group_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, hash))
+{
+ VALUE group;
+ VALUE values;
+
+ ENUM_WANT_SVALUE();
+
+ group = rb_yield(i);
+ values = rb_hash_aref(hash, group);
+ if (!RB_TYPE_P(values, T_ARRAY)) {
+ values = rb_ary_new3(1, i);
+ rb_hash_aset(hash, group, values);
+ }
+ else {
+ rb_ary_push(values, i);
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.group_by { |obj| block } -> a_hash
+ * enum.group_by -> an_enumerator
+ *
+ * Groups the collection by result of the block. Returns a hash where the
+ * keys are the evaluated result from the block and the values are
+ * arrays of elements in the collection that correspond to the key.
+ *
+ * If no block is given an enumerator is returned.
+ *
+ * (1..6).group_by { |i| i%3 } #=> {0=>[3, 6], 1=>[1, 4], 2=>[2, 5]}
+ *
+ */
+
+static VALUE
+enum_group_by(VALUE obj)
+{
+ VALUE hash;
+
+ RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
+
+ hash = rb_hash_new();
+ rb_block_call(obj, id_each, 0, 0, group_by_i, hash);
+ OBJ_INFECT(hash, obj);
+
+ return hash;
+}
+
+static VALUE
+first_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, params))
+{
+ NODE *memo = RNODE(params);
+ ENUM_WANT_SVALUE();
+
+ memo->u1.value = i;
+ rb_iter_break();
+
+ UNREACHABLE;
+}
+
+static VALUE enum_take(VALUE obj, VALUE n);
+
+/*
+ * call-seq:
+ * enum.first -> obj or nil
+ * enum.first(n) -> an_array
+ *
+ * Returns the first element, or the first +n+ elements, of the enumerable.
+ * If the enumerable is empty, the first form returns <code>nil</code>, and the
+ * second form returns an empty array.
+ *
+ * %w[foo bar baz].first #=> "foo"
+ * %w[foo bar baz].first(2) #=> ["foo", "bar"]
+ * %w[foo bar baz].first(10) #=> ["foo", "bar", "baz"]
+ * [].first #=> nil
+ *
+ */
+
+static VALUE
+enum_first(int argc, VALUE *argv, VALUE obj)
+{
+ NODE *memo;
+ rb_check_arity(argc, 0, 1);
+ if (argc > 0) {
+ return enum_take(obj, argv[0]);
+ }
+ else {
+ memo = NEW_MEMO(Qnil, 0, 0);
+ rb_block_call(obj, id_each, 0, 0, first_i, (VALUE)memo);
+ return memo->u1.value;
+ }
+}
+
+
+/*
+ * call-seq:
+ * enum.sort -> array
+ * enum.sort { |a, b| block } -> array
+ *
+ * Returns an array containing the items in <i>enum</i> sorted,
+ * either according to their own <code><=></code> method, or by using
+ * the results of the supplied block. The block should return -1, 0, or
+ * +1 depending on the comparison between <i>a</i> and <i>b</i>. As of
+ * Ruby 1.8, the method <code>Enumerable#sort_by</code> implements a
+ * built-in Schwartzian Transform, useful when key computation or
+ * comparison is expensive.
+ *
+ * %w(rhea kea flea).sort #=> ["flea", "kea", "rhea"]
+ * (1..10).sort { |a, b| b <=> a } #=> [10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
+ */
+
+static VALUE
+enum_sort(VALUE obj)
+{
+ return rb_ary_sort(enum_to_a(0, 0, obj));
+}
+
+#define SORT_BY_BUFSIZE 16
+struct sort_by_data {
+ VALUE ary;
+ VALUE buf;
+ long n;
+};
+
+static VALUE
+sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _data))
+{
+ struct sort_by_data *data = (struct sort_by_data *)&RNODE(_data)->u1;
+ VALUE ary = data->ary;
+ VALUE v;
+
+ ENUM_WANT_SVALUE();
+
+ v = rb_yield(i);
+
+ if (RBASIC(ary)->klass) {
+ rb_raise(rb_eRuntimeError, "sort_by reentered");
+ }
+ if (RARRAY_LEN(data->buf) != SORT_BY_BUFSIZE*2) {
+ rb_raise(rb_eRuntimeError, "sort_by reentered");
+ }
+
+ RARRAY_ASET(data->buf, data->n*2, v);
+ RARRAY_ASET(data->buf, data->n*2+1, i);
+ data->n++;
+ if (data->n == SORT_BY_BUFSIZE) {
+ rb_ary_concat(ary, data->buf);
+ data->n = 0;
+ }
+ return Qnil;
+}
+
+static int
+sort_by_cmp(const void *ap, const void *bp, void *data)
+{
+ VALUE a;
+ VALUE b;
+ VALUE ary = (VALUE)data;
+
+ if (RBASIC(ary)->klass) {
+ rb_raise(rb_eRuntimeError, "sort_by reentered");
+ }
+
+ a = *(VALUE *)ap;
+ b = *(VALUE *)bp;
+
+ return rb_cmpint(rb_funcall(a, id_cmp, 1, b), a, b);
+}
+
+/*
+ * call-seq:
+ * enum.sort_by { |obj| block } -> array
+ * enum.sort_by -> an_enumerator
+ *
+ * Sorts <i>enum</i> using a set of keys generated by mapping the
+ * values in <i>enum</i> through the given block.
+ *
+ * If no block is given, an enumerator is returned instead.
+ *
+ * %w{apple pear fig}.sort_by { |word| word.length}
+ * #=> ["fig", "pear", "apple"]
+ *
+ * The current implementation of <code>sort_by</code> generates an
+ * array of tuples containing the original collection element and the
+ * mapped value. This makes <code>sort_by</code> fairly expensive when
+ * the keysets are simple.
+ *
+ * require 'benchmark'
+ *
+ * a = (1..100000).map { rand(100000) }
+ *
+ * Benchmark.bm(10) do |b|
+ * b.report("Sort") { a.sort }
+ * b.report("Sort by") { a.sort_by { |a| a } }
+ * end
+ *
+ * <em>produces:</em>
+ *
+ * user system total real
+ * Sort 0.180000 0.000000 0.180000 ( 0.175469)
+ * Sort by 1.980000 0.040000 2.020000 ( 2.013586)
+ *
+ * However, consider the case where comparing the keys is a non-trivial
+ * operation. The following code sorts some files on modification time
+ * using the basic <code>sort</code> method.
+ *
+ * files = Dir["*"]
+ * sorted = files.sort { |a, b| File.new(a).mtime <=> File.new(b).mtime }
+ * sorted #=> ["mon", "tues", "wed", "thurs"]
+ *
+ * This sort is inefficient: it generates two new <code>File</code>
+ * objects during every comparison. A slightly better technique is to
+ * use the <code>Kernel#test</code> method to generate the modification
+ * times directly.
+ *
+ * files = Dir["*"]
+ * sorted = files.sort { |a, b|
+ * test(?M, a) <=> test(?M, b)
+ * }
+ * sorted #=> ["mon", "tues", "wed", "thurs"]
+ *
+ * This still generates many unnecessary <code>Time</code> objects. A
+ * more efficient technique is to cache the sort keys (modification
+ * times in this case) before the sort. Perl users often call this
+ * approach a Schwartzian Transform, after Randal Schwartz. We
+ * construct a temporary array, where each element is an array
+ * containing our sort key along with the filename. We sort this array,
+ * and then extract the filename from the result.
+ *
+ * sorted = Dir["*"].collect { |f|
+ * [test(?M, f), f]
+ * }.sort.collect { |f| f[1] }
+ * sorted #=> ["mon", "tues", "wed", "thurs"]
+ *
+ * This is exactly what <code>sort_by</code> does internally.
+ *
+ * sorted = Dir["*"].sort_by { |f| test(?M, f) }
+ * sorted #=> ["mon", "tues", "wed", "thurs"]
+ */
+
+static VALUE
+enum_sort_by(VALUE obj)
+{
+ VALUE ary, buf;
+ NODE *memo;
+ long i;
+ struct sort_by_data *data;
+
+ RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
+
+ if (RB_TYPE_P(obj, T_ARRAY) && RARRAY_LEN(obj) <= LONG_MAX/2) {
+ ary = rb_ary_new2(RARRAY_LEN(obj)*2);
+ }
+ else {
+ ary = rb_ary_new();
+ }
+ RBASIC_CLEAR_CLASS(ary);
+ buf = rb_ary_tmp_new(SORT_BY_BUFSIZE*2);
+ rb_ary_store(buf, SORT_BY_BUFSIZE*2-1, Qnil);
+ memo = NEW_MEMO(0, 0, 0);
+ OBJ_INFECT(memo, obj);
+ data = (struct sort_by_data *)&memo->u1;
+ data->ary = ary;
+ data->buf = buf;
+ data->n = 0;
+ rb_block_call(obj, id_each, 0, 0, sort_by_i, (VALUE)memo);
+ ary = data->ary;
+ buf = data->buf;
+ if (data->n) {
+ rb_ary_resize(buf, data->n*2);
+ rb_ary_concat(ary, buf);
+ }
+ if (RARRAY_LEN(ary) > 2) {
+ RARRAY_PTR_USE(ary, ptr,
+ ruby_qsort(ptr, RARRAY_LEN(ary)/2, 2*sizeof(VALUE),
+ sort_by_cmp, (void *)ary));
+ }
+ if (RBASIC(ary)->klass) {
+ rb_raise(rb_eRuntimeError, "sort_by reentered");
+ }
+ for (i=1; i<RARRAY_LEN(ary); i+=2) {
+ RARRAY_ASET(ary, i/2, RARRAY_AREF(ary, i));
+ }
+ rb_ary_resize(ary, RARRAY_LEN(ary)/2);
+ RBASIC_SET_CLASS_RAW(ary, rb_cArray);
+ OBJ_INFECT(ary, memo);
+
+ return ary;
+}
+
+#define ENUMFUNC(name) rb_block_given_p() ? name##_iter_i : name##_i
+
+#define DEFINE_ENUMFUNCS(name) \
+static VALUE enum_##name##_func(VALUE result, NODE *memo); \
+\
+static VALUE \
+name##_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
+{ \
+ return enum_##name##_func(rb_enum_values_pack(argc, argv), RNODE(memo)); \
+} \
+\
+static VALUE \
+name##_iter_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo)) \
+{ \
+ return enum_##name##_func(enum_yield(argc, argv), RNODE(memo)); \
+} \
+\
+static VALUE \
+enum_##name##_func(VALUE result, NODE *memo)
+
+DEFINE_ENUMFUNCS(all)
+{
+ if (!RTEST(result)) {
+ memo->u1.value = Qfalse;
+ rb_iter_break();
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.all? [{ |obj| block } ] -> true or false
+ *
+ * Passes each element of the collection to the given block. The method
+ * returns <code>true</code> if the block never returns
+ * <code>false</code> or <code>nil</code>. If the block is not given,
+ * Ruby adds an implicit block of <code>{ |obj| obj }</code> which will
+ * cause #all? to return +true+ when none of the collection members are
+ * +false+ or +nil+.
+ *
+ * %w[ant bear cat].all? { |word| word.length >= 3 } #=> true
+ * %w[ant bear cat].all? { |word| word.length >= 4 } #=> false
+ * [nil, true, 99].all? #=> false
+ *
+ */
+
+static VALUE
+enum_all(VALUE obj)
+{
+ NODE *memo = NEW_MEMO(Qtrue, 0, 0);
+ rb_block_call(obj, id_each, 0, 0, ENUMFUNC(all), (VALUE)memo);
+ return memo->u1.value;
+}
+
+DEFINE_ENUMFUNCS(any)
+{
+ if (RTEST(result)) {
+ memo->u1.value = Qtrue;
+ rb_iter_break();
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.any? [{ |obj| block }] -> true or false
+ *
+ * Passes each element of the collection to the given block. The method
+ * returns <code>true</code> if the block ever returns a value other
+ * than <code>false</code> or <code>nil</code>. If the block is not
+ * given, Ruby adds an implicit block of <code>{ |obj| obj }</code> that
+ * will cause #any? to return +true+ if at least one of the collection
+ * members is not +false+ or +nil+.
+ *
+ * %w[ant bear cat].any? { |word| word.length >= 3 } #=> true
+ * %w[ant bear cat].any? { |word| word.length >= 4 } #=> true
+ * [nil, true, 99].any? #=> true
+ *
+ */
+
+static VALUE
+enum_any(VALUE obj)
+{
+ NODE *memo = NEW_MEMO(Qfalse, 0, 0);
+ rb_block_call(obj, id_each, 0, 0, ENUMFUNC(any), (VALUE)memo);
+ return memo->u1.value;
+}
+
+DEFINE_ENUMFUNCS(one)
+{
+ if (RTEST(result)) {
+ if (memo->u1.value == Qundef) {
+ memo->u1.value = Qtrue;
+ }
+ else if (memo->u1.value == Qtrue) {
+ memo->u1.value = Qfalse;
+ rb_iter_break();
+ }
+ }
+ return Qnil;
+}
+
+struct nmin_data {
+ long n;
+ long bufmax;
+ long curlen;
+ VALUE buf;
+ VALUE limit;
+ int (*cmpfunc)(const void *, const void *, void *);
+ int rev; /* max if 1 */
+ int by; /* min_by if 1 */
+ const char *method;
+};
+
+static int
+nmin_cmp(const void *ap, const void *bp, void *_data)
+{
+ struct nmin_data *data = (struct nmin_data *)_data;
+ VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
+ VALUE cmp = rb_funcall(a, id_cmp, 1, b);
+ if (RBASIC(data->buf)->klass) {
+ rb_raise(rb_eRuntimeError, "%s reentered", data->method);
+ }
+ return rb_cmpint(cmp, a, b);
+}
+
+static int
+nmin_block_cmp(const void *ap, const void *bp, void *_data)
+{
+ struct nmin_data *data = (struct nmin_data *)_data;
+ VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
+ VALUE cmp = rb_yield_values(2, a, b);
+ if (RBASIC(data->buf)->klass) {
+ rb_raise(rb_eRuntimeError, "%s reentered", data->method);
+ }
+ return rb_cmpint(cmp, a, b);
+}
+
+
+static void
+nmin_filter(struct nmin_data *data)
+{
+ long n;
+ VALUE *beg;
+ int eltsize;
+ long numelts;
+
+ long left, right;
+
+ long i, j;
+
+ if (data->curlen <= data->n)
+ return;
+
+ n = data->n;
+ beg = RARRAY_PTR(data->buf);
+ eltsize = data->by ? 2 : 1;
+ numelts = data->curlen;
+
+ left = 0;
+ right = numelts-1;
+
+#define GETPTR(i) (beg+(i)*eltsize)
+
+#define SWAP(i, j) do { \
+ VALUE tmp[2]; \
+ memcpy(tmp, GETPTR(i), sizeof(VALUE)*eltsize); \
+ memcpy(GETPTR(i), GETPTR(j), sizeof(VALUE)*eltsize); \
+ memcpy(GETPTR(j), tmp, sizeof(VALUE)*eltsize); \
+} while (0)
+
+ while (1) {
+ long pivot_index = left + (right-left)/2;
+ long store_index;
+ long num_pivots = 1;
+
+ SWAP(pivot_index, right);
+ pivot_index = right;
+
+ store_index = left;
+ i = left;
+ while (i <= right-num_pivots) {
+ int c = data->cmpfunc(GETPTR(i), GETPTR(pivot_index), data);
+ if (data->rev)
+ c = -c;
+ if (c == 0) {
+ SWAP(i, right-num_pivots);
+ num_pivots++;
+ continue;
+ }
+ if (c < 0) {
+ SWAP(i, store_index);
+ store_index++;
+ }
+ i++;
+ }
+ j = store_index;
+ for (i = right; right-num_pivots < i; i--) {
+ if (i <= j)
+ break;
+ SWAP(j, i);
+ j++;
+ }
+
+ if (store_index <= n && n <= store_index+num_pivots)
+ break;
+
+ if (n < store_index) {
+ right = store_index-1;
+ }
+ else {
+ left = store_index+num_pivots;
+ }
+ }
+#undef GETPTR
+#undef SWAP
+
+ data->curlen = data->n;
+ rb_ary_resize(data->buf, data->n * eltsize);
+ data->limit = RARRAY_PTR(data->buf)[(data->n-1)*eltsize];
+}
+
+static VALUE
+nmin_i(VALUE i, VALUE *_data, int argc, VALUE *argv)
+{
+ struct nmin_data *data = (struct nmin_data *)_data;
+ VALUE cmpv;
+
+ ENUM_WANT_SVALUE();
+
+ if (data->by)
+ cmpv = rb_yield(i);
+ else
+ cmpv = i;
+
+ if (data->limit != Qundef) {
+ int c = data->cmpfunc(&cmpv, &data->limit, data);
+ if (data->rev)
+ c = -c;
+ if (c > 0)
+ return Qnil;
+ }
+
+ if (data->by)
+ rb_ary_push(data->buf, cmpv);
+ rb_ary_push(data->buf, i);
+
+ data->curlen++;
+
+ if (data->curlen == data->bufmax) {
+ nmin_filter(data);
+ }
+
+ return Qnil;
+}
+
+static VALUE
+nmin_run(VALUE obj, VALUE num, int by, int rev)
+{
+ VALUE result;
+ struct nmin_data data;
+
+ data.n = NUM2LONG(num);
+ if (data.n < 0)
+ rb_raise(rb_eArgError, "negative size (%ld)", data.n);
+ if (data.n == 0)
+ return rb_ary_new2(0);
+ if (LONG_MAX/4/(by ? 2 : 1) < data.n)
+ rb_raise(rb_eArgError, "too big size");
+ data.bufmax = data.n * 4;
+ data.curlen = 0;
+ data.buf = rb_ary_tmp_new(data.bufmax * (by ? 2 : 1));
+ data.limit = Qundef;
+ data.cmpfunc = by ? nmin_cmp :
+ rb_block_given_p() ? nmin_block_cmp :
+ nmin_cmp;
+ data.rev = rev;
+ data.by = by;
+ data.method = rev ? (by ? "max_by" : "max")
+ : (by ? "min_by" : "min");
+ rb_block_call(obj, id_each, 0, 0, nmin_i, (VALUE)&data);
+ nmin_filter(&data);
+ result = data.buf;
+ if (by) {
+ long i;
+ ruby_qsort(RARRAY_PTR(result),
+ RARRAY_LEN(result)/2,
+ sizeof(VALUE)*2,
+ data.cmpfunc, (void *)&data);
+ for (i=1; i<RARRAY_LEN(result); i+=2) {
+ RARRAY_PTR(result)[i/2] = RARRAY_PTR(result)[i];
+ }
+ rb_ary_resize(result, RARRAY_LEN(result)/2);
+ }
+ else {
+ ruby_qsort(RARRAY_PTR(result), RARRAY_LEN(result), sizeof(VALUE),
+ data.cmpfunc, (void *)&data);
+ }
+ if (rev) {
+ rb_ary_reverse(result);
+ }
+ *((VALUE *)&RBASIC(result)->klass) = rb_cArray;
+ return result;
+
+}
+
+/*
+ * call-seq:
+ * enum.one? [{ |obj| block }] -> true or false
+ *
+ * Passes each element of the collection to the given block. The method
+ * returns <code>true</code> if the block returns <code>true</code>
+ * exactly once. If the block is not given, <code>one?</code> will return
+ * <code>true</code> only if exactly one of the collection members is
+ * true.
+ *
+ * %w{ant bear cat}.one? { |word| word.length == 4 } #=> true
+ * %w{ant bear cat}.one? { |word| word.length > 4 } #=> false
+ * %w{ant bear cat}.one? { |word| word.length < 4 } #=> false
+ * [ nil, true, 99 ].one? #=> false
+ * [ nil, true, false ].one? #=> true
+ *
+ */
+static VALUE
+enum_one(VALUE obj)
+{
+ NODE *memo = NEW_MEMO(Qundef, 0, 0);
+ VALUE result;
+
+ rb_block_call(obj, id_each, 0, 0, ENUMFUNC(one), (VALUE)memo);
+ result = memo->u1.value;
+ if (result == Qundef) return Qfalse;
+ return result;
+}
+
+DEFINE_ENUMFUNCS(none)
+{
+ if (RTEST(result)) {
+ memo->u1.value = Qfalse;
+ rb_iter_break();
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.none? [{ |obj| block }] -> true or false
+ *
+ * Passes each element of the collection to the given block. The method
+ * returns <code>true</code> if the block never returns <code>true</code>
+ * for all elements. If the block is not given, <code>none?</code> will return
+ * <code>true</code> only if none of the collection members is true.
+ *
+ * %w{ant bear cat}.none? { |word| word.length == 5 } #=> true
+ * %w{ant bear cat}.none? { |word| word.length >= 4 } #=> false
+ * [].none? #=> true
+ * [nil].none? #=> true
+ * [nil, false].none? #=> true
+ */
+static VALUE
+enum_none(VALUE obj)
+{
+ NODE *memo = NEW_MEMO(Qtrue, 0, 0);
+ rb_block_call(obj, id_each, 0, 0, ENUMFUNC(none), (VALUE)memo);
+ return memo->u1.value;
+}
+
+static VALUE
+min_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ VALUE cmp;
+ NODE *memo = RNODE(args);
+
+ ENUM_WANT_SVALUE();
+
+ if (memo->u1.value == Qundef) {
+ memo->u1.value = i;
+ }
+ else {
+ cmp = rb_funcall(i, id_cmp, 1, memo->u1.value);
+ if (rb_cmpint(cmp, i, memo->u1.value) < 0) {
+ memo->u1.value = i;
+ }
+ }
+ return Qnil;
+}
+
+static VALUE
+min_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ VALUE cmp;
+ NODE *memo = RNODE(args);
+
+ ENUM_WANT_SVALUE();
+
+ if (memo->u1.value == Qundef) {
+ memo->u1.value = i;
+ }
+ else {
+ cmp = rb_yield_values(2, i, memo->u1.value);
+ if (rb_cmpint(cmp, i, memo->u1.value) < 0) {
+ memo->u1.value = i;
+ }
+ }
+ return Qnil;
+}
+
+
+/*
+ * call-seq:
+ * enum.min -> obj
+ * enum.min {| a,b | block } -> obj
+ * enum.min(n) -> array
+ * enum.min(n) {| a,b | block } -> array
+ *
+ * Returns the object in <i>enum</i> with the minimum value. The
+ * first form assumes all objects implement <code>Comparable</code>;
+ * the second uses the block to return <em>a <=> b</em>.
+ *
+ * a = %w(albatross dog horse)
+ * a.min #=> "albatross"
+ * a.min { |a, b| a.length <=> b.length } #=> "dog"
+ *
+ * If the +n+ argument is given, minimum +n+ elements are returned
+ * as an array.
+ *
+ * a = %w[albatross dog horse]
+ * a.min(2) #=> ["albatross", "dog"]
+ * a.min(2) {|a, b| a.length <=> b.length } #=> ["dog", "horse"]
+ */
+
+static VALUE
+enum_min(int argc, VALUE *argv, VALUE obj)
+{
+ NODE *memo = NEW_MEMO(Qundef, 0, 0);
+ VALUE result;
+ VALUE num;
+
+ rb_scan_args(argc, argv, "01", &num);
+
+ if (!NIL_P(num))
+ return nmin_run(obj, num, 0, 0);
+
+ if (rb_block_given_p()) {
+ rb_block_call(obj, id_each, 0, 0, min_ii, (VALUE)memo);
+ }
+ else {
+ rb_block_call(obj, id_each, 0, 0, min_i, (VALUE)memo);
+ }
+ result = memo->u1.value;
+ if (result == Qundef) return Qnil;
+ return result;
+}
+
+static VALUE
+max_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ NODE *memo = RNODE(args);
+ VALUE cmp;
+
+ ENUM_WANT_SVALUE();
+
+ if (memo->u1.value == Qundef) {
+ memo->u1.value = i;
+ }
+ else {
+ cmp = rb_funcall(i, id_cmp, 1, memo->u1.value);
+ if (rb_cmpint(cmp, i, memo->u1.value) > 0) {
+ memo->u1.value = i;
+ }
+ }
+ return Qnil;
+}
+
+static VALUE
+max_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ NODE *memo = RNODE(args);
+ VALUE cmp;
+
+ ENUM_WANT_SVALUE();
+
+ if (memo->u1.value == Qundef) {
+ memo->u1.value = i;
+ }
+ else {
+ cmp = rb_yield_values(2, i, memo->u1.value);
+ if (rb_cmpint(cmp, i, memo->u1.value) > 0) {
+ memo->u1.value = i;
+ }
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.max -> obj
+ * enum.max { |a, b| block } -> obj
+ * enum.max(n) -> obj
+ * enum.max(n) {|a,b| block } -> obj
+ *
+ * Returns the object in _enum_ with the maximum value. The
+ * first form assumes all objects implement <code>Comparable</code>;
+ * the second uses the block to return <em>a <=> b</em>.
+ *
+ * a = %w(albatross dog horse)
+ * a.max #=> "horse"
+ * a.max { |a, b| a.length <=> b.length } #=> "albatross"
+ *
+ * If the +n+ argument is given, maximum +n+ elements are returned
+ * as an array.
+ *
+ * a = %w[albatross dog horse]
+ * a.max(2) #=> ["horse", "dog"]
+ * a.max(2) {|a, b| a.length <=> b.length } #=> ["albatross", "horse"]
+ */
+
+static VALUE
+enum_max(int argc, VALUE *argv, VALUE obj)
+{
+ NODE *memo = NEW_MEMO(Qundef, 0, 0);
+ VALUE result;
+ VALUE num;
+
+ rb_scan_args(argc, argv, "01", &num);
+
+ if (!NIL_P(num))
+ return nmin_run(obj, num, 0, 1);
+
+ if (rb_block_given_p()) {
+ rb_block_call(obj, id_each, 0, 0, max_ii, (VALUE)memo);
+ }
+ else {
+ rb_block_call(obj, id_each, 0, 0, max_i, (VALUE)memo);
+ }
+ result = memo->u1.value;
+ if (result == Qundef) return Qnil;
+ return result;
+}
+
+struct minmax_t {
+ VALUE min;
+ VALUE max;
+ VALUE last;
+};
+
+STATIC_ASSERT(minmax_t, sizeof(struct minmax_t) <= sizeof(NODE) - offsetof(NODE, u1));
+
+static void
+minmax_i_update(VALUE i, VALUE j, struct minmax_t *memo)
+{
+ int n;
+
+ if (memo->min == Qundef) {
+ memo->min = i;
+ memo->max = j;
+ }
+ else {
+ n = rb_cmpint(rb_funcall(i, id_cmp, 1, memo->min), i, memo->min);
+ if (n < 0) {
+ memo->min = i;
+ }
+ n = rb_cmpint(rb_funcall(j, id_cmp, 1, memo->max), j, memo->max);
+ if (n > 0) {
+ memo->max = j;
+ }
+ }
+}
+
+static VALUE
+minmax_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
+{
+ struct minmax_t *memo = (struct minmax_t *)&RNODE(_memo)->u1.value;
+ int n;
+ VALUE j;
+
+ ENUM_WANT_SVALUE();
+
+ if (memo->last == Qundef) {
+ memo->last = i;
+ return Qnil;
+ }
+ j = memo->last;
+ memo->last = Qundef;
+
+ n = rb_cmpint(rb_funcall(j, id_cmp, 1, i), j, i);
+ if (n == 0)
+ i = j;
+ else if (n < 0) {
+ VALUE tmp;
+ tmp = i;
+ i = j;
+ j = tmp;
+ }
+
+ minmax_i_update(i, j, memo);
+
+ return Qnil;
+}
+
+static void
+minmax_ii_update(VALUE i, VALUE j, struct minmax_t *memo)
+{
+ int n;
+
+ if (memo->min == Qundef) {
+ memo->min = i;
+ memo->max = j;
+ }
+ else {
+ n = rb_cmpint(rb_yield_values(2, i, memo->min), i, memo->min);
+ if (n < 0) {
+ memo->min = i;
+ }
+ n = rb_cmpint(rb_yield_values(2, j, memo->max), j, memo->max);
+ if (n > 0) {
+ memo->max = j;
+ }
+ }
+}
+
+static VALUE
+minmax_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
+{
+ struct minmax_t *memo = (struct minmax_t *)&RNODE(_memo)->u1.value;
+ int n;
+ VALUE j;
+
+ ENUM_WANT_SVALUE();
+
+ if (memo->last == Qundef) {
+ memo->last = i;
+ return Qnil;
+ }
+ j = memo->last;
+ memo->last = Qundef;
+
+ n = rb_cmpint(rb_yield_values(2, j, i), j, i);
+ if (n == 0)
+ i = j;
+ else if (n < 0) {
+ VALUE tmp;
+ tmp = i;
+ i = j;
+ j = tmp;
+ }
+
+ minmax_ii_update(i, j, memo);
+
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.minmax -> [min, max]
+ * enum.minmax { |a, b| block } -> [min, max]
+ *
+ * Returns two elements array which contains the minimum and the
+ * maximum value in the enumerable. The first form assumes all
+ * objects implement <code>Comparable</code>; the second uses the
+ * block to return <em>a <=> b</em>.
+ *
+ * a = %w(albatross dog horse)
+ * a.minmax #=> ["albatross", "horse"]
+ * a.minmax { |a, b| a.length <=> b.length } #=> ["dog", "albatross"]
+ */
+
+static VALUE
+enum_minmax(VALUE obj)
+{
+ NODE *memo = NEW_MEMO(Qundef, Qundef, Qundef);
+ struct minmax_t *m = (struct minmax_t *)&memo->u1.value;
+ VALUE ary = rb_ary_new3(2, Qnil, Qnil);
+
+ m->min = Qundef;
+ m->last = Qundef;
+ if (rb_block_given_p()) {
+ rb_block_call(obj, id_each, 0, 0, minmax_ii, (VALUE)memo);
+ if (m->last != Qundef)
+ minmax_ii_update(m->last, m->last, m);
+ }
+ else {
+ rb_block_call(obj, id_each, 0, 0, minmax_i, (VALUE)memo);
+ if (m->last != Qundef)
+ minmax_i_update(m->last, m->last, m);
+ }
+ if (m->min != Qundef) {
+ rb_ary_store(ary, 0, m->min);
+ rb_ary_store(ary, 1, m->max);
+ }
+ return ary;
+}
+
+static VALUE
+min_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ NODE *memo = RNODE(args);
+ VALUE v;
+
+ ENUM_WANT_SVALUE();
+
+ v = rb_yield(i);
+ if (memo->u1.value == Qundef) {
+ memo->u1.value = v;
+ memo->u2.value = i;
+ }
+ else if (rb_cmpint(rb_funcall(v, id_cmp, 1, memo->u1.value), v, memo->u1.value) < 0) {
+ memo->u1.value = v;
+ memo->u2.value = i;
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.min_by {|obj| block } -> obj
+ * enum.min_by -> an_enumerator
+ * enum.min_by(n) {|obj| block } -> array
+ * enum.min_by(n) -> an_enumerator
+ *
+ * Returns the object in <i>enum</i> that gives the minimum
+ * value from the given block.
+ *
+ * If no block is given, an enumerator is returned instead.
+ *
+ * a = %w(albatross dog horse)
+ * a.min_by { |x| x.length } #=> "dog"
+ *
+ * If the +n+ argument is given, minimum +n+ elements are returned
+ * as an array.
+ *
+ * a = %w[albatross dog horse]
+ * p a.min_by(2) {|x| x.length } #=> ["dog", "horse"]
+ */
+
+static VALUE
+enum_min_by(int argc, VALUE *argv, VALUE obj)
+{
+ NODE *memo;
+ VALUE num;
+
+ rb_scan_args(argc, argv, "01", &num);
+
+ RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
+
+ if (!NIL_P(num))
+ return nmin_run(obj, num, 1, 0);
+
+ memo = NEW_MEMO(Qundef, Qnil, 0);
+ rb_block_call(obj, id_each, 0, 0, min_by_i, (VALUE)memo);
+ return memo->u2.value;
+}
+
+static VALUE
+max_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ NODE *memo = RNODE(args);
+ VALUE v;
+
+ ENUM_WANT_SVALUE();
+
+ v = rb_yield(i);
+ if (memo->u1.value == Qundef) {
+ memo->u1.value = v;
+ memo->u2.value = i;
+ }
+ else if (rb_cmpint(rb_funcall(v, id_cmp, 1, memo->u1.value), v, memo->u1.value) > 0) {
+ memo->u1.value = v;
+ memo->u2.value = i;
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.max_by {|obj| block } -> obj
+ * enum.max_by -> an_enumerator
+ * enum.max_by(n) {|obj| block } -> obj
+ * enum.max_by(n) -> an_enumerator
+ *
+ * Returns the object in <i>enum</i> that gives the maximum
+ * value from the given block.
+ *
+ * If no block is given, an enumerator is returned instead.
+ *
+ * a = %w(albatross dog horse)
+ * a.max_by { |x| x.length } #=> "albatross"
+ *
+ * If the +n+ argument is given, minimum +n+ elements are returned
+ * as an array.
+ *
+ * a = %w[albatross dog horse]
+ * a.max_by(2) {|x| x.length } #=> ["albatross", "horse"]
+ *
+ * enum.max_by(n) can be used to implement weighted random sampling.
+ * Following example implements and use Enumerable#wsample.
+ *
+ * module Enumerable
+ * # weighted random sampling.
+ * #
+ * # Pavlos S. Efraimidis, Paul G. Spirakis
+ * # Weighted random sampling with a reservoir
+ * # Information Processing Letters
+ * # Volume 97, Issue 5 (16 March 2006)
+ * def wsample(n)
+ * self.max_by(n) {|v| rand ** (1.0/yield(v)) }
+ * end
+ * end
+ * e = (-20..20).to_a*10000
+ * a = e.wsample(20000) {|x|
+ * Math.exp(-(x/5.0)**2) # normal distribution
+ * }
+ * # a is 20000 samples from e.
+ * p a.length #=> 20000
+ * h = a.group_by {|x| x }
+ * -10.upto(10) {|x| puts "*" * (h[x].length/30.0).to_i if h[x] }
+ * #=> *
+ * # ***
+ * # ******
+ * # ***********
+ * # ******************
+ * # *****************************
+ * # *****************************************
+ * # ****************************************************
+ * # ***************************************************************
+ * # ********************************************************************
+ * # ***********************************************************************
+ * # ***********************************************************************
+ * # **************************************************************
+ * # ****************************************************
+ * # ***************************************
+ * # ***************************
+ * # ******************
+ * # ***********
+ * # *******
+ * # ***
+ * # *
+ *
+ */
+
+static VALUE
+enum_max_by(int argc, VALUE *argv, VALUE obj)
+{
+ NODE *memo;
+ VALUE num;
+
+ rb_scan_args(argc, argv, "01", &num);
+
+ RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
+
+ if (!NIL_P(num))
+ return nmin_run(obj, num, 1, 1);
+
+ memo = NEW_MEMO(Qundef, Qnil, 0);
+ rb_block_call(obj, id_each, 0, 0, max_by_i, (VALUE)memo);
+ return memo->u2.value;
+}
+
+struct minmax_by_t {
+ VALUE min_bv;
+ VALUE max_bv;
+ VALUE min;
+ VALUE max;
+ VALUE last_bv;
+ VALUE last;
+};
+
+static void
+minmax_by_i_update(VALUE v1, VALUE v2, VALUE i1, VALUE i2, struct minmax_by_t *memo)
+{
+ if (memo->min_bv == Qundef) {
+ memo->min_bv = v1;
+ memo->max_bv = v2;
+ memo->min = i1;
+ memo->max = i2;
+ }
+ else {
+ if (rb_cmpint(rb_funcall(v1, id_cmp, 1, memo->min_bv), v1, memo->min_bv) < 0) {
+ memo->min_bv = v1;
+ memo->min = i1;
+ }
+ if (rb_cmpint(rb_funcall(v2, id_cmp, 1, memo->max_bv), v2, memo->max_bv) > 0) {
+ memo->max_bv = v2;
+ memo->max = i2;
+ }
+ }
+}
+
+static VALUE
+minmax_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
+{
+ struct minmax_by_t *memo = MEMO_FOR(struct minmax_by_t, _memo);
+ VALUE vi, vj, j;
+ int n;
+
+ ENUM_WANT_SVALUE();
+
+ vi = rb_yield(i);
+
+ if (memo->last_bv == Qundef) {
+ memo->last_bv = vi;
+ memo->last = i;
+ return Qnil;
+ }
+ vj = memo->last_bv;
+ j = memo->last;
+ memo->last_bv = Qundef;
+
+ n = rb_cmpint(rb_funcall(vj, id_cmp, 1, vi), vj, vi);
+ if (n == 0) {
+ i = j;
+ vi = vj;
+ }
+ else if (n < 0) {
+ VALUE tmp;
+ tmp = i;
+ i = j;
+ j = tmp;
+ tmp = vi;
+ vi = vj;
+ vj = tmp;
+ }
+
+ minmax_by_i_update(vi, vj, i, j, memo);
+
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.minmax_by { |obj| block } -> [min, max]
+ * enum.minmax_by -> an_enumerator
+ *
+ * Returns a two element array containing the objects in
+ * <i>enum</i> that correspond to the minimum and maximum values respectively
+ * from the given block.
+ *
+ * If no block is given, an enumerator is returned instead.
+ *
+ * a = %w(albatross dog horse)
+ * a.minmax_by { |x| x.length } #=> ["dog", "albatross"]
+ */
+
+static VALUE
+enum_minmax_by(VALUE obj)
+{
+ VALUE memo;
+ struct minmax_by_t *m = NEW_MEMO_FOR(struct minmax_by_t, memo);
+
+ RETURN_SIZED_ENUMERATOR(obj, 0, 0, enum_size);
+
+ m->min_bv = Qundef;
+ m->max_bv = Qundef;
+ m->min = Qnil;
+ m->max = Qnil;
+ m->last_bv = Qundef;
+ m->last = Qundef;
+ rb_block_call(obj, id_each, 0, 0, minmax_by_i, memo);
+ if (m->last_bv != Qundef)
+ minmax_by_i_update(m->last_bv, m->last_bv, m->last, m->last, m);
+ m = MEMO_FOR(struct minmax_by_t, memo);
+ return rb_assoc_new(m->min, m->max);
+}
+
+static VALUE
+member_i(RB_BLOCK_CALL_FUNC_ARGLIST(iter, args))
+{
+ NODE *memo = RNODE(args);
+
+ if (rb_equal(rb_enum_values_pack(argc, argv), memo->u1.value)) {
+ memo->u2.value = Qtrue;
+ rb_iter_break();
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.include?(obj) -> true or false
+ * enum.member?(obj) -> true or false
+ *
+ * Returns <code>true</code> if any member of <i>enum</i> equals
+ * <i>obj</i>. Equality is tested using <code>==</code>.
+ *
+ * IO.constants.include? :SEEK_SET #=> true
+ * IO.constants.include? :SEEK_NO_FURTHER #=> false
+ *
+ */
+
+static VALUE
+enum_member(VALUE obj, VALUE val)
+{
+ NODE *memo = NEW_MEMO(val, Qfalse, 0);
+
+ rb_block_call(obj, id_each, 0, 0, member_i, (VALUE)memo);
+ return memo->u2.value;
+}
+
+static VALUE
+each_with_index_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo))
+{
+ long n = RNODE(memo)->u3.cnt++;
+
+ return rb_yield_values(2, rb_enum_values_pack(argc, argv), INT2NUM(n));
+}
+
+/*
+ * call-seq:
+ * enum.each_with_index(*args) { |obj, i| block } -> enum
+ * enum.each_with_index(*args) -> an_enumerator
+ *
+ * Calls <em>block</em> with two arguments, the item and its index,
+ * for each item in <i>enum</i>. Given arguments are passed through
+ * to #each().
+ *
+ * If no block is given, an enumerator is returned instead.
+ *
+ * hash = Hash.new
+ * %w(cat dog wombat).each_with_index { |item, index|
+ * hash[item] = index
+ * }
+ * hash #=> {"cat"=>0, "dog"=>1, "wombat"=>2}
+ *
+ */
+
+static VALUE
+enum_each_with_index(int argc, VALUE *argv, VALUE obj)
+{
+ NODE *memo;
+
+ RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
+
+ memo = NEW_MEMO(0, 0, 0);
+ rb_block_call(obj, id_each, argc, argv, each_with_index_i, (VALUE)memo);
+ return obj;
+}
+
+
+/*
+ * call-seq:
+ * enum.reverse_each(*args) { |item| block } -> enum
+ * enum.reverse_each(*args) -> an_enumerator
+ *
+ * Builds a temporary array and traverses that array in reverse order.
+ *
+ * If no block is given, an enumerator is returned instead.
+ *
+ * (1..3).reverse_each { |v| p v }
+ *
+ * produces:
+ *
+ * 3
+ * 2
+ * 1
+ */
+
+static VALUE
+enum_reverse_each(int argc, VALUE *argv, VALUE obj)
+{
+ VALUE ary;
+ long i;
+
+ RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
+
+ ary = enum_to_a(argc, argv, obj);
+
+ for (i = RARRAY_LEN(ary); --i >= 0; ) {
+ rb_yield(RARRAY_AREF(ary, i));
+ }
+
+ return obj;
+}
+
+
+static VALUE
+each_val_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, p))
+{
+ ENUM_WANT_SVALUE();
+ rb_yield(i);
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.each_entry { |obj| block } -> enum
+ * enum.each_entry -> an_enumerator
+ *
+ * Calls <i>block</i> once for each element in +self+, passing that
+ * element as a parameter, converting multiple values from yield to an
+ * array.
+ *
+ * If no block is given, an enumerator is returned instead.
+ *
+ * class Foo
+ * include Enumerable
+ * def each
+ * yield 1
+ * yield 1, 2
+ * yield
+ * end
+ * end
+ * Foo.new.each_entry{ |o| p o }
+ *
+ * produces:
+ *
+ * 1
+ * [1, 2]
+ * nil
+ *
+ */
+
+static VALUE
+enum_each_entry(int argc, VALUE *argv, VALUE obj)
+{
+ RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_size);
+ rb_block_call(obj, id_each, argc, argv, each_val_i, 0);
+ return obj;
+}
+
+#define dont_recycle_block_arg(arity) ((arity) == 1 || (arity) < 0)
+#define nd_no_recycle u2.value
+
+static VALUE
+each_slice_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, m))
+{
+ NODE *memo = RNODE(m);
+ VALUE ary = memo->u1.value;
+ VALUE v = Qnil;
+ long size = memo->u3.cnt;
+ ENUM_WANT_SVALUE();
+
+ rb_ary_push(ary, i);
+
+ if (RARRAY_LEN(ary) == size) {
+ v = rb_yield(ary);
+
+ if (memo->nd_no_recycle) {
+ memo->u1.value = rb_ary_new2(size);
+ }
+ else {
+ rb_ary_clear(ary);
+ }
+ }
+
+ return v;
+}
+
+static VALUE
+enum_each_slice_size(VALUE obj, VALUE args, VALUE eobj)
+{
+ VALUE n, size;
+ long slice_size = NUM2LONG(RARRAY_AREF(args, 0));
+ if (slice_size <= 0) rb_raise(rb_eArgError, "invalid slice size");
+
+ size = enum_size(obj, 0, 0);
+ if (size == Qnil) return Qnil;
+
+ n = rb_funcall(size, '+', 1, LONG2NUM(slice_size-1));
+ return rb_funcall(n, id_div, 1, LONG2FIX(slice_size));
+}
+
+/*
+ * call-seq:
+ * enum.each_slice(n) { ... } -> nil
+ * enum.each_slice(n) -> an_enumerator
+ *
+ * Iterates the given block for each slice of <n> elements. If no
+ * block is given, returns an enumerator.
+ *
+ * (1..10).each_slice(3) { |a| p a }
+ * # outputs below
+ * [1, 2, 3]
+ * [4, 5, 6]
+ * [7, 8, 9]
+ * [10]
+ *
+ */
+static VALUE
+enum_each_slice(VALUE obj, VALUE n)
+{
+ long size = NUM2LONG(n);
+ VALUE ary;
+ NODE *memo;
+ int arity;
+
+ if (size <= 0) rb_raise(rb_eArgError, "invalid slice size");
+ RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_slice_size);
+ ary = rb_ary_new2(size);
+ arity = rb_block_arity();
+ memo = NEW_MEMO(ary, dont_recycle_block_arg(arity), size);
+ rb_block_call(obj, id_each, 0, 0, each_slice_i, (VALUE)memo);
+ ary = memo->u1.value;
+ if (RARRAY_LEN(ary) > 0) rb_yield(ary);
+
+ return Qnil;
+}
+
+static VALUE
+each_cons_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ NODE *memo = RNODE(args);
+ VALUE ary = memo->u1.value;
+ VALUE v = Qnil;
+ long size = memo->u3.cnt;
+ ENUM_WANT_SVALUE();
+
+ if (RARRAY_LEN(ary) == size) {
+ rb_ary_shift(ary);
+ }
+ rb_ary_push(ary, i);
+ if (RARRAY_LEN(ary) == size) {
+ if (memo->nd_no_recycle) {
+ ary = rb_ary_dup(ary);
+ }
+ v = rb_yield(ary);
+ }
+ return v;
+}
+
+static VALUE
+enum_each_cons_size(VALUE obj, VALUE args, VALUE eobj)
+{
+ VALUE n, size;
+ long cons_size = NUM2LONG(RARRAY_AREF(args, 0));
+ if (cons_size <= 0) rb_raise(rb_eArgError, "invalid size");
+
+ size = enum_size(obj, 0, 0);
+ if (size == Qnil) return Qnil;
+
+ n = rb_funcall(size, '+', 1, LONG2NUM(1 - cons_size));
+ return (rb_cmpint(rb_funcall(n, id_cmp, 1, LONG2FIX(0)), n, LONG2FIX(0)) == -1) ? LONG2FIX(0) : n;
+}
+
+/*
+ * call-seq:
+ * enum.each_cons(n) { ... } -> nil
+ * enum.each_cons(n) -> an_enumerator
+ *
+ * Iterates the given block for each array of consecutive <n>
+ * elements. If no block is given, returns an enumerator.
+ *
+ * e.g.:
+ * (1..10).each_cons(3) { |a| p a }
+ * # outputs below
+ * [1, 2, 3]
+ * [2, 3, 4]
+ * [3, 4, 5]
+ * [4, 5, 6]
+ * [5, 6, 7]
+ * [6, 7, 8]
+ * [7, 8, 9]
+ * [8, 9, 10]
+ *
+ */
+static VALUE
+enum_each_cons(VALUE obj, VALUE n)
+{
+ long size = NUM2LONG(n);
+ NODE *memo;
+ int arity;
+
+ if (size <= 0) rb_raise(rb_eArgError, "invalid size");
+ RETURN_SIZED_ENUMERATOR(obj, 1, &n, enum_each_cons_size);
+ arity = rb_block_arity();
+ memo = NEW_MEMO(rb_ary_new2(size), dont_recycle_block_arg(arity), size);
+ rb_block_call(obj, id_each, 0, 0, each_cons_i, (VALUE)memo);
+
+ return Qnil;
+}
+
+static VALUE
+each_with_object_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, memo))
+{
+ ENUM_WANT_SVALUE();
+ return rb_yield_values(2, i, memo);
+}
+
+/*
+ * call-seq:
+ * enum.each_with_object(obj) { |(*args), memo_obj| ... } -> obj
+ * enum.each_with_object(obj) -> an_enumerator
+ *
+ * Iterates the given block for each element with an arbitrary
+ * object given, and returns the initially given object.
+ *
+ * If no block is given, returns an enumerator.
+ *
+ * evens = (1..10).each_with_object([]) { |i, a| a << i*2 }
+ * #=> [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
+ *
+ */
+static VALUE
+enum_each_with_object(VALUE obj, VALUE memo)
+{
+ RETURN_SIZED_ENUMERATOR(obj, 1, &memo, enum_size);
+
+ rb_block_call(obj, id_each, 0, 0, each_with_object_i, memo);
+
+ return memo;
+}
+
+static VALUE
+zip_ary(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval))
+{
+ NODE *memo = (NODE *)memoval;
+ volatile VALUE result = memo->u1.value;
+ volatile VALUE args = memo->u2.value;
+ long n = memo->u3.cnt++;
+ volatile VALUE tmp;
+ int i;
+
+ tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
+ rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv));
+ for (i=0; i<RARRAY_LEN(args); i++) {
+ VALUE e = RARRAY_AREF(args, i);
+
+ if (RARRAY_LEN(e) <= n) {
+ rb_ary_push(tmp, Qnil);
+ }
+ else {
+ rb_ary_push(tmp, RARRAY_AREF(e, n));
+ }
+ }
+ if (NIL_P(result)) {
+ rb_yield(tmp);
+ }
+ else {
+ rb_ary_push(result, tmp);
+ }
+ return Qnil;
+}
+
+static VALUE
+call_next(VALUE *v)
+{
+ return v[0] = rb_funcall(v[1], id_next, 0, 0);
+}
+
+static VALUE
+call_stop(VALUE *v)
+{
+ return v[0] = Qundef;
+}
+
+static VALUE
+zip_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, memoval))
+{
+ NODE *memo = (NODE *)memoval;
+ volatile VALUE result = memo->u1.value;
+ volatile VALUE args = memo->u2.value;
+ volatile VALUE tmp;
+ int i;
+
+ tmp = rb_ary_new2(RARRAY_LEN(args) + 1);
+ rb_ary_store(tmp, 0, rb_enum_values_pack(argc, argv));
+ for (i=0; i<RARRAY_LEN(args); i++) {
+ if (NIL_P(RARRAY_AREF(args, i))) {
+ rb_ary_push(tmp, Qnil);
+ }
+ else {
+ VALUE v[2];
+
+ v[1] = RARRAY_AREF(args, i);
+ rb_rescue2(call_next, (VALUE)v, call_stop, (VALUE)v, rb_eStopIteration, (VALUE)0);
+ if (v[0] == Qundef) {
+ RARRAY_ASET(args, i, Qnil);
+ v[0] = Qnil;
+ }
+ rb_ary_push(tmp, v[0]);
+ }
+ }
+ if (NIL_P(result)) {
+ rb_yield(tmp);
+ }
+ else {
+ rb_ary_push(result, tmp);
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.zip(arg, ...) -> an_array_of_array
+ * enum.zip(arg, ...) { |arr| block } -> nil
+ *
+ * Takes one element from <i>enum</i> and merges corresponding
+ * elements from each <i>args</i>. This generates a sequence of
+ * <em>n</em>-element arrays, where <em>n</em> is one more than the
+ * count of arguments. The length of the resulting sequence will be
+ * <code>enum#size</code>. If the size of any argument is less than
+ * <code>enum#size</code>, <code>nil</code> values are supplied. If
+ * a block is given, it is invoked for each output array, otherwise
+ * an array of arrays is returned.
+ *
+ * a = [ 4, 5, 6 ]
+ * b = [ 7, 8, 9 ]
+ *
+ * a.zip(b) #=> [[4, 7], [5, 8], [6, 9]]
+ * [1, 2, 3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
+ * [1, 2].zip(a, b) #=> [[1, 4, 7], [2, 5, 8]]
+ * a.zip([1, 2], [8]) #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]]
+ *
+ */
+
+static VALUE
+enum_zip(int argc, VALUE *argv, VALUE obj)
+{
+ int i;
+ ID conv;
+ NODE *memo;
+ VALUE result = Qnil;
+ VALUE args = rb_ary_new4(argc, argv);
+ int allary = TRUE;
+
+ argv = RARRAY_PTR(args);
+ for (i=0; i<argc; i++) {
+ VALUE ary = rb_check_array_type(argv[i]);
+ if (NIL_P(ary)) {
+ allary = FALSE;
+ break;
+ }
+ argv[i] = ary;
+ }
+ if (!allary) {
+ CONST_ID(conv, "to_enum");
+ for (i=0; i<argc; i++) {
+ if (!rb_respond_to(argv[i], id_each)) {
+ rb_raise(rb_eTypeError, "wrong argument type %s (must respond to :each)",
+ rb_obj_classname(argv[i]));
+ }
+ argv[i] = rb_funcall(argv[i], conv, 1, ID2SYM(id_each));
+ }
+ }
+ if (!rb_block_given_p()) {
+ result = rb_ary_new();
+ }
+ /* use NODE_DOT2 as memo(v, v, -) */
+ memo = rb_node_newnode(NODE_DOT2, result, args, 0);
+ rb_block_call(obj, id_each, 0, 0, allary ? zip_ary : zip_i, (VALUE)memo);
+
+ return result;
+}
+
+static VALUE
+take_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ NODE *memo = RNODE(args);
+ rb_ary_push(memo->u1.value, rb_enum_values_pack(argc, argv));
+ if (--memo->u3.cnt == 0) rb_iter_break();
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.take(n) -> array
+ *
+ * Returns first n elements from <i>enum</i>.
+ *
+ * a = [1, 2, 3, 4, 5, 0]
+ * a.take(3) #=> [1, 2, 3]
+ * a.take(30) #=> [1, 2, 3, 4, 5, 0]
+ *
+ */
+
+static VALUE
+enum_take(VALUE obj, VALUE n)
+{
+ NODE *memo;
+ VALUE result;
+ long len = NUM2LONG(n);
+
+ if (len < 0) {
+ rb_raise(rb_eArgError, "attempt to take negative size");
+ }
+
+ if (len == 0) return rb_ary_new2(0);
+ result = rb_ary_new2(len);
+ memo = NEW_MEMO(result, 0, len);
+ rb_block_call(obj, id_each, 0, 0, take_i, (VALUE)memo);
+ return result;
+}
+
+
+static VALUE
+take_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
+{
+ if (!RTEST(enum_yield(argc, argv))) rb_iter_break();
+ rb_ary_push(ary, rb_enum_values_pack(argc, argv));
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.take_while { |arr| block } -> array
+ * enum.take_while -> an_enumerator
+ *
+ * Passes elements to the block until the block returns +nil+ or +false+,
+ * then stops iterating and returns an array of all prior elements.
+ *
+ * If no block is given, an enumerator is returned instead.
+ *
+ * a = [1, 2, 3, 4, 5, 0]
+ * a.take_while { |i| i < 3 } #=> [1, 2]
+ *
+ */
+
+static VALUE
+enum_take_while(VALUE obj)
+{
+ VALUE ary;
+
+ RETURN_ENUMERATOR(obj, 0, 0);
+ ary = rb_ary_new();
+ rb_block_call(obj, id_each, 0, 0, take_while_i, ary);
+ return ary;
+}
+
+static VALUE
+drop_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ NODE *memo = RNODE(args);
+ if (memo->u3.cnt == 0) {
+ rb_ary_push(memo->u1.value, rb_enum_values_pack(argc, argv));
+ }
+ else {
+ memo->u3.cnt--;
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.drop(n) -> array
+ *
+ * Drops first n elements from <i>enum</i>, and returns rest elements
+ * in an array.
+ *
+ * a = [1, 2, 3, 4, 5, 0]
+ * a.drop(3) #=> [4, 5, 0]
+ *
+ */
+
+static VALUE
+enum_drop(VALUE obj, VALUE n)
+{
+ VALUE result;
+ NODE *memo;
+ long len = NUM2LONG(n);
+
+ if (len < 0) {
+ rb_raise(rb_eArgError, "attempt to drop negative size");
+ }
+
+ result = rb_ary_new();
+ memo = NEW_MEMO(result, 0, len);
+ rb_block_call(obj, id_each, 0, 0, drop_i, (VALUE)memo);
+ return result;
+}
+
+
+static VALUE
+drop_while_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, args))
+{
+ NODE *memo = RNODE(args);
+ ENUM_WANT_SVALUE();
+
+ if (!memo->u3.state && !RTEST(rb_yield(i))) {
+ memo->u3.state = TRUE;
+ }
+ if (memo->u3.state) {
+ rb_ary_push(memo->u1.value, i);
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.drop_while { |arr| block } -> array
+ * enum.drop_while -> an_enumerator
+ *
+ * Drops elements up to, but not including, the first element for
+ * which the block returns +nil+ or +false+ and returns an array
+ * containing the remaining elements.
+ *
+ * If no block is given, an enumerator is returned instead.
+ *
+ * a = [1, 2, 3, 4, 5, 0]
+ * a.drop_while { |i| i < 3 } #=> [3, 4, 5, 0]
+ *
+ */
+
+static VALUE
+enum_drop_while(VALUE obj)
+{
+ VALUE result;
+ NODE *memo;
+
+ RETURN_ENUMERATOR(obj, 0, 0);
+ result = rb_ary_new();
+ memo = NEW_MEMO(result, 0, FALSE);
+ rb_block_call(obj, id_each, 0, 0, drop_while_i, (VALUE)memo);
+ return result;
+}
+
+static VALUE
+cycle_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, ary))
+{
+ ENUM_WANT_SVALUE();
+
+ rb_ary_push(ary, i);
+ rb_yield(i);
+ return Qnil;
+}
+
+static VALUE
+enum_cycle_size(VALUE self, VALUE args, VALUE eobj)
+{
+ long mul;
+ VALUE n = Qnil;
+ VALUE size = enum_size(self, args, 0);
+
+ if (size == Qnil) return Qnil;
+
+ if (args && (RARRAY_LEN(args) > 0)) {
+ n = RARRAY_AREF(args, 0);
+ }
+ if (n == Qnil) return DBL2NUM(INFINITY);
+ mul = NUM2LONG(n);
+ if (mul <= 0) return INT2FIX(0);
+ return rb_funcall(size, '*', 1, LONG2FIX(mul));
+}
+
+/*
+ * call-seq:
+ * enum.cycle(n=nil) { |obj| block } -> nil
+ * enum.cycle(n=nil) -> an_enumerator
+ *
+ * Calls <i>block</i> for each element of <i>enum</i> repeatedly _n_
+ * times or forever if none or +nil+ is given. If a non-positive
+ * number is given or the collection is empty, does nothing. Returns
+ * +nil+ if the loop has finished without getting interrupted.
+ *
+ * Enumerable#cycle saves elements in an internal array so changes
+ * to <i>enum</i> after the first pass have no effect.
+ *
+ * If no block is given, an enumerator is returned instead.
+ *
+ * a = ["a", "b", "c"]
+ * a.cycle { |x| puts x } # print, a, b, c, a, b, c,.. forever.
+ * a.cycle(2) { |x| puts x } # print, a, b, c, a, b, c.
+ *
+ */
+
+static VALUE
+enum_cycle(int argc, VALUE *argv, VALUE obj)
+{
+ VALUE ary;
+ VALUE nv = Qnil;
+ long n, i, len;
+
+ rb_scan_args(argc, argv, "01", &nv);
+
+ RETURN_SIZED_ENUMERATOR(obj, argc, argv, enum_cycle_size);
+ if (NIL_P(nv)) {
+ n = -1;
+ }
+ else {
+ n = NUM2LONG(nv);
+ if (n <= 0) return Qnil;
+ }
+ ary = rb_ary_new();
+ RBASIC_CLEAR_CLASS(ary);
+ rb_block_call(obj, id_each, 0, 0, cycle_i, ary);
+ len = RARRAY_LEN(ary);
+ if (len == 0) return Qnil;
+ while (n < 0 || 0 < --n) {
+ for (i=0; i<len; i++) {
+ rb_yield(RARRAY_AREF(ary, i));
+ }
+ }
+ return Qnil;
+}
+
+struct chunk_arg {
+ VALUE categorize;
+ VALUE state;
+ VALUE prev_value;
+ VALUE prev_elts;
+ VALUE yielder;
+};
+
+static VALUE
+chunk_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp))
+{
+ struct chunk_arg *argp = MEMO_FOR(struct chunk_arg, _argp);
+ VALUE v, s;
+ VALUE alone = ID2SYM(rb_intern("_alone"));
+ VALUE separator = ID2SYM(rb_intern("_separator"));
+
+ ENUM_WANT_SVALUE();
+
+ if (NIL_P(argp->state))
+ v = rb_funcall(argp->categorize, id_call, 1, i);
+ else
+ v = rb_funcall(argp->categorize, id_call, 2, i, argp->state);
+
+ if (v == alone) {
+ if (!NIL_P(argp->prev_value)) {
+ rb_funcall(argp->yielder, id_lshift, 1, rb_assoc_new(argp->prev_value, argp->prev_elts));
+ argp->prev_value = argp->prev_elts = Qnil;
+ }
+ rb_funcall(argp->yielder, id_lshift, 1, rb_assoc_new(v, rb_ary_new3(1, i)));
+ }
+ else if (NIL_P(v) || v == separator) {
+ if (!NIL_P(argp->prev_value)) {
+ rb_funcall(argp->yielder, id_lshift, 1, rb_assoc_new(argp->prev_value, argp->prev_elts));
+ argp->prev_value = argp->prev_elts = Qnil;
+ }
+ }
+ else if (SYMBOL_P(v) && (s = rb_sym2str(v), RSTRING_PTR(s)[0] == '_')) {
+ rb_raise(rb_eRuntimeError, "symbols beginning with an underscore are reserved");
+ }
+ else {
+ if (NIL_P(argp->prev_value)) {
+ argp->prev_value = v;
+ argp->prev_elts = rb_ary_new3(1, i);
+ }
+ else {
+ if (rb_equal(argp->prev_value, v)) {
+ rb_ary_push(argp->prev_elts, i);
+ }
+ else {
+ rb_funcall(argp->yielder, id_lshift, 1, rb_assoc_new(argp->prev_value, argp->prev_elts));
+ argp->prev_value = v;
+ argp->prev_elts = rb_ary_new3(1, i);
+ }
+ }
+ }
+ return Qnil;
+}
+
+static VALUE
+chunk_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
+{
+ VALUE enumerable;
+ VALUE arg;
+ struct chunk_arg *memo = NEW_MEMO_FOR(struct chunk_arg, arg);
+
+ enumerable = rb_ivar_get(enumerator, rb_intern("chunk_enumerable"));
+ memo->categorize = rb_ivar_get(enumerator, rb_intern("chunk_categorize"));
+ memo->state = rb_ivar_get(enumerator, rb_intern("chunk_initial_state"));
+ memo->prev_value = Qnil;
+ memo->prev_elts = Qnil;
+ memo->yielder = yielder;
+
+ if (!NIL_P(memo->state))
+ memo->state = rb_obj_dup(memo->state);
+
+ rb_block_call(enumerable, id_each, 0, 0, chunk_ii, arg);
+ memo = MEMO_FOR(struct chunk_arg, arg);
+ if (!NIL_P(memo->prev_elts))
+ rb_funcall(memo->yielder, id_lshift, 1, rb_assoc_new(memo->prev_value, memo->prev_elts));
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.chunk { |elt| ... } -> an_enumerator
+ * enum.chunk(initial_state) { |elt, state| ... } -> an_enumerator (deprecated)
+ *
+ * Enumerates over the items, chunking them together based on the return
+ * value of the block.
+ *
+ * Consecutive elements which return the same block value are chunked together.
+ *
+ * For example, consecutive even numbers and odd numbers can be
+ * chunked as follows.
+ *
+ * [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5].chunk { |n|
+ * n.even?
+ * }.each { |even, ary|
+ * p [even, ary]
+ * }
+ * #=> [false, [3, 1]]
+ * # [true, [4]]
+ * # [false, [1, 5, 9]]
+ * # [true, [2, 6]]
+ * # [false, [5, 3, 5]]
+ *
+ * This method is especially useful for sorted series of elements.
+ * The following example counts words for each initial letter.
+ *
+ * open("/usr/share/dict/words", "r:iso-8859-1") { |f|
+ * f.chunk { |line| line.ord }.each { |ch, lines| p [ch.chr, lines.length] }
+ * }
+ * #=> ["\n", 1]
+ * # ["A", 1327]
+ * # ["B", 1372]
+ * # ["C", 1507]
+ * # ["D", 791]
+ * # ...
+ *
+ * The following key values have special meaning:
+ * - +nil+ and +:_separator+ specifies that the elements should be dropped.
+ * - +:_alone+ specifies that the element should be chunked by itself.
+ *
+ * Any other symbols that begin with an underscore will raise an error:
+ *
+ * items.chunk { |item| :_underscore }
+ * #=> RuntimeError: symbols beginning with an underscore are reserved
+ *
+ * +nil+ and +:_separator+ can be used to ignore some elements.
+ *
+ * For example, the sequence of hyphens in svn log can be eliminated as follows:
+ *
+ * sep = "-"*72 + "\n"
+ * IO.popen("svn log README") { |f|
+ * f.chunk { |line|
+ * line != sep || nil
+ * }.each { |_, lines|
+ * pp lines
+ * }
+ * }
+ * #=> ["r20018 | knu | 2008-10-29 13:20:42 +0900 (Wed, 29 Oct 2008) | 2 lines\n",
+ * # "\n",
+ * # "* README, README.ja: Update the portability section.\n",
+ * # "\n"]
+ * # ["r16725 | knu | 2008-05-31 23:34:23 +0900 (Sat, 31 May 2008) | 2 lines\n",
+ * # "\n",
+ * # "* README, README.ja: Add a note about default C flags.\n",
+ * # "\n"]
+ * # ...
+ *
+ * Paragraphs separated by empty lines can be parsed as follows:
+ *
+ * File.foreach("README").chunk { |line|
+ * /\A\s*\z/ !~ line || nil
+ * }.each { |_, lines|
+ * pp lines
+ * }
+ *
+ * +:_alone+ can be used to force items into their own chunk.
+ * For example, you can put lines that contain a URL by themselves,
+ * and chunk the rest of the lines together, like this:
+ *
+ * pattern = /http/
+ * open(filename) { |f|
+ * f.chunk { |line| line =~ pattern ? :_alone : true }.each { |key, lines|
+ * pp lines
+ * }
+ * }
+ *
+ */
+static VALUE
+enum_chunk(int argc, VALUE *argv, VALUE enumerable)
+{
+ VALUE initial_state;
+ VALUE enumerator;
+ int n;
+
+ if (!rb_block_given_p())
+ rb_raise(rb_eArgError, "no block given");
+ n = rb_scan_args(argc, argv, "01", &initial_state);
+ if (n != 0)
+ rb_warn("initial_state given for chunk. (Use local variables.)");
+
+ enumerator = rb_obj_alloc(rb_cEnumerator);
+ rb_ivar_set(enumerator, rb_intern("chunk_enumerable"), enumerable);
+ rb_ivar_set(enumerator, rb_intern("chunk_categorize"), rb_block_proc());
+ rb_ivar_set(enumerator, rb_intern("chunk_initial_state"), initial_state);
+ rb_block_call(enumerator, idInitialize, 0, 0, chunk_i, enumerator);
+ return enumerator;
+}
+
+
+struct slicebefore_arg {
+ VALUE sep_pred;
+ VALUE sep_pat;
+ VALUE state;
+ VALUE prev_elts;
+ VALUE yielder;
+};
+
+static VALUE
+slicebefore_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _argp))
+{
+ struct slicebefore_arg *argp = MEMO_FOR(struct slicebefore_arg, _argp);
+ VALUE header_p;
+
+ ENUM_WANT_SVALUE();
+
+ if (!NIL_P(argp->sep_pat))
+ header_p = rb_funcall(argp->sep_pat, id_eqq, 1, i);
+ else if (NIL_P(argp->state))
+ header_p = rb_funcall(argp->sep_pred, id_call, 1, i);
+ else
+ header_p = rb_funcall(argp->sep_pred, id_call, 2, i, argp->state);
+ if (RTEST(header_p)) {
+ if (!NIL_P(argp->prev_elts))
+ rb_funcall(argp->yielder, id_lshift, 1, argp->prev_elts);
+ argp->prev_elts = rb_ary_new3(1, i);
+ }
+ else {
+ if (NIL_P(argp->prev_elts))
+ argp->prev_elts = rb_ary_new3(1, i);
+ else
+ rb_ary_push(argp->prev_elts, i);
+ }
+
+ return Qnil;
+}
+
+static VALUE
+slicebefore_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
+{
+ VALUE enumerable;
+ VALUE arg;
+ struct slicebefore_arg *memo = NEW_MEMO_FOR(struct slicebefore_arg, arg);
+
+ enumerable = rb_ivar_get(enumerator, rb_intern("slicebefore_enumerable"));
+ memo->sep_pred = rb_attr_get(enumerator, rb_intern("slicebefore_sep_pred"));
+ memo->sep_pat = NIL_P(memo->sep_pred) ? rb_ivar_get(enumerator, rb_intern("slicebefore_sep_pat")) : Qnil;
+ memo->state = rb_attr_get(enumerator, rb_intern("slicebefore_initial_state"));
+ memo->prev_elts = Qnil;
+ memo->yielder = yielder;
+
+ if (!NIL_P(memo->state))
+ memo->state = rb_obj_dup(memo->state);
+
+ rb_block_call(enumerable, id_each, 0, 0, slicebefore_ii, arg);
+ memo = MEMO_FOR(struct slicebefore_arg, arg);
+ if (!NIL_P(memo->prev_elts))
+ rb_funcall(memo->yielder, id_lshift, 1, memo->prev_elts);
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.slice_before(pattern) -> an_enumerator
+ * enum.slice_before { |elt| bool } -> an_enumerator
+ * enum.slice_before(initial_state) { |elt, state| bool } -> an_enumerator (deprecated)
+ *
+ * Creates an enumerator for each chunked elements.
+ * The beginnings of chunks are defined by _pattern_ and the block.
+
+ * If <code>_pattern_ === _elt_</code> returns <code>true</code> or the block
+ * returns <code>true</code> for the element, the element is beginning of a
+ * chunk.
+
+ * The <code>===</code> and _block_ is called from the first element to the last
+ * element of _enum_. The result for the first element is ignored.
+
+ * The result enumerator yields the chunked elements as an array.
+ * So +each+ method can be called as follows:
+ *
+ * enum.slice_before(pattern).each { |ary| ... }
+ * enum.slice_before { |elt| bool }.each { |ary| ... }
+ *
+ * Other methods of the Enumerator class and Enumerable module,
+ * such as map, etc., are also usable.
+ *
+ * For example, iteration over ChangeLog entries can be implemented as
+ * follows:
+ *
+ * # iterate over ChangeLog entries.
+ * open("ChangeLog") { |f|
+ * f.slice_before(/\A\S/).each { |e| pp e }
+ * }
+ *
+ * # same as above. block is used instead of pattern argument.
+ * open("ChangeLog") { |f|
+ * f.slice_before { |line| /\A\S/ === line }.each { |e| pp e }
+ * }
+ *
+ *
+ * "svn proplist -R" produces multiline output for each file.
+ * They can be chunked as follows:
+ *
+ * IO.popen([{"LC_ALL"=>"C"}, "svn", "proplist", "-R"]) { |f|
+ * f.lines.slice_before(/\AProp/).each { |lines| p lines }
+ * }
+ * #=> ["Properties on '.':\n", " svn:ignore\n", " svk:merge\n"]
+ * # ["Properties on 'goruby.c':\n", " svn:eol-style\n"]
+ * # ["Properties on 'complex.c':\n", " svn:mime-type\n", " svn:eol-style\n"]
+ * # ["Properties on 'regparse.c':\n", " svn:eol-style\n"]
+ * # ...
+ *
+ * If the block needs to maintain state over multiple elements,
+ * local variables can be used.
+ * For example, three or more consecutive increasing numbers can be squashed
+ * as follows:
+ *
+ * a = [0, 2, 3, 4, 6, 7, 9]
+ * prev = a[0]
+ * p a.slice_before { |e|
+ * prev, prev2 = e, prev
+ * prev2 + 1 != e
+ * }.map { |es|
+ * es.length <= 2 ? es.join(",") : "#{es.first}-#{es.last}"
+ * }.join(",")
+ * #=> "0,2-4,6,7,9"
+ *
+ * However local variables should be used carefully
+ * if the result enumerator is enumerated twice or more.
+ * The local variables should be initialized for each enumeration.
+ * Enumerator.new can be used to do it.
+ *
+ * # Word wrapping. This assumes all characters have same width.
+ * def wordwrap(words, maxwidth)
+ * Enumerator.new {|y|
+ * # cols is initialized in Enumerator.new.
+ * cols = 0
+ * words.slice_before { |w|
+ * cols += 1 if cols != 0
+ * cols += w.length
+ * if maxwidth < cols
+ * cols = w.length
+ * true
+ * else
+ * false
+ * end
+ * }.each {|ws| y.yield ws }
+ * }
+ * end
+ * text = (1..20).to_a.join(" ")
+ * enum = wordwrap(text.split(/\s+/), 10)
+ * puts "-"*10
+ * enum.each { |ws| puts ws.join(" ") } # first enumeration.
+ * puts "-"*10
+ * enum.each { |ws| puts ws.join(" ") } # second enumeration generates same result as the first.
+ * puts "-"*10
+ * #=> ----------
+ * # 1 2 3 4 5
+ * # 6 7 8 9 10
+ * # 11 12 13
+ * # 14 15 16
+ * # 17 18 19
+ * # 20
+ * # ----------
+ * # 1 2 3 4 5
+ * # 6 7 8 9 10
+ * # 11 12 13
+ * # 14 15 16
+ * # 17 18 19
+ * # 20
+ * # ----------
+ *
+ * mbox contains series of mails which start with Unix From line.
+ * So each mail can be extracted by slice before Unix From line.
+ *
+ * # parse mbox
+ * open("mbox") { |f|
+ * f.slice_before { |line|
+ * line.start_with? "From "
+ * }.each { |mail|
+ * unix_from = mail.shift
+ * i = mail.index("\n")
+ * header = mail[0...i]
+ * body = mail[(i+1)..-1]
+ * body.pop if body.last == "\n"
+ * fields = header.slice_before { |line| !" \t".include?(line[0]) }.to_a
+ * p unix_from
+ * pp fields
+ * pp body
+ * }
+ * }
+ *
+ * # split mails in mbox (slice before Unix From line after an empty line)
+ * open("mbox") { |f|
+ * f.slice_before(emp: true) { |line, h|
+ * prevemp = h[:emp]
+ * h[:emp] = line == "\n"
+ * prevemp && line.start_with?("From ")
+ * }.each { |mail|
+ * mail.pop if mail.last == "\n"
+ * pp mail
+ * }
+ * }
+ *
+ */
+static VALUE
+enum_slice_before(int argc, VALUE *argv, VALUE enumerable)
+{
+ VALUE enumerator;
+
+ if (rb_block_given_p()) {
+ VALUE initial_state;
+ int n;
+ n = rb_scan_args(argc, argv, "01", &initial_state);
+ if (n != 0)
+ rb_warn("initial_state given for slice_before. (Use local variables.)");
+ enumerator = rb_obj_alloc(rb_cEnumerator);
+ rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pred"), rb_block_proc());
+ rb_ivar_set(enumerator, rb_intern("slicebefore_initial_state"), initial_state);
+ }
+ else {
+ VALUE sep_pat;
+ rb_scan_args(argc, argv, "1", &sep_pat);
+ enumerator = rb_obj_alloc(rb_cEnumerator);
+ rb_ivar_set(enumerator, rb_intern("slicebefore_sep_pat"), sep_pat);
+ }
+ rb_ivar_set(enumerator, rb_intern("slicebefore_enumerable"), enumerable);
+ rb_block_call(enumerator, idInitialize, 0, 0, slicebefore_i, enumerator);
+ return enumerator;
+}
+
+
+struct sliceafter_arg {
+ VALUE pat;
+ VALUE pred;
+ VALUE prev_elts;
+ VALUE yielder;
+};
+
+static VALUE
+sliceafter_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
+{
+#define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct sliceafter_arg, _memo)))
+ struct sliceafter_arg *memo;
+ int split_p;
+ UPDATE_MEMO;
+
+ ENUM_WANT_SVALUE();
+
+ if (NIL_P(memo->prev_elts)) {
+ memo->prev_elts = rb_ary_new3(1, i);
+ }
+ else {
+ rb_ary_push(memo->prev_elts, i);
+ }
+
+ if (NIL_P(memo->pred)) {
+ split_p = RTEST(rb_funcall(memo->pat, id_eqq, 1, i));
+ UPDATE_MEMO;
+ }
+ else {
+ split_p = RTEST(rb_funcall(memo->pred, id_call, 1, i));
+ UPDATE_MEMO;
+ }
+
+ if (split_p) {
+ rb_funcall(memo->yielder, id_lshift, 1, memo->prev_elts);
+ UPDATE_MEMO;
+ memo->prev_elts = Qnil;
+ }
+
+ return Qnil;
+#undef UPDATE_MEMO
+}
+
+static VALUE
+sliceafter_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
+{
+ VALUE enumerable;
+ VALUE arg;
+ struct sliceafter_arg *memo = NEW_MEMO_FOR(struct sliceafter_arg, arg);
+
+ enumerable = rb_ivar_get(enumerator, rb_intern("sliceafter_enum"));
+ memo->pat = rb_ivar_get(enumerator, rb_intern("sliceafter_pat"));
+ memo->pred = rb_attr_get(enumerator, rb_intern("sliceafter_pred"));
+ memo->prev_elts = Qnil;
+ memo->yielder = yielder;
+
+ rb_block_call(enumerable, id_each, 0, 0, sliceafter_ii, arg);
+ memo = MEMO_FOR(struct sliceafter_arg, arg);
+ if (!NIL_P(memo->prev_elts))
+ rb_funcall(memo->yielder, id_lshift, 1, memo->prev_elts);
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.slice_after(pattern) -> an_enumerator
+ * enum.slice_after { |elt| bool } -> an_enumerator
+ *
+ * Creates an enumerator for each chunked elements.
+ * The ends of chunks are defined by _pattern_ and the block.
+ *
+ * If <code>_pattern_ === _elt_</code> returns <code>true</code> or the block
+ * returns <code>true</code> for the element, the element is end of a
+ * chunk.
+ *
+ * The <code>===</code> and _block_ is called from the first element to the last
+ * element of _enum_.
+ *
+ * The result enumerator yields the chunked elements as an array.
+ * So +each+ method can be called as follows:
+ *
+ * enum.slice_after(pattern).each { |ary| ... }
+ * enum.slice_after { |elt| bool }.each { |ary| ... }
+ *
+ * Other methods of the Enumerator class and Enumerable module,
+ * such as +map+, etc., are also usable.
+ *
+ * For example, continuation lines (lines end with backslash) can be
+ * concatenated as follows:
+ *
+ * lines = ["foo\n", "bar\\\n", "baz\n", "\n", "qux\n"]
+ * e = lines.slice_after(/(?<!\\)\n\z/)
+ * p e.to_a
+ * #=> [["foo\n"], ["bar\\\n", "baz\n"], ["\n"], ["qux\n"]]
+ * p e.map {|ll| ll[0...-1].map {|l| l.sub(/\\\n\z/, "") }.join + ll.last }
+ * #=>["foo\n", "barbaz\n", "\n", "qux\n"]
+ *
+ */
+
+static VALUE
+enum_slice_after(int argc, VALUE *argv, VALUE enumerable)
+{
+ VALUE enumerator;
+ VALUE pat = Qnil, pred = Qnil;
+
+ if (rb_block_given_p()) {
+ if (0 < argc)
+ rb_raise(rb_eArgError, "both pattan and block are given");
+ pred = rb_block_proc();
+ }
+ else {
+ rb_scan_args(argc, argv, "1", &pat);
+ }
+
+ enumerator = rb_obj_alloc(rb_cEnumerator);
+ rb_ivar_set(enumerator, rb_intern("sliceafter_enum"), enumerable);
+ rb_ivar_set(enumerator, rb_intern("sliceafter_pat"), pat);
+ rb_ivar_set(enumerator, rb_intern("sliceafter_pred"), pred);
+
+ rb_block_call(enumerator, idInitialize, 0, 0, sliceafter_i, enumerator);
+ return enumerator;
+}
+
+struct slicewhen_arg {
+ VALUE pred;
+ VALUE prev_elt;
+ VALUE prev_elts;
+ VALUE yielder;
+};
+
+static VALUE
+slicewhen_ii(RB_BLOCK_CALL_FUNC_ARGLIST(i, _memo))
+{
+#define UPDATE_MEMO ((void)(memo = MEMO_FOR(struct slicewhen_arg, _memo)))
+ struct slicewhen_arg *memo;
+ int split_p;
+ UPDATE_MEMO;
+
+ ENUM_WANT_SVALUE();
+
+ if (memo->prev_elt == Qundef) {
+ /* The first element */
+ memo->prev_elt = i;
+ memo->prev_elts = rb_ary_new3(1, i);
+ }
+ else {
+ split_p = RTEST(rb_funcall(memo->pred, id_call, 2, memo->prev_elt, i));
+ UPDATE_MEMO;
+
+ if (split_p) {
+ rb_funcall(memo->yielder, id_lshift, 1, memo->prev_elts);
+ UPDATE_MEMO;
+ memo->prev_elts = rb_ary_new3(1, i);
+ }
+ else {
+ rb_ary_push(memo->prev_elts, i);
+ }
+
+ memo->prev_elt = i;
+ }
+
+ return Qnil;
+#undef UPDATE_MEMO
+}
+
+static VALUE
+slicewhen_i(RB_BLOCK_CALL_FUNC_ARGLIST(yielder, enumerator))
+{
+ VALUE enumerable;
+ VALUE arg;
+ struct slicewhen_arg *memo = NEW_MEMO_FOR(struct slicewhen_arg, arg);
+
+ enumerable = rb_ivar_get(enumerator, rb_intern("slicewhen_enum"));
+ memo->pred = rb_attr_get(enumerator, rb_intern("slicewhen_pred"));
+ memo->prev_elt = Qundef;
+ memo->prev_elts = Qnil;
+ memo->yielder = yielder;
+
+ rb_block_call(enumerable, id_each, 0, 0, slicewhen_ii, arg);
+ memo = MEMO_FOR(struct slicewhen_arg, arg);
+ if (!NIL_P(memo->prev_elts))
+ rb_funcall(memo->yielder, id_lshift, 1, memo->prev_elts);
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * enum.slice_when {|elt_before, elt_after| bool } -> an_enumerator
+ *
+ * Creates an enumerator for each chunked elements.
+ * The beginnings of chunks are defined by the block.
+ *
+ * This method split each chunk using adjacent elements,
+ * _elt_before_ and _elt_after_,
+ * in the receiver enumerator.
+ * This method split chunks between _elt_before_ and _elt_after_ where
+ * the block returns true.
+ *
+ * The block is called the length of the receiver enumerator minus one.
+ *
+ * The result enumerator yields the chunked elements as an array.
+ * So +each+ method can be called as follows:
+ *
+ * enum.slice_when { |elt_before, elt_after| bool }.each { |ary| ... }
+ *
+ * Other methods of the Enumerator class and Enumerable module,
+ * such as +to_a+, +map+, etc., are also usable.
+ *
+ * For example, one-by-one increasing subsequence can be chunked as follows:
+ *
+ * a = [1,2,4,9,10,11,12,15,16,19,20,21]
+ * b = a.slice_when {|i, j| i+1 != j }
+ * p b.to_a #=> [[1, 2], [4], [9, 10, 11, 12], [15, 16], [19, 20, 21]]
+ * c = b.map {|a| a.length < 3 ? a : "#{a.first}-#{a.last}" }
+ * p c #=> [[1, 2], [4], "9-12", [15, 16], "19-21"]
+ * d = c.join(",")
+ * p d #=> "1,2,4,9-12,15,16,19-21"
+ *
+ * Near elements (threshold: 6) in sorted array can be chunked as follwos:
+ *
+ * a = [3, 11, 14, 25, 28, 29, 29, 41, 55, 57]
+ * p a.slice_when {|i, j| 6 < j - i }.to_a
+ * #=> [[3], [11, 14], [25, 28, 29, 29], [41], [55, 57]]
+ *
+ * Increasing (non-decreasing) subsequence can be chunked as follows:
+ *
+ * a = [0, 9, 2, 2, 3, 2, 7, 5, 9, 5]
+ * p a.slice_when {|i, j| i > j }.to_a
+ * #=> [[0, 9], [2, 2, 3], [2, 7], [5, 9], [5]]
+ *
+ * Adjacent evens and odds can be chunked as follows:
+ * (Enumerable#chunk is another way to do it.)
+ *
+ * a = [7, 5, 9, 2, 0, 7, 9, 4, 2, 0]
+ * p a.slice_when {|i, j| i.even? != j.even? }.to_a
+ * #=> [[7, 5, 9], [2, 0], [7, 9], [4, 2, 0]]
+ *
+ * Paragraphs (non-empty lines with trailing empty lines) can be chunked as follows:
+ * (See Enumerable#chunk to ignore empty lines.)
+ *
+ * lines = ["foo\n", "bar\n", "\n", "baz\n", "qux\n"]
+ * p lines.slice_when {|l1, l2| /\A\s*\z/ =~ l1 && /\S/ =~ l2 }.to_a
+ * #=> [["foo\n", "bar\n", "\n"], ["baz\n", "qux\n"]]
+ *
+ */
+static VALUE
+enum_slice_when(VALUE enumerable)
+{
+ VALUE enumerator;
+ VALUE pred;
+
+ pred = rb_block_proc();
+
+ enumerator = rb_obj_alloc(rb_cEnumerator);
+ rb_ivar_set(enumerator, rb_intern("slicewhen_enum"), enumerable);
+ rb_ivar_set(enumerator, rb_intern("slicewhen_pred"), pred);
+
+ rb_block_call(enumerator, idInitialize, 0, 0, slicewhen_i, enumerator);
+ return enumerator;
+}
+
+/*
+ * The <code>Enumerable</code> mixin provides collection classes with
+ * several traversal and searching methods, and with the ability to
+ * sort. The class must provide a method <code>each</code>, which
+ * yields successive members of the collection. If
+ * <code>Enumerable#max</code>, <code>#min</code>, or
+ * <code>#sort</code> is used, the objects in the collection must also
+ * implement a meaningful <code><=></code> operator, as these methods
+ * rely on an ordering between members of the collection.
+ */
+
+void
+Init_Enumerable(void)
+{
+#undef rb_intern
+#define rb_intern(str) rb_intern_const(str)
+
+ rb_mEnumerable = rb_define_module("Enumerable");
+
+ rb_define_method(rb_mEnumerable, "to_a", enum_to_a, -1);
+ rb_define_method(rb_mEnumerable, "entries", enum_to_a, -1);
+ rb_define_method(rb_mEnumerable, "to_h", enum_to_h, -1);
+
+ rb_define_method(rb_mEnumerable, "sort", enum_sort, 0);
+ rb_define_method(rb_mEnumerable, "sort_by", enum_sort_by, 0);
+ rb_define_method(rb_mEnumerable, "grep", enum_grep, 1);
+ rb_define_method(rb_mEnumerable, "count", enum_count, -1);
+ rb_define_method(rb_mEnumerable, "find", enum_find, -1);
+ rb_define_method(rb_mEnumerable, "detect", enum_find, -1);
+ rb_define_method(rb_mEnumerable, "find_index", enum_find_index, -1);
+ rb_define_method(rb_mEnumerable, "find_all", enum_find_all, 0);
+ rb_define_method(rb_mEnumerable, "select", enum_find_all, 0);
+ rb_define_method(rb_mEnumerable, "reject", enum_reject, 0);
+ rb_define_method(rb_mEnumerable, "collect", enum_collect, 0);
+ rb_define_method(rb_mEnumerable, "map", enum_collect, 0);
+ rb_define_method(rb_mEnumerable, "flat_map", enum_flat_map, 0);
+ rb_define_method(rb_mEnumerable, "collect_concat", enum_flat_map, 0);
+ rb_define_method(rb_mEnumerable, "inject", enum_inject, -1);
+ rb_define_method(rb_mEnumerable, "reduce", enum_inject, -1);
+ rb_define_method(rb_mEnumerable, "partition", enum_partition, 0);
+ rb_define_method(rb_mEnumerable, "group_by", enum_group_by, 0);
+ rb_define_method(rb_mEnumerable, "first", enum_first, -1);
+ rb_define_method(rb_mEnumerable, "all?", enum_all, 0);
+ rb_define_method(rb_mEnumerable, "any?", enum_any, 0);
+ rb_define_method(rb_mEnumerable, "one?", enum_one, 0);
+ rb_define_method(rb_mEnumerable, "none?", enum_none, 0);
+ rb_define_method(rb_mEnumerable, "min", enum_min, -1);
+ rb_define_method(rb_mEnumerable, "max", enum_max, -1);
+ rb_define_method(rb_mEnumerable, "minmax", enum_minmax, 0);
+ rb_define_method(rb_mEnumerable, "min_by", enum_min_by, -1);
+ rb_define_method(rb_mEnumerable, "max_by", enum_max_by, -1);
+ rb_define_method(rb_mEnumerable, "minmax_by", enum_minmax_by, 0);
+ rb_define_method(rb_mEnumerable, "member?", enum_member, 1);
+ rb_define_method(rb_mEnumerable, "include?", enum_member, 1);
+ rb_define_method(rb_mEnumerable, "each_with_index", enum_each_with_index, -1);
+ rb_define_method(rb_mEnumerable, "reverse_each", enum_reverse_each, -1);
+ rb_define_method(rb_mEnumerable, "each_entry", enum_each_entry, -1);
+ rb_define_method(rb_mEnumerable, "each_slice", enum_each_slice, 1);
+ rb_define_method(rb_mEnumerable, "each_cons", enum_each_cons, 1);
+ rb_define_method(rb_mEnumerable, "each_with_object", enum_each_with_object, 1);
+ rb_define_method(rb_mEnumerable, "zip", enum_zip, -1);
+ rb_define_method(rb_mEnumerable, "take", enum_take, 1);
+ rb_define_method(rb_mEnumerable, "take_while", enum_take_while, 0);
+ rb_define_method(rb_mEnumerable, "drop", enum_drop, 1);
+ rb_define_method(rb_mEnumerable, "drop_while", enum_drop_while, 0);
+ rb_define_method(rb_mEnumerable, "cycle", enum_cycle, -1);
+ rb_define_method(rb_mEnumerable, "chunk", enum_chunk, -1);
+ rb_define_method(rb_mEnumerable, "slice_before", enum_slice_before, -1);
+ rb_define_method(rb_mEnumerable, "slice_after", enum_slice_after, -1);
+ rb_define_method(rb_mEnumerable, "slice_when", enum_slice_when, 0);
+
+ id_next = rb_intern("next");
+ id_call = rb_intern("call");
+ id_size = rb_intern("size");
+ id_div = rb_intern("div");
+}