summaryrefslogtreecommitdiff
path: root/jni/ruby/lib/matrix/lup_decomposition.rb
diff options
context:
space:
mode:
authorJari Vetoniemi <jari.vetoniemi@indooratlas.com>2020-03-16 18:49:26 +0900
committerJari Vetoniemi <jari.vetoniemi@indooratlas.com>2020-03-30 00:39:06 +0900
commitfcbf63e62c627deae76c1b8cb8c0876c536ed811 (patch)
tree64cb17de3f41a2b6fef2368028fbd00349946994 /jni/ruby/lib/matrix/lup_decomposition.rb
Fresh start
Diffstat (limited to 'jni/ruby/lib/matrix/lup_decomposition.rb')
-rw-r--r--jni/ruby/lib/matrix/lup_decomposition.rb218
1 files changed, 218 insertions, 0 deletions
diff --git a/jni/ruby/lib/matrix/lup_decomposition.rb b/jni/ruby/lib/matrix/lup_decomposition.rb
new file mode 100644
index 0000000..30f3276
--- /dev/null
+++ b/jni/ruby/lib/matrix/lup_decomposition.rb
@@ -0,0 +1,218 @@
+class Matrix
+ # Adapted from JAMA: http://math.nist.gov/javanumerics/jama/
+
+ #
+ # For an m-by-n matrix A with m >= n, the LU decomposition is an m-by-n
+ # unit lower triangular matrix L, an n-by-n upper triangular matrix U,
+ # and a m-by-m permutation matrix P so that L*U = P*A.
+ # If m < n, then L is m-by-m and U is m-by-n.
+ #
+ # The LUP decomposition with pivoting always exists, even if the matrix is
+ # singular, so the constructor will never fail. The primary use of the
+ # LU decomposition is in the solution of square systems of simultaneous
+ # linear equations. This will fail if singular? returns true.
+ #
+
+ class LUPDecomposition
+ # Returns the lower triangular factor +L+
+
+ include Matrix::ConversionHelper
+
+ def l
+ Matrix.build(@row_count, [@column_count, @row_count].min) do |i, j|
+ if (i > j)
+ @lu[i][j]
+ elsif (i == j)
+ 1
+ else
+ 0
+ end
+ end
+ end
+
+ # Returns the upper triangular factor +U+
+
+ def u
+ Matrix.build([@column_count, @row_count].min, @column_count) do |i, j|
+ if (i <= j)
+ @lu[i][j]
+ else
+ 0
+ end
+ end
+ end
+
+ # Returns the permutation matrix +P+
+
+ def p
+ rows = Array.new(@row_count){Array.new(@row_count, 0)}
+ @pivots.each_with_index{|p, i| rows[i][p] = 1}
+ Matrix.send :new, rows, @row_count
+ end
+
+ # Returns +L+, +U+, +P+ in an array
+
+ def to_ary
+ [l, u, p]
+ end
+ alias_method :to_a, :to_ary
+
+ # Returns the pivoting indices
+
+ attr_reader :pivots
+
+ # Returns +true+ if +U+, and hence +A+, is singular.
+
+ def singular? ()
+ @column_count.times do |j|
+ if (@lu[j][j] == 0)
+ return true
+ end
+ end
+ false
+ end
+
+ # Returns the determinant of +A+, calculated efficiently
+ # from the factorization.
+
+ def det
+ if (@row_count != @column_count)
+ Matrix.Raise Matrix::ErrDimensionMismatch
+ end
+ d = @pivot_sign
+ @column_count.times do |j|
+ d *= @lu[j][j]
+ end
+ d
+ end
+ alias_method :determinant, :det
+
+ # Returns +m+ so that <tt>A*m = b</tt>,
+ # or equivalently so that <tt>L*U*m = P*b</tt>
+ # +b+ can be a Matrix or a Vector
+
+ def solve b
+ if (singular?)
+ Matrix.Raise Matrix::ErrNotRegular, "Matrix is singular."
+ end
+ if b.is_a? Matrix
+ if (b.row_count != @row_count)
+ Matrix.Raise Matrix::ErrDimensionMismatch
+ end
+
+ # Copy right hand side with pivoting
+ nx = b.column_count
+ m = @pivots.map{|row| b.row(row).to_a}
+
+ # Solve L*Y = P*b
+ @column_count.times do |k|
+ (k+1).upto(@column_count-1) do |i|
+ nx.times do |j|
+ m[i][j] -= m[k][j]*@lu[i][k]
+ end
+ end
+ end
+ # Solve U*m = Y
+ (@column_count-1).downto(0) do |k|
+ nx.times do |j|
+ m[k][j] = m[k][j].quo(@lu[k][k])
+ end
+ k.times do |i|
+ nx.times do |j|
+ m[i][j] -= m[k][j]*@lu[i][k]
+ end
+ end
+ end
+ Matrix.send :new, m, nx
+ else # same algorithm, specialized for simpler case of a vector
+ b = convert_to_array(b)
+ if (b.size != @row_count)
+ Matrix.Raise Matrix::ErrDimensionMismatch
+ end
+
+ # Copy right hand side with pivoting
+ m = b.values_at(*@pivots)
+
+ # Solve L*Y = P*b
+ @column_count.times do |k|
+ (k+1).upto(@column_count-1) do |i|
+ m[i] -= m[k]*@lu[i][k]
+ end
+ end
+ # Solve U*m = Y
+ (@column_count-1).downto(0) do |k|
+ m[k] = m[k].quo(@lu[k][k])
+ k.times do |i|
+ m[i] -= m[k]*@lu[i][k]
+ end
+ end
+ Vector.elements(m, false)
+ end
+ end
+
+ def initialize a
+ raise TypeError, "Expected Matrix but got #{a.class}" unless a.is_a?(Matrix)
+ # Use a "left-looking", dot-product, Crout/Doolittle algorithm.
+ @lu = a.to_a
+ @row_count = a.row_count
+ @column_count = a.column_count
+ @pivots = Array.new(@row_count)
+ @row_count.times do |i|
+ @pivots[i] = i
+ end
+ @pivot_sign = 1
+ lu_col_j = Array.new(@row_count)
+
+ # Outer loop.
+
+ @column_count.times do |j|
+
+ # Make a copy of the j-th column to localize references.
+
+ @row_count.times do |i|
+ lu_col_j[i] = @lu[i][j]
+ end
+
+ # Apply previous transformations.
+
+ @row_count.times do |i|
+ lu_row_i = @lu[i]
+
+ # Most of the time is spent in the following dot product.
+
+ kmax = [i, j].min
+ s = 0
+ kmax.times do |k|
+ s += lu_row_i[k]*lu_col_j[k]
+ end
+
+ lu_row_i[j] = lu_col_j[i] -= s
+ end
+
+ # Find pivot and exchange if necessary.
+
+ p = j
+ (j+1).upto(@row_count-1) do |i|
+ if (lu_col_j[i].abs > lu_col_j[p].abs)
+ p = i
+ end
+ end
+ if (p != j)
+ @column_count.times do |k|
+ t = @lu[p][k]; @lu[p][k] = @lu[j][k]; @lu[j][k] = t
+ end
+ k = @pivots[p]; @pivots[p] = @pivots[j]; @pivots[j] = k
+ @pivot_sign = -@pivot_sign
+ end
+
+ # Compute multipliers.
+
+ if (j < @row_count && @lu[j][j] != 0)
+ (j+1).upto(@row_count-1) do |i|
+ @lu[i][j] = @lu[i][j].quo(@lu[j][j])
+ end
+ end
+ end
+ end
+ end
+end