summaryrefslogtreecommitdiff
path: root/jni/ruby/proc.c
diff options
context:
space:
mode:
authorJari Vetoniemi <jari.vetoniemi@indooratlas.com>2020-03-16 18:49:26 +0900
committerJari Vetoniemi <jari.vetoniemi@indooratlas.com>2020-03-30 00:39:06 +0900
commitfcbf63e62c627deae76c1b8cb8c0876c536ed811 (patch)
tree64cb17de3f41a2b6fef2368028fbd00349946994 /jni/ruby/proc.c
Fresh start
Diffstat (limited to 'jni/ruby/proc.c')
-rw-r--r--jni/ruby/proc.c2886
1 files changed, 2886 insertions, 0 deletions
diff --git a/jni/ruby/proc.c b/jni/ruby/proc.c
new file mode 100644
index 0000000..573dcb4
--- /dev/null
+++ b/jni/ruby/proc.c
@@ -0,0 +1,2886 @@
+/**********************************************************************
+
+ proc.c - Proc, Binding, Env
+
+ $Author: nagachika $
+ created at: Wed Jan 17 12:13:14 2007
+
+ Copyright (C) 2004-2007 Koichi Sasada
+
+**********************************************************************/
+
+#include "eval_intern.h"
+#include "internal.h"
+#include "gc.h"
+#include "iseq.h"
+
+const NODE *rb_vm_cref_in_context(VALUE self, VALUE cbase);
+
+struct METHOD {
+ VALUE recv;
+ VALUE rclass;
+ VALUE defined_class;
+ ID id;
+ rb_method_entry_t *me;
+ struct unlinked_method_entry_list_entry *ume;
+};
+
+VALUE rb_cUnboundMethod;
+VALUE rb_cMethod;
+VALUE rb_cBinding;
+VALUE rb_cProc;
+
+static VALUE bmcall(VALUE, VALUE, int, VALUE *, VALUE);
+static int method_arity(VALUE);
+static int method_min_max_arity(VALUE, int *max);
+#define attached id__attached__
+
+/* Proc */
+
+#define IS_METHOD_PROC_NODE(node) (nd_type(node) == NODE_IFUNC && (node)->nd_cfnc == bmcall)
+
+static void
+proc_mark(void *ptr)
+{
+ rb_proc_t *proc = ptr;
+ RUBY_MARK_ENTER("proc");
+ RUBY_MARK_UNLESS_NULL(proc->envval);
+ RUBY_MARK_UNLESS_NULL(proc->blockprocval);
+ RUBY_MARK_UNLESS_NULL(proc->block.proc);
+ RUBY_MARK_UNLESS_NULL(proc->block.self);
+ if (proc->block.iseq && RUBY_VM_IFUNC_P(proc->block.iseq)) {
+ RUBY_MARK_UNLESS_NULL((VALUE)(proc->block.iseq));
+ }
+ RUBY_MARK_LEAVE("proc");
+}
+
+static size_t
+proc_memsize(const void *ptr)
+{
+ return sizeof(rb_proc_t);
+}
+
+static const rb_data_type_t proc_data_type = {
+ "proc",
+ {
+ proc_mark,
+ RUBY_TYPED_DEFAULT_FREE,
+ proc_memsize,
+ },
+ 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
+};
+
+VALUE
+rb_proc_wrap(VALUE klass, rb_proc_t *proc)
+{
+ proc->block.proc = TypedData_Wrap_Struct(klass, &proc_data_type, proc);
+
+ return proc->block.proc;
+}
+
+VALUE
+rb_obj_is_proc(VALUE proc)
+{
+ if (rb_typeddata_is_kind_of(proc, &proc_data_type)) {
+ return Qtrue;
+ }
+ else {
+ return Qfalse;
+ }
+}
+
+/* :nodoc: */
+static VALUE
+proc_dup(VALUE self)
+{
+ VALUE procval;
+ rb_proc_t *src;
+ rb_proc_t *dst = ALLOC(rb_proc_t);
+
+ GetProcPtr(self, src);
+ *dst = *src;
+ procval = rb_proc_wrap(rb_cProc, dst);
+ RB_GC_GUARD(self); /* for: body = proc_dup(body) */
+
+ return procval;
+}
+
+/* :nodoc: */
+static VALUE
+proc_clone(VALUE self)
+{
+ VALUE procval = proc_dup(self);
+ CLONESETUP(procval, self);
+ return procval;
+}
+
+/*
+ * call-seq:
+ * prc.lambda? -> true or false
+ *
+ * Returns +true+ for a Proc object for which argument handling is rigid.
+ * Such procs are typically generated by +lambda+.
+ *
+ * A Proc object generated by +proc+ ignores extra arguments.
+ *
+ * proc {|a,b| [a,b] }.call(1,2,3) #=> [1,2]
+ *
+ * It provides +nil+ for missing arguments.
+ *
+ * proc {|a,b| [a,b] }.call(1) #=> [1,nil]
+ *
+ * It expands a single array argument.
+ *
+ * proc {|a,b| [a,b] }.call([1,2]) #=> [1,2]
+ *
+ * A Proc object generated by +lambda+ doesn't have such tricks.
+ *
+ * lambda {|a,b| [a,b] }.call(1,2,3) #=> ArgumentError
+ * lambda {|a,b| [a,b] }.call(1) #=> ArgumentError
+ * lambda {|a,b| [a,b] }.call([1,2]) #=> ArgumentError
+ *
+ * Proc#lambda? is a predicate for the tricks.
+ * It returns +true+ if no tricks apply.
+ *
+ * lambda {}.lambda? #=> true
+ * proc {}.lambda? #=> false
+ *
+ * Proc.new is the same as +proc+.
+ *
+ * Proc.new {}.lambda? #=> false
+ *
+ * +lambda+, +proc+ and Proc.new preserve the tricks of
+ * a Proc object given by <code>&</code> argument.
+ *
+ * lambda(&lambda {}).lambda? #=> true
+ * proc(&lambda {}).lambda? #=> true
+ * Proc.new(&lambda {}).lambda? #=> true
+ *
+ * lambda(&proc {}).lambda? #=> false
+ * proc(&proc {}).lambda? #=> false
+ * Proc.new(&proc {}).lambda? #=> false
+ *
+ * A Proc object generated by <code>&</code> argument has the tricks
+ *
+ * def n(&b) b.lambda? end
+ * n {} #=> false
+ *
+ * The <code>&</code> argument preserves the tricks if a Proc object
+ * is given by <code>&</code> argument.
+ *
+ * n(&lambda {}) #=> true
+ * n(&proc {}) #=> false
+ * n(&Proc.new {}) #=> false
+ *
+ * A Proc object converted from a method has no tricks.
+ *
+ * def m() end
+ * method(:m).to_proc.lambda? #=> true
+ *
+ * n(&method(:m)) #=> true
+ * n(&method(:m).to_proc) #=> true
+ *
+ * +define_method+ is treated the same as method definition.
+ * The defined method has no tricks.
+ *
+ * class C
+ * define_method(:d) {}
+ * end
+ * C.new.d(1,2) #=> ArgumentError
+ * C.new.method(:d).to_proc.lambda? #=> true
+ *
+ * +define_method+ always defines a method without the tricks,
+ * even if a non-lambda Proc object is given.
+ * This is the only exception for which the tricks are not preserved.
+ *
+ * class C
+ * define_method(:e, &proc {})
+ * end
+ * C.new.e(1,2) #=> ArgumentError
+ * C.new.method(:e).to_proc.lambda? #=> true
+ *
+ * This exception insures that methods never have tricks
+ * and makes it easy to have wrappers to define methods that behave as usual.
+ *
+ * class C
+ * def self.def2(name, &body)
+ * define_method(name, &body)
+ * end
+ *
+ * def2(:f) {}
+ * end
+ * C.new.f(1,2) #=> ArgumentError
+ *
+ * The wrapper <i>def2</i> defines a method which has no tricks.
+ *
+ */
+
+VALUE
+rb_proc_lambda_p(VALUE procval)
+{
+ rb_proc_t *proc;
+ GetProcPtr(procval, proc);
+
+ return proc->is_lambda ? Qtrue : Qfalse;
+}
+
+/* Binding */
+
+static void
+binding_free(void *ptr)
+{
+ rb_binding_t *bind;
+ RUBY_FREE_ENTER("binding");
+ if (ptr) {
+ bind = ptr;
+ ruby_xfree(bind);
+ }
+ RUBY_FREE_LEAVE("binding");
+}
+
+static void
+binding_mark(void *ptr)
+{
+ rb_binding_t *bind;
+ RUBY_MARK_ENTER("binding");
+ if (ptr) {
+ bind = ptr;
+ RUBY_MARK_UNLESS_NULL(bind->env);
+ RUBY_MARK_UNLESS_NULL(bind->path);
+ RUBY_MARK_UNLESS_NULL(bind->blockprocval);
+ }
+ RUBY_MARK_LEAVE("binding");
+}
+
+static size_t
+binding_memsize(const void *ptr)
+{
+ return ptr ? sizeof(rb_binding_t) : 0;
+}
+
+const rb_data_type_t ruby_binding_data_type = {
+ "binding",
+ {
+ binding_mark,
+ binding_free,
+ binding_memsize,
+ },
+ 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
+};
+
+VALUE
+rb_binding_alloc(VALUE klass)
+{
+ VALUE obj;
+ rb_binding_t *bind;
+ obj = TypedData_Make_Struct(klass, rb_binding_t, &ruby_binding_data_type, bind);
+ return obj;
+}
+
+/* :nodoc: */
+static VALUE
+binding_dup(VALUE self)
+{
+ VALUE bindval = rb_binding_alloc(rb_cBinding);
+ rb_binding_t *src, *dst;
+ GetBindingPtr(self, src);
+ GetBindingPtr(bindval, dst);
+ dst->env = src->env;
+ dst->path = src->path;
+ dst->blockprocval = src->blockprocval;
+ dst->first_lineno = src->first_lineno;
+ return bindval;
+}
+
+/* :nodoc: */
+static VALUE
+binding_clone(VALUE self)
+{
+ VALUE bindval = binding_dup(self);
+ CLONESETUP(bindval, self);
+ return bindval;
+}
+
+VALUE
+rb_binding_new(void)
+{
+ rb_thread_t *th = GET_THREAD();
+ return rb_vm_make_binding(th, th->cfp);
+}
+
+/*
+ * call-seq:
+ * binding -> a_binding
+ *
+ * Returns a +Binding+ object, describing the variable and
+ * method bindings at the point of call. This object can be used when
+ * calling +eval+ to execute the evaluated command in this
+ * environment. See also the description of class +Binding+.
+ *
+ * def get_binding(param)
+ * return binding
+ * end
+ * b = get_binding("hello")
+ * eval("param", b) #=> "hello"
+ */
+
+static VALUE
+rb_f_binding(VALUE self)
+{
+ return rb_binding_new();
+}
+
+/*
+ * call-seq:
+ * binding.eval(string [, filename [,lineno]]) -> obj
+ *
+ * Evaluates the Ruby expression(s) in <em>string</em>, in the
+ * <em>binding</em>'s context. If the optional <em>filename</em> and
+ * <em>lineno</em> parameters are present, they will be used when
+ * reporting syntax errors.
+ *
+ * def get_binding(param)
+ * return binding
+ * end
+ * b = get_binding("hello")
+ * b.eval("param") #=> "hello"
+ */
+
+static VALUE
+bind_eval(int argc, VALUE *argv, VALUE bindval)
+{
+ VALUE args[4];
+
+ rb_scan_args(argc, argv, "12", &args[0], &args[2], &args[3]);
+ args[1] = bindval;
+ return rb_f_eval(argc+1, args, Qnil /* self will be searched in eval */);
+}
+
+static VALUE *
+get_local_variable_ptr(VALUE envval, ID lid)
+{
+ rb_env_t *env;
+
+ do {
+ const rb_iseq_t *iseq;
+ int i;
+
+ GetEnvPtr(envval, env);
+ iseq = env->block.iseq;
+
+ for (i=0; i<iseq->local_table_size; i++) {
+ if (iseq->local_table[i] == lid) {
+ return &env->env[i];
+ }
+ }
+ } while ((envval = env->prev_envval) != 0);
+
+ return 0;
+}
+
+/*
+ * check local variable name.
+ * returns ID if it's an already interned symbol, or 0 with setting
+ * local name in String to *namep.
+ */
+static ID
+check_local_id(VALUE bindval, volatile VALUE *pname)
+{
+ ID lid = rb_check_id(pname);
+ VALUE name = *pname, sym = name;
+
+ if (lid) {
+ if (!rb_is_local_id(lid)) {
+ name = rb_id2str(lid);
+ wrong:
+ rb_name_error_str(sym, "wrong local variable name `% "PRIsVALUE"' for %"PRIsVALUE,
+ name, bindval);
+ }
+ }
+ else {
+ if (!rb_is_local_name(sym)) goto wrong;
+ return 0;
+ }
+ return lid;
+}
+
+/*
+ * call-seq:
+ * binding.local_variables -> Array
+ *
+ * Returns the +symbol+ names of the binding's local variables
+ *
+ * def foo
+ * a = 1
+ * 2.times do |n|
+ * binding.local_variables #=> [:a, :n]
+ * end
+ * end
+ *
+ * This method is short version of the following code.
+ *
+ * binding.eval("local_variables")
+ *
+ */
+static VALUE
+bind_local_variables(VALUE bindval)
+{
+ const rb_binding_t *bind;
+
+ GetBindingPtr(bindval, bind);
+ return rb_vm_env_local_variables(bind->env);
+}
+
+/*
+ * call-seq:
+ * binding.local_variable_get(symbol) -> obj
+ *
+ * Returns a +value+ of local variable +symbol+.
+ *
+ * def foo
+ * a = 1
+ * binding.local_variable_get(:a) #=> 1
+ * binding.local_variable_get(:b) #=> NameError
+ * end
+ *
+ * This method is short version of the following code.
+ *
+ * binding.eval("#{symbol}")
+ *
+ */
+static VALUE
+bind_local_variable_get(VALUE bindval, VALUE sym)
+{
+ ID lid = check_local_id(bindval, &sym);
+ const rb_binding_t *bind;
+ const VALUE *ptr;
+
+ if (!lid) goto undefined;
+
+ GetBindingPtr(bindval, bind);
+
+ if ((ptr = get_local_variable_ptr(bind->env, lid)) == NULL) {
+ undefined:
+ rb_name_error_str(sym, "local variable `%"PRIsVALUE"' not defined for %"PRIsVALUE,
+ sym, bindval);
+ }
+
+ return *ptr;
+}
+
+/*
+ * call-seq:
+ * binding.local_variable_set(symbol, obj) -> obj
+ *
+ * Set local variable named +symbol+ as +obj+.
+ *
+ * def foo
+ * a = 1
+ * b = binding
+ * b.local_variable_set(:a, 2) # set existing local variable `a'
+ * b.local_variable_set(:b, 3) # create new local variable `b'
+ * # `b' exists only in binding.
+ * b.local_variable_get(:a) #=> 2
+ * b.local_variable_get(:b) #=> 3
+ * p a #=> 2
+ * p b #=> NameError
+ * end
+ *
+ * This method is a similar behavior of the following code
+ *
+ * binding.eval("#{symbol} = #{obj}")
+ *
+ * if obj can be dumped in Ruby code.
+ */
+static VALUE
+bind_local_variable_set(VALUE bindval, VALUE sym, VALUE val)
+{
+ ID lid = check_local_id(bindval, &sym);
+ rb_binding_t *bind;
+ VALUE *ptr;
+
+ if (!lid) lid = rb_intern_str(sym);
+
+ GetBindingPtr(bindval, bind);
+ if ((ptr = get_local_variable_ptr(bind->env, lid)) == NULL) {
+ /* not found. create new env */
+ ptr = rb_binding_add_dynavars(bind, 1, &lid);
+ }
+
+ *ptr = val;
+
+ return val;
+}
+
+/*
+ * call-seq:
+ * binding.local_variable_defined?(symbol) -> obj
+ *
+ * Returns a +true+ if a local variable +symbol+ exists.
+ *
+ * def foo
+ * a = 1
+ * binding.local_variable_defined?(:a) #=> true
+ * binding.local_variable_defined?(:b) #=> false
+ * end
+ *
+ * This method is short version of the following code.
+ *
+ * binding.eval("defined?(#{symbol}) == 'local-variable'")
+ *
+ */
+static VALUE
+bind_local_variable_defined_p(VALUE bindval, VALUE sym)
+{
+ ID lid = check_local_id(bindval, &sym);
+ const rb_binding_t *bind;
+
+ if (!lid) return Qfalse;
+
+ GetBindingPtr(bindval, bind);
+ return get_local_variable_ptr(bind->env, lid) ? Qtrue : Qfalse;
+}
+
+/*
+ * call-seq:
+ * binding.receiver -> object
+ *
+ * Returns the bound receiver of the binding object.
+ */
+static VALUE
+bind_receiver(VALUE bindval)
+{
+ const rb_binding_t *bind;
+ const rb_env_t *env;
+
+ GetBindingPtr(bindval, bind);
+ GetEnvPtr(bind->env, env);
+ return env->block.self;
+}
+
+static VALUE
+proc_new(VALUE klass, int8_t is_lambda)
+{
+ VALUE procval = Qnil;
+ rb_thread_t *th = GET_THREAD();
+ rb_control_frame_t *cfp = th->cfp;
+ rb_block_t *block;
+
+ if (!(block = rb_vm_control_frame_block_ptr(cfp))) {
+ cfp = RUBY_VM_PREVIOUS_CONTROL_FRAME(cfp);
+
+ if ((block = rb_vm_control_frame_block_ptr(cfp)) != 0) {
+ if (is_lambda) {
+ rb_warn("tried to create Proc object without a block");
+ }
+ }
+ else {
+ rb_raise(rb_eArgError,
+ "tried to create Proc object without a block");
+ }
+ }
+
+ procval = block->proc;
+
+ if (procval) {
+ if (RBASIC(procval)->klass == klass) {
+ return procval;
+ }
+ else {
+ VALUE newprocval = proc_dup(procval);
+ RBASIC_SET_CLASS(newprocval, klass);
+ return newprocval;
+ }
+ }
+
+ procval = rb_vm_make_proc_lambda(th, block, klass, is_lambda);
+ return procval;
+}
+
+/*
+ * call-seq:
+ * Proc.new {|...| block } -> a_proc
+ * Proc.new -> a_proc
+ *
+ * Creates a new <code>Proc</code> object, bound to the current
+ * context. <code>Proc::new</code> may be called without a block only
+ * within a method with an attached block, in which case that block is
+ * converted to the <code>Proc</code> object.
+ *
+ * def proc_from
+ * Proc.new
+ * end
+ * proc = proc_from { "hello" }
+ * proc.call #=> "hello"
+ */
+
+static VALUE
+rb_proc_s_new(int argc, VALUE *argv, VALUE klass)
+{
+ VALUE block = proc_new(klass, FALSE);
+
+ rb_obj_call_init(block, argc, argv);
+ return block;
+}
+
+/*
+ * call-seq:
+ * proc { |...| block } -> a_proc
+ *
+ * Equivalent to <code>Proc.new</code>.
+ */
+
+VALUE
+rb_block_proc(void)
+{
+ return proc_new(rb_cProc, FALSE);
+}
+
+/*
+ * call-seq:
+ * lambda { |...| block } -> a_proc
+ *
+ * Equivalent to <code>Proc.new</code>, except the resulting Proc objects
+ * check the number of parameters passed when called.
+ */
+
+VALUE
+rb_block_lambda(void)
+{
+ return proc_new(rb_cProc, TRUE);
+}
+
+VALUE
+rb_block_clear_env_self(VALUE proc)
+{
+ rb_proc_t *po;
+ rb_env_t *env;
+ GetProcPtr(proc, po);
+ GetEnvPtr(po->envval, env);
+ env->env[0] = Qnil;
+ return proc;
+}
+
+/* Document-method: ===
+ *
+ * call-seq:
+ * proc === obj -> result_of_proc
+ *
+ * Invokes the block with +obj+ as the proc's parameter like Proc#call. It
+ * is to allow a proc object to be a target of +when+ clause in a case
+ * statement.
+ */
+
+/* CHECKME: are the argument checking semantics correct? */
+
+/*
+ * call-seq:
+ * prc.call(params,...) -> obj
+ * prc[params,...] -> obj
+ * prc.(params,...) -> obj
+ *
+ * Invokes the block, setting the block's parameters to the values in
+ * <i>params</i> using something close to method calling semantics.
+ * Generates a warning if multiple values are passed to a proc that
+ * expects just one (previously this silently converted the parameters
+ * to an array). Note that prc.() invokes prc.call() with the parameters
+ * given. It's a syntax sugar to hide "call".
+ *
+ * For procs created using <code>lambda</code> or <code>->()</code> an error
+ * is generated if the wrong number of parameters are passed to a Proc with
+ * multiple parameters. For procs created using <code>Proc.new</code> or
+ * <code>Kernel.proc</code>, extra parameters are silently discarded.
+ *
+ * Returns the value of the last expression evaluated in the block. See
+ * also <code>Proc#yield</code>.
+ *
+ * a_proc = Proc.new {|a, *b| b.collect {|i| i*a }}
+ * a_proc.call(9, 1, 2, 3) #=> [9, 18, 27]
+ * a_proc[9, 1, 2, 3] #=> [9, 18, 27]
+ * a_proc = lambda {|a,b| a}
+ * a_proc.call(1,2,3)
+ *
+ * <em>produces:</em>
+ *
+ * prog.rb:4:in `block in <main>': wrong number of arguments (3 for 2) (ArgumentError)
+ * from prog.rb:5:in `call'
+ * from prog.rb:5:in `<main>'
+ *
+ */
+
+static VALUE
+proc_call(int argc, VALUE *argv, VALUE procval)
+{
+ VALUE vret;
+ rb_proc_t *proc;
+ rb_block_t *blockptr = 0;
+ rb_iseq_t *iseq;
+ VALUE passed_procval;
+ GetProcPtr(procval, proc);
+
+ iseq = proc->block.iseq;
+ if (RUBY_VM_IFUNC_P(iseq) || iseq->param.flags.has_block) {
+ if (rb_block_given_p()) {
+ rb_proc_t *passed_proc;
+ RB_GC_GUARD(passed_procval) = rb_block_proc();
+ GetProcPtr(passed_procval, passed_proc);
+ blockptr = &passed_proc->block;
+ }
+ }
+
+ vret = rb_vm_invoke_proc(GET_THREAD(), proc, argc, argv, blockptr);
+ RB_GC_GUARD(procval);
+ return vret;
+}
+
+#if SIZEOF_LONG > SIZEOF_INT
+static inline int
+check_argc(long argc)
+{
+ if (argc > INT_MAX || argc < 0) {
+ rb_raise(rb_eArgError, "too many arguments (%lu)",
+ (unsigned long)argc);
+ }
+ return (int)argc;
+}
+#else
+#define check_argc(argc) (argc)
+#endif
+
+VALUE
+rb_proc_call(VALUE self, VALUE args)
+{
+ VALUE vret;
+ rb_proc_t *proc;
+ GetProcPtr(self, proc);
+ vret = rb_vm_invoke_proc(GET_THREAD(), proc, check_argc(RARRAY_LEN(args)), RARRAY_CONST_PTR(args), 0);
+ RB_GC_GUARD(self);
+ RB_GC_GUARD(args);
+ return vret;
+}
+
+VALUE
+rb_proc_call_with_block(VALUE self, int argc, const VALUE *argv, VALUE pass_procval)
+{
+ VALUE vret;
+ rb_proc_t *proc;
+ rb_block_t *block = 0;
+ GetProcPtr(self, proc);
+
+ if (!NIL_P(pass_procval)) {
+ rb_proc_t *pass_proc;
+ GetProcPtr(pass_procval, pass_proc);
+ block = &pass_proc->block;
+ }
+
+ vret = rb_vm_invoke_proc(GET_THREAD(), proc, argc, argv, block);
+ RB_GC_GUARD(self);
+ RB_GC_GUARD(pass_procval);
+ return vret;
+}
+
+
+/*
+ * call-seq:
+ * prc.arity -> fixnum
+ *
+ * Returns the number of mandatory arguments. If the block
+ * is declared to take no arguments, returns 0. If the block is known
+ * to take exactly n arguments, returns n.
+ * If the block has optional arguments, returns -n-1, where n is the
+ * number of mandatory arguments, with the exception for blocks that
+ * are not lambdas and have only a finite number of optional arguments;
+ * in this latter case, returns n.
+ * Keywords arguments will considered as a single additional argument,
+ * that argument being mandatory if any keyword argument is mandatory.
+ * A <code>proc</code> with no argument declarations
+ * is the same as a block declaring <code>||</code> as its arguments.
+ *
+ * proc {}.arity #=> 0
+ * proc { || }.arity #=> 0
+ * proc { |a| }.arity #=> 1
+ * proc { |a, b| }.arity #=> 2
+ * proc { |a, b, c| }.arity #=> 3
+ * proc { |*a| }.arity #=> -1
+ * proc { |a, *b| }.arity #=> -2
+ * proc { |a, *b, c| }.arity #=> -3
+ * proc { |x:, y:, z:0| }.arity #=> 1
+ * proc { |*a, x:, y:0| }.arity #=> -2
+ *
+ * proc { |x=0| }.arity #=> 0
+ * lambda { |x=0| }.arity #=> -1
+ * proc { |x=0, y| }.arity #=> 1
+ * lambda { |x=0, y| }.arity #=> -2
+ * proc { |x=0, y=0| }.arity #=> 0
+ * lambda { |x=0, y=0| }.arity #=> -1
+ * proc { |x, y=0| }.arity #=> 1
+ * lambda { |x, y=0| }.arity #=> -2
+ * proc { |(x, y), z=0| }.arity #=> 1
+ * lambda { |(x, y), z=0| }.arity #=> -2
+ * proc { |a, x:0, y:0| }.arity #=> 1
+ * lambda { |a, x:0, y:0| }.arity #=> -2
+ */
+
+static VALUE
+proc_arity(VALUE self)
+{
+ int arity = rb_proc_arity(self);
+ return INT2FIX(arity);
+}
+
+static inline int
+rb_iseq_min_max_arity(const rb_iseq_t *iseq, int *max)
+{
+ *max = iseq->param.flags.has_rest == FALSE ?
+ iseq->param.lead_num + iseq->param.opt_num + iseq->param.post_num +
+ (iseq->param.flags.has_kw == TRUE || iseq->param.flags.has_kwrest == TRUE)
+ : UNLIMITED_ARGUMENTS;
+ return iseq->param.lead_num + iseq->param.post_num + (iseq->param.flags.has_kw && iseq->param.keyword->required_num > 0);
+}
+
+static int
+rb_block_min_max_arity(rb_block_t *block, int *max)
+{
+ rb_iseq_t *iseq = block->iseq;
+ if (iseq) {
+ if (!RUBY_VM_IFUNC_P(iseq)) {
+ return rb_iseq_min_max_arity(iseq, max);
+ }
+ else {
+ NODE *node = (NODE *)iseq;
+ if (IS_METHOD_PROC_NODE(node)) {
+ /* e.g. method(:foo).to_proc.arity */
+ return method_min_max_arity(node->nd_tval, max);
+ }
+ }
+ }
+ *max = UNLIMITED_ARGUMENTS;
+ return 0;
+}
+
+/*
+ * Returns the number of required parameters and stores the maximum
+ * number of parameters in max, or UNLIMITED_ARGUMENTS if no max.
+ * For non-lambda procs, the maximum is the number of non-ignored
+ * parameters even though there is no actual limit to the number of parameters
+ */
+static int
+rb_proc_min_max_arity(VALUE self, int *max)
+{
+ rb_proc_t *proc;
+ rb_block_t *block;
+ GetProcPtr(self, proc);
+ block = &proc->block;
+ return rb_block_min_max_arity(block, max);
+}
+
+int
+rb_proc_arity(VALUE self)
+{
+ rb_proc_t *proc;
+ int max, min = rb_proc_min_max_arity(self, &max);
+ GetProcPtr(self, proc);
+ return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1;
+}
+
+int
+rb_block_arity(void)
+{
+ int min, max;
+ rb_thread_t *th = GET_THREAD();
+ rb_control_frame_t *cfp = th->cfp;
+ rb_block_t *block = rb_vm_control_frame_block_ptr(cfp);
+ VALUE proc_value;
+
+ if (!block) rb_raise(rb_eArgError, "no block given");
+ min = rb_block_min_max_arity(block, &max);
+ proc_value = block->proc;
+ if (proc_value) {
+ rb_proc_t *proc;
+ GetProcPtr(proc_value, proc);
+ if (proc)
+ return (proc->is_lambda ? min == max : max != UNLIMITED_ARGUMENTS) ? min : -min-1;
+ }
+ return max != UNLIMITED_ARGUMENTS ? min : -min-1;
+}
+
+#define get_proc_iseq rb_proc_get_iseq
+
+rb_iseq_t *
+rb_proc_get_iseq(VALUE self, int *is_proc)
+{
+ rb_proc_t *proc;
+ rb_iseq_t *iseq;
+
+ GetProcPtr(self, proc);
+ iseq = proc->block.iseq;
+ if (is_proc) *is_proc = !proc->is_lambda;
+ if (!RUBY_VM_NORMAL_ISEQ_P(iseq)) {
+ NODE *node = (NODE *)iseq;
+ iseq = 0;
+ if (IS_METHOD_PROC_NODE(node)) {
+ /* method(:foo).to_proc */
+ iseq = rb_method_get_iseq(node->nd_tval);
+ if (is_proc) *is_proc = 0;
+ }
+ }
+ return iseq;
+}
+
+static VALUE
+iseq_location(rb_iseq_t *iseq)
+{
+ VALUE loc[2];
+
+ if (!iseq) return Qnil;
+ loc[0] = iseq->location.path;
+ if (iseq->line_info_table) {
+ loc[1] = rb_iseq_first_lineno(iseq->self);
+ }
+ else {
+ loc[1] = Qnil;
+ }
+ return rb_ary_new4(2, loc);
+}
+
+/*
+ * call-seq:
+ * prc.source_location -> [String, Fixnum]
+ *
+ * Returns the Ruby source filename and line number containing this proc
+ * or +nil+ if this proc was not defined in Ruby (i.e. native)
+ */
+
+VALUE
+rb_proc_location(VALUE self)
+{
+ return iseq_location(get_proc_iseq(self, 0));
+}
+
+static VALUE
+unnamed_parameters(int arity)
+{
+ VALUE a, param = rb_ary_new2((arity < 0) ? -arity : arity);
+ int n = (arity < 0) ? ~arity : arity;
+ ID req, rest;
+ CONST_ID(req, "req");
+ a = rb_ary_new3(1, ID2SYM(req));
+ OBJ_FREEZE(a);
+ for (; n; --n) {
+ rb_ary_push(param, a);
+ }
+ if (arity < 0) {
+ CONST_ID(rest, "rest");
+ rb_ary_store(param, ~arity, rb_ary_new3(1, ID2SYM(rest)));
+ }
+ return param;
+}
+
+/*
+ * call-seq:
+ * prc.parameters -> array
+ *
+ * Returns the parameter information of this proc.
+ *
+ * prc = lambda{|x, y=42, *other|}
+ * prc.parameters #=> [[:req, :x], [:opt, :y], [:rest, :other]]
+ */
+
+static VALUE
+rb_proc_parameters(VALUE self)
+{
+ int is_proc;
+ rb_iseq_t *iseq = get_proc_iseq(self, &is_proc);
+ if (!iseq) {
+ return unnamed_parameters(rb_proc_arity(self));
+ }
+ return rb_iseq_parameters(iseq, is_proc);
+}
+
+st_index_t
+rb_hash_proc(st_index_t hash, VALUE prc)
+{
+ rb_proc_t *proc;
+ GetProcPtr(prc, proc);
+ hash = rb_hash_uint(hash, (st_index_t)proc->block.iseq);
+ hash = rb_hash_uint(hash, (st_index_t)proc->envval);
+ return rb_hash_uint(hash, (st_index_t)proc->block.ep >> 16);
+}
+
+/*
+ * call-seq:
+ * prc.hash -> integer
+ *
+ * Returns a hash value corresponding to proc body.
+ *
+ * See also Object#hash.
+ */
+
+static VALUE
+proc_hash(VALUE self)
+{
+ st_index_t hash;
+ hash = rb_hash_start(0);
+ hash = rb_hash_proc(hash, self);
+ hash = rb_hash_end(hash);
+ return LONG2FIX(hash);
+}
+
+/*
+ * call-seq:
+ * prc.to_s -> string
+ *
+ * Returns the unique identifier for this proc, along with
+ * an indication of where the proc was defined.
+ */
+
+static VALUE
+proc_to_s(VALUE self)
+{
+ VALUE str = 0;
+ rb_proc_t *proc;
+ const char *cname = rb_obj_classname(self);
+ rb_iseq_t *iseq;
+ const char *is_lambda;
+
+ GetProcPtr(self, proc);
+ iseq = proc->block.iseq;
+ is_lambda = proc->is_lambda ? " (lambda)" : "";
+
+ if (RUBY_VM_NORMAL_ISEQ_P(iseq)) {
+ int first_lineno = 0;
+
+ if (iseq->line_info_table) {
+ first_lineno = FIX2INT(rb_iseq_first_lineno(iseq->self));
+ }
+ str = rb_sprintf("#<%s:%p@%"PRIsVALUE":%d%s>", cname, (void *)self,
+ iseq->location.path, first_lineno, is_lambda);
+ }
+ else {
+ str = rb_sprintf("#<%s:%p%s>", cname, (void *)proc->block.iseq,
+ is_lambda);
+ }
+
+ if (OBJ_TAINTED(self)) {
+ OBJ_TAINT(str);
+ }
+ return str;
+}
+
+/*
+ * call-seq:
+ * prc.to_proc -> proc
+ *
+ * Part of the protocol for converting objects to <code>Proc</code>
+ * objects. Instances of class <code>Proc</code> simply return
+ * themselves.
+ */
+
+static VALUE
+proc_to_proc(VALUE self)
+{
+ return self;
+}
+
+static void
+bm_mark(void *ptr)
+{
+ struct METHOD *data = ptr;
+ rb_gc_mark(data->defined_class);
+ rb_gc_mark(data->rclass);
+ rb_gc_mark(data->recv);
+ if (data->me) rb_mark_method_entry(data->me);
+}
+
+static void
+bm_free(void *ptr)
+{
+ struct METHOD *data = ptr;
+ struct unlinked_method_entry_list_entry *ume = data->ume;
+ data->me->mark = 0;
+ ume->me = data->me;
+ ume->next = GET_VM()->unlinked_method_entry_list;
+ GET_VM()->unlinked_method_entry_list = ume;
+ xfree(ptr);
+}
+
+static size_t
+bm_memsize(const void *ptr)
+{
+ return ptr ? sizeof(struct METHOD) : 0;
+}
+
+static const rb_data_type_t method_data_type = {
+ "method",
+ {
+ bm_mark,
+ bm_free,
+ bm_memsize,
+ },
+ 0, 0, RUBY_TYPED_FREE_IMMEDIATELY
+};
+
+VALUE
+rb_obj_is_method(VALUE m)
+{
+ if (rb_typeddata_is_kind_of(m, &method_data_type)) {
+ return Qtrue;
+ }
+ else {
+ return Qfalse;
+ }
+}
+
+static int
+respond_to_missing_p(VALUE klass, VALUE obj, VALUE sym, int scope)
+{
+ /* TODO: merge with obj_respond_to() */
+ ID rmiss = idRespond_to_missing;
+
+ if (obj == Qundef) return 0;
+ if (rb_method_basic_definition_p(klass, rmiss)) return 0;
+ return RTEST(rb_funcall(obj, rmiss, 2, sym, scope ? Qfalse : Qtrue));
+}
+
+
+static VALUE
+mnew_missing(VALUE rclass, VALUE klass, VALUE obj, ID id, ID rid, VALUE mclass)
+{
+ struct METHOD *data;
+ VALUE method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
+ rb_method_entry_t *me;
+ rb_method_definition_t *def;
+
+ data->recv = obj;
+ data->rclass = rclass;
+ data->defined_class = klass;
+ data->id = rid;
+
+ me = ALLOC(rb_method_entry_t);
+ data->me = me;
+ me->flag = 0;
+ me->mark = 0;
+ me->called_id = id;
+ me->klass = klass;
+ me->def = 0;
+
+ def = ALLOC(rb_method_definition_t);
+ me->def = def;
+ def->type = VM_METHOD_TYPE_MISSING;
+ def->original_id = id;
+ def->alias_count = 0;
+
+ data->ume = ALLOC(struct unlinked_method_entry_list_entry);
+ data->me->def->alias_count++;
+
+ OBJ_INFECT(method, klass);
+
+ return method;
+}
+
+static VALUE
+mnew_internal(rb_method_entry_t *me, VALUE defined_class, VALUE klass,
+ VALUE obj, ID id, VALUE mclass, int scope, int error)
+{
+ struct METHOD *data;
+ VALUE rclass = klass;
+ VALUE method;
+ ID rid = id;
+ rb_method_definition_t *def = 0;
+ rb_method_flag_t flag = NOEX_UNDEF;
+
+ again:
+ if (UNDEFINED_METHOD_ENTRY_P(me)) {
+ if (respond_to_missing_p(klass, obj, ID2SYM(id), scope)) {
+ return mnew_missing(rclass, klass, obj, id, rid, mclass);
+ }
+ if (!error) return Qnil;
+ rb_print_undef(klass, id, 0);
+ }
+ def = me->def;
+ if (flag == NOEX_UNDEF) {
+ flag = me->flag;
+ if (scope && (flag & NOEX_MASK) != NOEX_PUBLIC) {
+ if (!error) return Qnil;
+ rb_print_inaccessible(klass, id, flag & NOEX_MASK);
+ }
+ }
+ if (def && def->type == VM_METHOD_TYPE_ZSUPER) {
+ klass = RCLASS_SUPER(defined_class);
+ id = def->original_id;
+ me = rb_method_entry_without_refinements(klass, id, &defined_class);
+ goto again;
+ }
+
+ klass = defined_class;
+
+ while (rclass != klass &&
+ (FL_TEST(rclass, FL_SINGLETON) || RB_TYPE_P(rclass, T_ICLASS))) {
+ rclass = RCLASS_SUPER(rclass);
+ }
+
+ method = TypedData_Make_Struct(mclass, struct METHOD, &method_data_type, data);
+
+ data->recv = obj;
+ data->rclass = rclass;
+ data->defined_class = defined_class;
+ data->id = rid;
+ data->me = ALLOC(rb_method_entry_t);
+ *data->me = *me;
+ data->ume = ALLOC(struct unlinked_method_entry_list_entry);
+ data->me->def->alias_count++;
+
+ OBJ_INFECT(method, klass);
+
+ return method;
+}
+
+static VALUE
+mnew_from_me(rb_method_entry_t *me, VALUE defined_class, VALUE klass,
+ VALUE obj, ID id, VALUE mclass, int scope)
+{
+ return mnew_internal(me, defined_class, klass, obj, id, mclass, scope, TRUE);
+}
+
+static VALUE
+mnew(VALUE klass, VALUE obj, ID id, VALUE mclass, int scope)
+{
+ VALUE defined_class;
+ rb_method_entry_t *me =
+ rb_method_entry_without_refinements(klass, id, &defined_class);
+ return mnew_from_me(me, defined_class, klass, obj, id, mclass, scope);
+}
+
+
+/**********************************************************************
+ *
+ * Document-class : Method
+ *
+ * Method objects are created by <code>Object#method</code>, and are
+ * associated with a particular object (not just with a class). They
+ * may be used to invoke the method within the object, and as a block
+ * associated with an iterator. They may also be unbound from one
+ * object (creating an <code>UnboundMethod</code>) and bound to
+ * another.
+ *
+ * class Thing
+ * def square(n)
+ * n*n
+ * end
+ * end
+ * thing = Thing.new
+ * meth = thing.method(:square)
+ *
+ * meth.call(9) #=> 81
+ * [ 1, 2, 3 ].collect(&meth) #=> [1, 4, 9]
+ *
+ */
+
+/*
+ * call-seq:
+ * meth.eql?(other_meth) -> true or false
+ * meth == other_meth -> true or false
+ *
+ * Two method objects are equal if they are bound to the same
+ * object and refer to the same method definition and their owners are the
+ * same class or module.
+ */
+
+static VALUE
+method_eq(VALUE method, VALUE other)
+{
+ struct METHOD *m1, *m2;
+
+ if (!rb_obj_is_method(other))
+ return Qfalse;
+ if (CLASS_OF(method) != CLASS_OF(other))
+ return Qfalse;
+
+ Check_TypedStruct(method, &method_data_type);
+ m1 = (struct METHOD *)DATA_PTR(method);
+ m2 = (struct METHOD *)DATA_PTR(other);
+
+ if (!rb_method_entry_eq(m1->me, m2->me) ||
+ m1->rclass != m2->rclass ||
+ m1->recv != m2->recv) {
+ return Qfalse;
+ }
+
+ return Qtrue;
+}
+
+/*
+ * call-seq:
+ * meth.hash -> integer
+ *
+ * Returns a hash value corresponding to the method object.
+ *
+ * See also Object#hash.
+ */
+
+static VALUE
+method_hash(VALUE method)
+{
+ struct METHOD *m;
+ st_index_t hash;
+
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, m);
+ hash = rb_hash_start((st_index_t)m->rclass);
+ hash = rb_hash_uint(hash, (st_index_t)m->recv);
+ hash = rb_hash_method_entry(hash, m->me);
+ hash = rb_hash_end(hash);
+
+ return INT2FIX(hash);
+}
+
+/*
+ * call-seq:
+ * meth.unbind -> unbound_method
+ *
+ * Dissociates <i>meth</i> from its current receiver. The resulting
+ * <code>UnboundMethod</code> can subsequently be bound to a new object
+ * of the same class (see <code>UnboundMethod</code>).
+ */
+
+static VALUE
+method_unbind(VALUE obj)
+{
+ VALUE method;
+ struct METHOD *orig, *data;
+
+ TypedData_Get_Struct(obj, struct METHOD, &method_data_type, orig);
+ method = TypedData_Make_Struct(rb_cUnboundMethod, struct METHOD,
+ &method_data_type, data);
+ data->recv = Qundef;
+ data->id = orig->id;
+ data->me = ALLOC(rb_method_entry_t);
+ *data->me = *orig->me;
+ if (orig->me->def) orig->me->def->alias_count++;
+ data->rclass = orig->rclass;
+ data->defined_class = orig->defined_class;
+ data->ume = ALLOC(struct unlinked_method_entry_list_entry);
+ OBJ_INFECT(method, obj);
+
+ return method;
+}
+
+/*
+ * call-seq:
+ * meth.receiver -> object
+ *
+ * Returns the bound receiver of the method object.
+ */
+
+static VALUE
+method_receiver(VALUE obj)
+{
+ struct METHOD *data;
+
+ TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
+ return data->recv;
+}
+
+/*
+ * call-seq:
+ * meth.name -> symbol
+ *
+ * Returns the name of the method.
+ */
+
+static VALUE
+method_name(VALUE obj)
+{
+ struct METHOD *data;
+
+ TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
+ return ID2SYM(data->id);
+}
+
+/*
+ * call-seq:
+ * meth.original_name -> symbol
+ *
+ * Returns the original name of the method.
+ */
+
+static VALUE
+method_original_name(VALUE obj)
+{
+ struct METHOD *data;
+
+ TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
+ return ID2SYM(data->me->def->original_id);
+}
+
+/*
+ * call-seq:
+ * meth.owner -> class_or_module
+ *
+ * Returns the class or module that defines the method.
+ */
+
+static VALUE
+method_owner(VALUE obj)
+{
+ struct METHOD *data;
+ VALUE defined_class;
+
+ TypedData_Get_Struct(obj, struct METHOD, &method_data_type, data);
+ defined_class = data->defined_class;
+
+ if (RB_TYPE_P(defined_class, T_ICLASS)) {
+ defined_class = RBASIC_CLASS(defined_class);
+ }
+
+ return defined_class;
+}
+
+void
+rb_method_name_error(VALUE klass, VALUE str)
+{
+ const char *s0 = " class";
+ VALUE c = klass;
+
+ if (FL_TEST(c, FL_SINGLETON)) {
+ VALUE obj = rb_ivar_get(klass, attached);
+
+ switch (TYPE(obj)) {
+ case T_MODULE:
+ case T_CLASS:
+ c = obj;
+ s0 = "";
+ }
+ }
+ else if (RB_TYPE_P(c, T_MODULE)) {
+ s0 = " module";
+ }
+ rb_name_error_str(str, "undefined method `%"PRIsVALUE"' for%s `%"PRIsVALUE"'",
+ QUOTE(str), s0, rb_class_name(c));
+}
+
+static VALUE
+obj_method(VALUE obj, VALUE vid, int scope)
+{
+ ID id = rb_check_id(&vid);
+ const VALUE klass = CLASS_OF(obj);
+ const VALUE mclass = rb_cMethod;
+
+ if (!id) {
+ if (respond_to_missing_p(klass, obj, vid, scope)) {
+ id = rb_intern_str(vid);
+ return mnew_missing(klass, klass, obj, id, id, mclass);
+ }
+ rb_method_name_error(klass, vid);
+ }
+ return mnew(klass, obj, id, mclass, scope);
+}
+
+/*
+ * call-seq:
+ * obj.method(sym) -> method
+ *
+ * Looks up the named method as a receiver in <i>obj</i>, returning a
+ * <code>Method</code> object (or raising <code>NameError</code>). The
+ * <code>Method</code> object acts as a closure in <i>obj</i>'s object
+ * instance, so instance variables and the value of <code>self</code>
+ * remain available.
+ *
+ * class Demo
+ * def initialize(n)
+ * @iv = n
+ * end
+ * def hello()
+ * "Hello, @iv = #{@iv}"
+ * end
+ * end
+ *
+ * k = Demo.new(99)
+ * m = k.method(:hello)
+ * m.call #=> "Hello, @iv = 99"
+ *
+ * l = Demo.new('Fred')
+ * m = l.method("hello")
+ * m.call #=> "Hello, @iv = Fred"
+ */
+
+VALUE
+rb_obj_method(VALUE obj, VALUE vid)
+{
+ return obj_method(obj, vid, FALSE);
+}
+
+/*
+ * call-seq:
+ * obj.public_method(sym) -> method
+ *
+ * Similar to _method_, searches public method only.
+ */
+
+VALUE
+rb_obj_public_method(VALUE obj, VALUE vid)
+{
+ return obj_method(obj, vid, TRUE);
+}
+
+/*
+ * call-seq:
+ * obj.singleton_method(sym) -> method
+ *
+ * Similar to _method_, searches singleton method only.
+ *
+ * class Demo
+ * def initialize(n)
+ * @iv = n
+ * end
+ * def hello()
+ * "Hello, @iv = #{@iv}"
+ * end
+ * end
+ *
+ * k = Demo.new(99)
+ * def k.hi
+ * "Hi, @iv = #{@iv}"
+ * end
+ * m = k.singleton_method(:hi)
+ * m.call #=> "Hi, @iv = 99"
+ * m = k.singleton_method(:hello) #=> NameError
+ */
+
+VALUE
+rb_obj_singleton_method(VALUE obj, VALUE vid)
+{
+ rb_method_entry_t *me;
+ VALUE klass;
+ ID id = rb_check_id(&vid);
+ if (!id) {
+ if (!NIL_P(klass = rb_singleton_class_get(obj)) &&
+ respond_to_missing_p(klass, obj, vid, FALSE)) {
+ id = rb_intern_str(vid);
+ return mnew_missing(klass, klass, obj, id, id, rb_cMethod);
+ }
+ rb_name_error_str(vid, "undefined singleton method `%"PRIsVALUE"' for `%"PRIsVALUE"'",
+ QUOTE(vid), obj);
+ }
+ if (NIL_P(klass = rb_singleton_class_get(obj)) ||
+ UNDEFINED_METHOD_ENTRY_P(me = rb_method_entry_at(klass, id)) ||
+ UNDEFINED_REFINED_METHOD_P(me->def)) {
+ rb_name_error(id, "undefined singleton method `%"PRIsVALUE"' for `%"PRIsVALUE"'",
+ QUOTE_ID(id), obj);
+ }
+ return mnew_from_me(me, klass, klass, obj, id, rb_cMethod, FALSE);
+}
+
+/*
+ * call-seq:
+ * mod.instance_method(symbol) -> unbound_method
+ *
+ * Returns an +UnboundMethod+ representing the given
+ * instance method in _mod_.
+ *
+ * class Interpreter
+ * def do_a() print "there, "; end
+ * def do_d() print "Hello "; end
+ * def do_e() print "!\n"; end
+ * def do_v() print "Dave"; end
+ * Dispatcher = {
+ * "a" => instance_method(:do_a),
+ * "d" => instance_method(:do_d),
+ * "e" => instance_method(:do_e),
+ * "v" => instance_method(:do_v)
+ * }
+ * def interpret(string)
+ * string.each_char {|b| Dispatcher[b].bind(self).call }
+ * end
+ * end
+ *
+ * interpreter = Interpreter.new
+ * interpreter.interpret('dave')
+ *
+ * <em>produces:</em>
+ *
+ * Hello there, Dave!
+ */
+
+static VALUE
+rb_mod_instance_method(VALUE mod, VALUE vid)
+{
+ ID id = rb_check_id(&vid);
+ if (!id) {
+ rb_method_name_error(mod, vid);
+ }
+ return mnew(mod, Qundef, id, rb_cUnboundMethod, FALSE);
+}
+
+/*
+ * call-seq:
+ * mod.public_instance_method(symbol) -> unbound_method
+ *
+ * Similar to _instance_method_, searches public method only.
+ */
+
+static VALUE
+rb_mod_public_instance_method(VALUE mod, VALUE vid)
+{
+ ID id = rb_check_id(&vid);
+ if (!id) {
+ rb_method_name_error(mod, vid);
+ }
+ return mnew(mod, Qundef, id, rb_cUnboundMethod, TRUE);
+}
+
+/*
+ * call-seq:
+ * define_method(symbol, method) -> symbol
+ * define_method(symbol) { block } -> symbol
+ *
+ * Defines an instance method in the receiver. The _method_
+ * parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
+ * If a block is specified, it is used as the method body. This block
+ * is evaluated using <code>instance_eval</code>, a point that is
+ * tricky to demonstrate because <code>define_method</code> is private.
+ * (This is why we resort to the +send+ hack in this example.)
+ *
+ * class A
+ * def fred
+ * puts "In Fred"
+ * end
+ * def create_method(name, &block)
+ * self.class.send(:define_method, name, &block)
+ * end
+ * define_method(:wilma) { puts "Charge it!" }
+ * end
+ * class B < A
+ * define_method(:barney, instance_method(:fred))
+ * end
+ * a = B.new
+ * a.barney
+ * a.wilma
+ * a.create_method(:betty) { p self }
+ * a.betty
+ *
+ * <em>produces:</em>
+ *
+ * In Fred
+ * Charge it!
+ * #<B:0x401b39e8>
+ */
+
+static VALUE
+rb_mod_define_method(int argc, VALUE *argv, VALUE mod)
+{
+ ID id;
+ VALUE body;
+ int noex = NOEX_PUBLIC;
+ const NODE *cref = rb_vm_cref_in_context(mod, mod);
+
+ if (cref) {
+ noex = (int)cref->nd_visi;
+ }
+
+ if (argc == 1) {
+ id = rb_to_id(argv[0]);
+ body = rb_block_lambda();
+ }
+ else {
+ rb_check_arity(argc, 1, 2);
+ id = rb_to_id(argv[0]);
+ body = argv[1];
+ if (!rb_obj_is_method(body) && !rb_obj_is_proc(body)) {
+ rb_raise(rb_eTypeError,
+ "wrong argument type %s (expected Proc/Method)",
+ rb_obj_classname(body));
+ }
+ }
+
+ if (rb_obj_is_method(body)) {
+ struct METHOD *method = (struct METHOD *)DATA_PTR(body);
+ VALUE rclass = method->rclass;
+ if (rclass != mod && !RB_TYPE_P(rclass, T_MODULE) &&
+ !RTEST(rb_class_inherited_p(mod, rclass))) {
+ if (FL_TEST(rclass, FL_SINGLETON)) {
+ rb_raise(rb_eTypeError,
+ "can't bind singleton method to a different class");
+ }
+ else {
+ rb_raise(rb_eTypeError,
+ "bind argument must be a subclass of % "PRIsVALUE,
+ rb_class_name(rclass));
+ }
+ }
+ rb_method_entry_set(mod, id, method->me, noex);
+ if (noex == NOEX_MODFUNC) {
+ rb_method_entry_set(rb_singleton_class(mod), id, method->me, NOEX_PUBLIC);
+ }
+ RB_GC_GUARD(body);
+ }
+ else if (rb_obj_is_proc(body)) {
+ rb_proc_t *proc;
+ body = proc_dup(body);
+ GetProcPtr(body, proc);
+ if (!RUBY_VM_IFUNC_P(proc->block.iseq)) {
+ proc->block.iseq->defined_method_id = id;
+ RB_OBJ_WRITE(proc->block.iseq->self, &proc->block.iseq->klass, mod);
+ proc->is_lambda = TRUE;
+ proc->is_from_method = TRUE;
+ proc->block.klass = mod;
+ }
+ rb_add_method(mod, id, VM_METHOD_TYPE_BMETHOD, (void *)body, noex);
+ if (noex == NOEX_MODFUNC) {
+ rb_add_method(rb_singleton_class(mod), id, VM_METHOD_TYPE_BMETHOD, (void *)body, NOEX_PUBLIC);
+ }
+ }
+ else {
+ /* type error */
+ rb_raise(rb_eTypeError, "wrong argument type (expected Proc/Method)");
+ }
+
+ return ID2SYM(id);
+}
+
+/*
+ * call-seq:
+ * define_singleton_method(symbol, method) -> new_method
+ * define_singleton_method(symbol) { block } -> proc
+ *
+ * Defines a singleton method in the receiver. The _method_
+ * parameter can be a +Proc+, a +Method+ or an +UnboundMethod+ object.
+ * If a block is specified, it is used as the method body.
+ *
+ * class A
+ * class << self
+ * def class_name
+ * to_s
+ * end
+ * end
+ * end
+ * A.define_singleton_method(:who_am_i) do
+ * "I am: #{class_name}"
+ * end
+ * A.who_am_i # ==> "I am: A"
+ *
+ * guy = "Bob"
+ * guy.define_singleton_method(:hello) { "#{self}: Hello there!" }
+ * guy.hello #=> "Bob: Hello there!"
+ */
+
+static VALUE
+rb_obj_define_method(int argc, VALUE *argv, VALUE obj)
+{
+ VALUE klass = rb_singleton_class(obj);
+
+ return rb_mod_define_method(argc, argv, klass);
+}
+
+/*
+ * define_method(symbol, method) -> new_method
+ * define_method(symbol) { block } -> proc
+ *
+ * Defines a global function by _method_ or the block.
+ */
+
+static VALUE
+top_define_method(int argc, VALUE *argv, VALUE obj)
+{
+ rb_thread_t *th = GET_THREAD();
+ VALUE klass;
+
+ klass = th->top_wrapper;
+ if (klass) {
+ rb_warning("main.define_method in the wrapped load is effective only in wrapper module");
+ }
+ else {
+ klass = rb_cObject;
+ }
+ return rb_mod_define_method(argc, argv, klass);
+}
+
+/*
+ * call-seq:
+ * method.clone -> new_method
+ *
+ * Returns a clone of this method.
+ *
+ * class A
+ * def foo
+ * return "bar"
+ * end
+ * end
+ *
+ * m = A.new.method(:foo)
+ * m.call # => "bar"
+ * n = m.clone.call # => "bar"
+ */
+
+static VALUE
+method_clone(VALUE self)
+{
+ VALUE clone;
+ struct METHOD *orig, *data;
+
+ TypedData_Get_Struct(self, struct METHOD, &method_data_type, orig);
+ clone = TypedData_Make_Struct(CLASS_OF(self), struct METHOD, &method_data_type, data);
+ CLONESETUP(clone, self);
+ *data = *orig;
+ data->me = ALLOC(rb_method_entry_t);
+ *data->me = *orig->me;
+ if (data->me->def) data->me->def->alias_count++;
+ data->ume = ALLOC(struct unlinked_method_entry_list_entry);
+
+ return clone;
+}
+
+/*
+ * call-seq:
+ * meth.call(args, ...) -> obj
+ * meth[args, ...] -> obj
+ *
+ * Invokes the <i>meth</i> with the specified arguments, returning the
+ * method's return value.
+ *
+ * m = 12.method("+")
+ * m.call(3) #=> 15
+ * m.call(20) #=> 32
+ */
+
+VALUE
+rb_method_call(int argc, const VALUE *argv, VALUE method)
+{
+ VALUE proc = rb_block_given_p() ? rb_block_proc() : Qnil;
+ return rb_method_call_with_block(argc, argv, method, proc);
+}
+
+VALUE
+rb_method_call_with_block(int argc, const VALUE *argv, VALUE method, VALUE pass_procval)
+{
+ VALUE result = Qnil; /* OK */
+ struct METHOD *data;
+ int state;
+ volatile int safe = -1;
+
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
+ if (data->recv == Qundef) {
+ rb_raise(rb_eTypeError, "can't call unbound method; bind first");
+ }
+ PUSH_TAG();
+ if (OBJ_TAINTED(method)) {
+ const int safe_level_to_run = RUBY_SAFE_LEVEL_MAX;
+ safe = rb_safe_level();
+ if (safe < safe_level_to_run) {
+ rb_set_safe_level_force(safe_level_to_run);
+ }
+ }
+ if ((state = EXEC_TAG()) == 0) {
+ rb_thread_t *th = GET_THREAD();
+ rb_block_t *block = 0;
+ VALUE defined_class;
+
+ if (!NIL_P(pass_procval)) {
+ rb_proc_t *pass_proc;
+ GetProcPtr(pass_procval, pass_proc);
+ block = &pass_proc->block;
+ }
+
+ th->passed_block = block;
+ VAR_INITIALIZED(data);
+ defined_class = data->defined_class;
+ if (BUILTIN_TYPE(defined_class) == T_MODULE) defined_class = data->rclass;
+ result = rb_vm_call(th, data->recv, data->id, argc, argv, data->me, defined_class);
+ }
+ POP_TAG();
+ if (safe >= 0)
+ rb_set_safe_level_force(safe);
+ if (state)
+ JUMP_TAG(state);
+ return result;
+}
+
+/**********************************************************************
+ *
+ * Document-class: UnboundMethod
+ *
+ * Ruby supports two forms of objectified methods. Class
+ * <code>Method</code> is used to represent methods that are associated
+ * with a particular object: these method objects are bound to that
+ * object. Bound method objects for an object can be created using
+ * <code>Object#method</code>.
+ *
+ * Ruby also supports unbound methods; methods objects that are not
+ * associated with a particular object. These can be created either by
+ * calling <code>Module#instance_method</code> or by calling
+ * <code>unbind</code> on a bound method object. The result of both of
+ * these is an <code>UnboundMethod</code> object.
+ *
+ * Unbound methods can only be called after they are bound to an
+ * object. That object must be be a kind_of? the method's original
+ * class.
+ *
+ * class Square
+ * def area
+ * @side * @side
+ * end
+ * def initialize(side)
+ * @side = side
+ * end
+ * end
+ *
+ * area_un = Square.instance_method(:area)
+ *
+ * s = Square.new(12)
+ * area = area_un.bind(s)
+ * area.call #=> 144
+ *
+ * Unbound methods are a reference to the method at the time it was
+ * objectified: subsequent changes to the underlying class will not
+ * affect the unbound method.
+ *
+ * class Test
+ * def test
+ * :original
+ * end
+ * end
+ * um = Test.instance_method(:test)
+ * class Test
+ * def test
+ * :modified
+ * end
+ * end
+ * t = Test.new
+ * t.test #=> :modified
+ * um.bind(t).call #=> :original
+ *
+ */
+
+/*
+ * call-seq:
+ * umeth.bind(obj) -> method
+ *
+ * Bind <i>umeth</i> to <i>obj</i>. If <code>Klass</code> was the class
+ * from which <i>umeth</i> was obtained,
+ * <code>obj.kind_of?(Klass)</code> must be true.
+ *
+ * class A
+ * def test
+ * puts "In test, class = #{self.class}"
+ * end
+ * end
+ * class B < A
+ * end
+ * class C < B
+ * end
+ *
+ *
+ * um = B.instance_method(:test)
+ * bm = um.bind(C.new)
+ * bm.call
+ * bm = um.bind(B.new)
+ * bm.call
+ * bm = um.bind(A.new)
+ * bm.call
+ *
+ * <em>produces:</em>
+ *
+ * In test, class = C
+ * In test, class = B
+ * prog.rb:16:in `bind': bind argument must be an instance of B (TypeError)
+ * from prog.rb:16
+ */
+
+static VALUE
+umethod_bind(VALUE method, VALUE recv)
+{
+ struct METHOD *data, *bound;
+ VALUE methclass;
+ VALUE rclass;
+
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
+
+ methclass = data->rclass;
+ if (!RB_TYPE_P(methclass, T_MODULE) &&
+ methclass != CLASS_OF(recv) && !rb_obj_is_kind_of(recv, methclass)) {
+ if (FL_TEST(methclass, FL_SINGLETON)) {
+ rb_raise(rb_eTypeError,
+ "singleton method called for a different object");
+ }
+ else {
+ rb_raise(rb_eTypeError, "bind argument must be an instance of % "PRIsVALUE,
+ rb_class_name(methclass));
+ }
+ }
+
+ method = TypedData_Make_Struct(rb_cMethod, struct METHOD, &method_data_type, bound);
+ *bound = *data;
+ bound->me = ALLOC(rb_method_entry_t);
+ *bound->me = *data->me;
+ if (bound->me->def) bound->me->def->alias_count++;
+ rclass = CLASS_OF(recv);
+ if (BUILTIN_TYPE(bound->defined_class) == T_MODULE) {
+ VALUE ic = rb_class_search_ancestor(rclass, bound->defined_class);
+ if (ic) {
+ rclass = ic;
+ }
+ else {
+ rclass = rb_include_class_new(methclass, rclass);
+ }
+ }
+ bound->recv = recv;
+ bound->rclass = rclass;
+ data->ume = ALLOC(struct unlinked_method_entry_list_entry);
+
+ return method;
+}
+
+/*
+ * Returns the number of required parameters and stores the maximum
+ * number of parameters in max, or UNLIMITED_ARGUMENTS
+ * if there is no maximum.
+ */
+static int
+rb_method_entry_min_max_arity(const rb_method_entry_t *me, int *max)
+{
+ const rb_method_definition_t *def = me->def;
+ if (!def) return *max = 0;
+ switch (def->type) {
+ case VM_METHOD_TYPE_CFUNC:
+ if (def->body.cfunc.argc < 0) {
+ *max = UNLIMITED_ARGUMENTS;
+ return 0;
+ }
+ return *max = check_argc(def->body.cfunc.argc);
+ case VM_METHOD_TYPE_ZSUPER:
+ *max = UNLIMITED_ARGUMENTS;
+ return 0;
+ case VM_METHOD_TYPE_ATTRSET:
+ return *max = 1;
+ case VM_METHOD_TYPE_IVAR:
+ return *max = 0;
+ case VM_METHOD_TYPE_BMETHOD:
+ return rb_proc_min_max_arity(def->body.proc, max);
+ case VM_METHOD_TYPE_ISEQ: {
+ rb_iseq_t *iseq = def->body.iseq;
+ return rb_iseq_min_max_arity(iseq, max);
+ }
+ case VM_METHOD_TYPE_UNDEF:
+ case VM_METHOD_TYPE_NOTIMPLEMENTED:
+ return *max = 0;
+ case VM_METHOD_TYPE_MISSING:
+ *max = UNLIMITED_ARGUMENTS;
+ return 0;
+ case VM_METHOD_TYPE_OPTIMIZED: {
+ switch (def->body.optimize_type) {
+ case OPTIMIZED_METHOD_TYPE_SEND:
+ *max = UNLIMITED_ARGUMENTS;
+ return 0;
+ default:
+ break;
+ }
+ break;
+ }
+ case VM_METHOD_TYPE_REFINED:
+ *max = UNLIMITED_ARGUMENTS;
+ return 0;
+ }
+ rb_bug("rb_method_entry_min_max_arity: invalid method entry type (%d)", def->type);
+ UNREACHABLE;
+}
+
+int
+rb_method_entry_arity(const rb_method_entry_t *me)
+{
+ int max, min = rb_method_entry_min_max_arity(me, &max);
+ return min == max ? min : -min-1;
+}
+
+/*
+ * call-seq:
+ * meth.arity -> fixnum
+ *
+ * Returns an indication of the number of arguments accepted by a
+ * method. Returns a nonnegative integer for methods that take a fixed
+ * number of arguments. For Ruby methods that take a variable number of
+ * arguments, returns -n-1, where n is the number of required
+ * arguments. For methods written in C, returns -1 if the call takes a
+ * variable number of arguments.
+ *
+ * class C
+ * def one; end
+ * def two(a); end
+ * def three(*a); end
+ * def four(a, b); end
+ * def five(a, b, *c); end
+ * def six(a, b, *c, &d); end
+ * end
+ * c = C.new
+ * c.method(:one).arity #=> 0
+ * c.method(:two).arity #=> 1
+ * c.method(:three).arity #=> -1
+ * c.method(:four).arity #=> 2
+ * c.method(:five).arity #=> -3
+ * c.method(:six).arity #=> -3
+ *
+ * "cat".method(:size).arity #=> 0
+ * "cat".method(:replace).arity #=> 1
+ * "cat".method(:squeeze).arity #=> -1
+ * "cat".method(:count).arity #=> -1
+ */
+
+static VALUE
+method_arity_m(VALUE method)
+{
+ int n = method_arity(method);
+ return INT2FIX(n);
+}
+
+static int
+method_arity(VALUE method)
+{
+ struct METHOD *data;
+
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
+ return rb_method_entry_arity(data->me);
+}
+
+static rb_method_entry_t *
+original_method_entry(VALUE mod, ID id)
+{
+ VALUE rclass;
+ rb_method_entry_t *me;
+ while ((me = rb_method_entry(mod, id, &rclass)) != 0) {
+ rb_method_definition_t *def = me->def;
+ if (!def) break;
+ if (def->type != VM_METHOD_TYPE_ZSUPER) break;
+ mod = RCLASS_SUPER(rclass);
+ id = def->original_id;
+ }
+ return me;
+}
+
+static int
+method_min_max_arity(VALUE method, int *max)
+{
+ struct METHOD *data;
+
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
+ return rb_method_entry_min_max_arity(data->me, max);
+}
+
+int
+rb_mod_method_arity(VALUE mod, ID id)
+{
+ rb_method_entry_t *me = original_method_entry(mod, id);
+ if (!me) return 0; /* should raise? */
+ return rb_method_entry_arity(me);
+}
+
+int
+rb_obj_method_arity(VALUE obj, ID id)
+{
+ return rb_mod_method_arity(CLASS_OF(obj), id);
+}
+
+static inline rb_method_definition_t *
+method_get_def(VALUE method)
+{
+ struct METHOD *data;
+
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
+ return data->me->def;
+}
+
+static rb_iseq_t *
+method_get_iseq(rb_method_definition_t *def)
+{
+ switch (def->type) {
+ case VM_METHOD_TYPE_BMETHOD:
+ return get_proc_iseq(def->body.proc, 0);
+ case VM_METHOD_TYPE_ISEQ:
+ return def->body.iseq;
+ default:
+ return 0;
+ }
+}
+
+rb_iseq_t *
+rb_method_get_iseq(VALUE method)
+{
+ return method_get_iseq(method_get_def(method));
+}
+
+static VALUE
+method_def_location(rb_method_definition_t *def)
+{
+ if (def->type == VM_METHOD_TYPE_ATTRSET || def->type == VM_METHOD_TYPE_IVAR) {
+ if (!def->body.attr.location)
+ return Qnil;
+ return rb_ary_dup(def->body.attr.location);
+ }
+ return iseq_location(method_get_iseq(def));
+}
+
+VALUE
+rb_method_entry_location(rb_method_entry_t *me)
+{
+ if (!me || !me->def) return Qnil;
+ return method_def_location(me->def);
+}
+
+VALUE
+rb_mod_method_location(VALUE mod, ID id)
+{
+ rb_method_entry_t *me = original_method_entry(mod, id);
+ return rb_method_entry_location(me);
+}
+
+VALUE
+rb_obj_method_location(VALUE obj, ID id)
+{
+ return rb_mod_method_location(CLASS_OF(obj), id);
+}
+
+/*
+ * call-seq:
+ * meth.source_location -> [String, Fixnum]
+ *
+ * Returns the Ruby source filename and line number containing this method
+ * or nil if this method was not defined in Ruby (i.e. native)
+ */
+
+VALUE
+rb_method_location(VALUE method)
+{
+ rb_method_definition_t *def = method_get_def(method);
+ return method_def_location(def);
+}
+
+/*
+ * call-seq:
+ * meth.parameters -> array
+ *
+ * Returns the parameter information of this method.
+ */
+
+static VALUE
+rb_method_parameters(VALUE method)
+{
+ rb_iseq_t *iseq = rb_method_get_iseq(method);
+ if (!iseq) {
+ return unnamed_parameters(method_arity(method));
+ }
+ return rb_iseq_parameters(iseq, 0);
+}
+
+/*
+ * call-seq:
+ * meth.to_s -> string
+ * meth.inspect -> string
+ *
+ * Returns the name of the underlying method.
+ *
+ * "cat".method(:count).inspect #=> "#<Method: String#count>"
+ */
+
+static VALUE
+method_inspect(VALUE method)
+{
+ struct METHOD *data;
+ VALUE str;
+ const char *s;
+ const char *sharp = "#";
+ VALUE mklass;
+
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
+ str = rb_str_buf_new2("#<");
+ s = rb_obj_classname(method);
+ rb_str_buf_cat2(str, s);
+ rb_str_buf_cat2(str, ": ");
+
+ mklass = data->me->klass;
+ if (FL_TEST(mklass, FL_SINGLETON)) {
+ VALUE v = rb_ivar_get(mklass, attached);
+
+ if (data->recv == Qundef) {
+ rb_str_buf_append(str, rb_inspect(mklass));
+ }
+ else if (data->recv == v) {
+ rb_str_buf_append(str, rb_inspect(v));
+ sharp = ".";
+ }
+ else {
+ rb_str_buf_append(str, rb_inspect(data->recv));
+ rb_str_buf_cat2(str, "(");
+ rb_str_buf_append(str, rb_inspect(v));
+ rb_str_buf_cat2(str, ")");
+ sharp = ".";
+ }
+ }
+ else {
+ rb_str_buf_append(str, rb_class_name(data->rclass));
+ if (data->rclass != mklass) {
+ rb_str_buf_cat2(str, "(");
+ rb_str_buf_append(str, rb_class_name(mklass));
+ rb_str_buf_cat2(str, ")");
+ }
+ }
+ rb_str_buf_cat2(str, sharp);
+ rb_str_append(str, rb_id2str(data->id));
+ if (data->id != data->me->def->original_id) {
+ rb_str_catf(str, "(%"PRIsVALUE")",
+ rb_id2str(data->me->def->original_id));
+ }
+ if (data->me->def->type == VM_METHOD_TYPE_NOTIMPLEMENTED) {
+ rb_str_buf_cat2(str, " (not-implemented)");
+ }
+ rb_str_buf_cat2(str, ">");
+
+ return str;
+}
+
+static VALUE
+mproc(VALUE method)
+{
+ return rb_funcall2(rb_mRubyVMFrozenCore, idProc, 0, 0);
+}
+
+static VALUE
+mlambda(VALUE method)
+{
+ return rb_funcall(rb_mRubyVMFrozenCore, idLambda, 0, 0);
+}
+
+static VALUE
+bmcall(VALUE args, VALUE method, int argc, VALUE *argv, VALUE passed_proc)
+{
+ volatile VALUE a;
+ VALUE ret;
+
+ if (CLASS_OF(args) != rb_cArray) {
+ args = rb_ary_new3(1, args);
+ argc = 1;
+ }
+ else {
+ argc = check_argc(RARRAY_LEN(args));
+ }
+ ret = rb_method_call_with_block(argc, RARRAY_PTR(args), method, passed_proc);
+ RB_GC_GUARD(a) = args;
+ return ret;
+}
+
+VALUE
+rb_proc_new(
+ VALUE (*func)(ANYARGS), /* VALUE yieldarg[, VALUE procarg] */
+ VALUE val)
+{
+ VALUE procval = rb_iterate(mproc, 0, func, val);
+ return procval;
+}
+
+/*
+ * call-seq:
+ * meth.to_proc -> proc
+ *
+ * Returns a <code>Proc</code> object corresponding to this method.
+ */
+
+static VALUE
+method_proc(VALUE method)
+{
+ VALUE procval;
+ struct METHOD *meth;
+ rb_proc_t *proc;
+ rb_env_t *env;
+
+ /*
+ * class Method
+ * def to_proc
+ * proc{|*args|
+ * self.call(*args)
+ * }
+ * end
+ * end
+ */
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, meth);
+ procval = rb_iterate(mlambda, 0, bmcall, method);
+ GetProcPtr(procval, proc);
+ proc->is_from_method = 1;
+ proc->block.self = meth->recv;
+ proc->block.klass = meth->defined_class;
+ GetEnvPtr(proc->envval, env);
+ env->block.self = meth->recv;
+ env->block.klass = meth->defined_class;
+ env->block.iseq = method_get_iseq(meth->me->def);
+ return procval;
+}
+
+/*
+ * Returns a Method of superclass, which would be called when super is used.
+ */
+static VALUE
+method_super_method(VALUE method)
+{
+ struct METHOD *data;
+ VALUE defined_class, super_class;
+ rb_method_entry_t *me;
+
+ TypedData_Get_Struct(method, struct METHOD, &method_data_type, data);
+ defined_class = data->defined_class;
+ if (BUILTIN_TYPE(defined_class) == T_MODULE) defined_class = data->rclass;
+ super_class = RCLASS_SUPER(defined_class);
+ if (!super_class) return Qnil;
+ me = rb_method_entry_without_refinements(super_class, data->id, &defined_class);
+ if (!me) return Qnil;
+ return mnew_internal(me, defined_class,
+ super_class, data->recv, data->id,
+ rb_obj_class(method), FALSE, FALSE);
+}
+
+/*
+ * call-seq:
+ * local_jump_error.exit_value -> obj
+ *
+ * Returns the exit value associated with this +LocalJumpError+.
+ */
+static VALUE
+localjump_xvalue(VALUE exc)
+{
+ return rb_iv_get(exc, "@exit_value");
+}
+
+/*
+ * call-seq:
+ * local_jump_error.reason -> symbol
+ *
+ * The reason this block was terminated:
+ * :break, :redo, :retry, :next, :return, or :noreason.
+ */
+
+static VALUE
+localjump_reason(VALUE exc)
+{
+ return rb_iv_get(exc, "@reason");
+}
+
+/*
+ * call-seq:
+ * prc.binding -> binding
+ *
+ * Returns the binding associated with <i>prc</i>. Note that
+ * <code>Kernel#eval</code> accepts either a <code>Proc</code> or a
+ * <code>Binding</code> object as its second parameter.
+ *
+ * def fred(param)
+ * proc {}
+ * end
+ *
+ * b = fred(99)
+ * eval("param", b.binding) #=> 99
+ */
+static VALUE
+proc_binding(VALUE self)
+{
+ rb_proc_t *proc;
+ VALUE bindval, envval;
+ rb_binding_t *bind;
+ rb_iseq_t *iseq;
+
+ GetProcPtr(self, proc);
+ envval = proc->envval;
+ iseq = proc->block.iseq;
+ if (RUBY_VM_IFUNC_P(iseq)) {
+ rb_env_t *env;
+ if (!IS_METHOD_PROC_NODE((NODE *)iseq)) {
+ rb_raise(rb_eArgError, "Can't create Binding from C level Proc");
+ }
+ iseq = rb_method_get_iseq(RNODE(iseq)->u2.value);
+ GetEnvPtr(envval, env);
+ if (iseq && env->local_size < iseq->local_size) {
+ int prev_local_size = env->local_size;
+ int local_size = iseq->local_size;
+ VALUE newenvval = TypedData_Wrap_Struct(RBASIC_CLASS(envval), RTYPEDDATA_TYPE(envval), 0);
+ rb_env_t *newenv = xmalloc(sizeof(rb_env_t) + ((local_size + 1) * sizeof(VALUE)));
+ RTYPEDDATA_DATA(newenvval) = newenv;
+ newenv->env_size = local_size + 2;
+ newenv->local_size = local_size;
+ newenv->prev_envval = env->prev_envval;
+ newenv->block = env->block;
+ MEMCPY(newenv->env, env->env, VALUE, prev_local_size + 1);
+ rb_mem_clear(newenv->env + prev_local_size + 1, local_size - prev_local_size);
+ newenv->env[local_size + 1] = newenvval;
+ envval = newenvval;
+ }
+ }
+
+ bindval = rb_binding_alloc(rb_cBinding);
+ GetBindingPtr(bindval, bind);
+ bind->env = envval;
+ bind->blockprocval = proc->blockprocval;
+ if (RUBY_VM_NORMAL_ISEQ_P(iseq)) {
+ bind->path = iseq->location.path;
+ bind->first_lineno = FIX2INT(rb_iseq_first_lineno(iseq->self));
+ }
+ else {
+ bind->path = Qnil;
+ bind->first_lineno = 0;
+ }
+ return bindval;
+}
+
+static VALUE curry(VALUE dummy, VALUE args, int argc, VALUE *argv, VALUE passed_proc);
+
+static VALUE
+make_curry_proc(VALUE proc, VALUE passed, VALUE arity)
+{
+ VALUE args = rb_ary_new3(3, proc, passed, arity);
+ rb_proc_t *procp;
+ int is_lambda;
+
+ GetProcPtr(proc, procp);
+ is_lambda = procp->is_lambda;
+ rb_ary_freeze(passed);
+ rb_ary_freeze(args);
+ proc = rb_proc_new(curry, args);
+ GetProcPtr(proc, procp);
+ procp->is_lambda = is_lambda;
+ return proc;
+}
+
+static VALUE
+curry(VALUE dummy, VALUE args, int argc, VALUE *argv, VALUE passed_proc)
+{
+ VALUE proc, passed, arity;
+ proc = RARRAY_AREF(args, 0);
+ passed = RARRAY_AREF(args, 1);
+ arity = RARRAY_AREF(args, 2);
+
+ passed = rb_ary_plus(passed, rb_ary_new4(argc, argv));
+ rb_ary_freeze(passed);
+
+ if (RARRAY_LEN(passed) < FIX2INT(arity)) {
+ if (!NIL_P(passed_proc)) {
+ rb_warn("given block not used");
+ }
+ arity = make_curry_proc(proc, passed, arity);
+ return arity;
+ }
+ else {
+ return rb_proc_call_with_block(proc, check_argc(RARRAY_LEN(passed)), RARRAY_CONST_PTR(passed), passed_proc);
+ }
+}
+
+ /*
+ * call-seq:
+ * prc.curry -> a_proc
+ * prc.curry(arity) -> a_proc
+ *
+ * Returns a curried proc. If the optional <i>arity</i> argument is given,
+ * it determines the number of arguments.
+ * A curried proc receives some arguments. If a sufficient number of
+ * arguments are supplied, it passes the supplied arguments to the original
+ * proc and returns the result. Otherwise, returns another curried proc that
+ * takes the rest of arguments.
+ *
+ * b = proc {|x, y, z| (x||0) + (y||0) + (z||0) }
+ * p b.curry[1][2][3] #=> 6
+ * p b.curry[1, 2][3, 4] #=> 6
+ * p b.curry(5)[1][2][3][4][5] #=> 6
+ * p b.curry(5)[1, 2][3, 4][5] #=> 6
+ * p b.curry(1)[1] #=> 1
+ *
+ * b = proc {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
+ * p b.curry[1][2][3] #=> 6
+ * p b.curry[1, 2][3, 4] #=> 10
+ * p b.curry(5)[1][2][3][4][5] #=> 15
+ * p b.curry(5)[1, 2][3, 4][5] #=> 15
+ * p b.curry(1)[1] #=> 1
+ *
+ * b = lambda {|x, y, z| (x||0) + (y||0) + (z||0) }
+ * p b.curry[1][2][3] #=> 6
+ * p b.curry[1, 2][3, 4] #=> wrong number of arguments (4 for 3)
+ * p b.curry(5) #=> wrong number of arguments (5 for 3)
+ * p b.curry(1) #=> wrong number of arguments (1 for 3)
+ *
+ * b = lambda {|x, y, z, *w| (x||0) + (y||0) + (z||0) + w.inject(0, &:+) }
+ * p b.curry[1][2][3] #=> 6
+ * p b.curry[1, 2][3, 4] #=> 10
+ * p b.curry(5)[1][2][3][4][5] #=> 15
+ * p b.curry(5)[1, 2][3, 4][5] #=> 15
+ * p b.curry(1) #=> wrong number of arguments (1 for 3)
+ *
+ * b = proc { :foo }
+ * p b.curry[] #=> :foo
+ */
+static VALUE
+proc_curry(int argc, const VALUE *argv, VALUE self)
+{
+ int sarity, max_arity, min_arity = rb_proc_min_max_arity(self, &max_arity);
+ VALUE arity;
+
+ rb_scan_args(argc, argv, "01", &arity);
+ if (NIL_P(arity)) {
+ arity = INT2FIX(min_arity);
+ }
+ else {
+ sarity = FIX2INT(arity);
+ if (rb_proc_lambda_p(self)) {
+ rb_check_arity(sarity, min_arity, max_arity);
+ }
+ }
+
+ return make_curry_proc(self, rb_ary_new(), arity);
+}
+
+/*
+ * call-seq:
+ * meth.curry -> proc
+ * meth.curry(arity) -> proc
+ *
+ * Returns a curried proc based on the method. When the proc is called with a number of
+ * arguments that is lower than the method's arity, then another curried proc is returned.
+ * Only when enough arguments have been supplied to satisfy the method signature, will the
+ * method actually be called.
+ *
+ * The optional <i>arity</i> argument should be supplied when currying methods with
+ * variable arguments to determine how many arguments are needed before the method is
+ * called.
+ *
+ * def foo(a,b,c)
+ * [a, b, c]
+ * end
+ *
+ * proc = self.method(:foo).curry
+ * proc2 = proc.call(1, 2) #=> #<Proc>
+ * proc2.call(3) #=> [1,2,3]
+ *
+ * def vararg(*args)
+ * args
+ * end
+ *
+ * proc = self.method(:vararg).curry(4)
+ * proc2 = proc.call(:x) #=> #<Proc>
+ * proc3 = proc2.call(:y, :z) #=> #<Proc>
+ * proc3.call(:a) #=> [:x, :y, :z, :a]
+ */
+
+static VALUE
+rb_method_curry(int argc, const VALUE *argv, VALUE self)
+{
+ VALUE proc = method_proc(self);
+ return proc_curry(argc, argv, proc);
+}
+
+/*
+ * Document-class: LocalJumpError
+ *
+ * Raised when Ruby can't yield as requested.
+ *
+ * A typical scenario is attempting to yield when no block is given:
+ *
+ * def call_block
+ * yield 42
+ * end
+ * call_block
+ *
+ * <em>raises the exception:</em>
+ *
+ * LocalJumpError: no block given (yield)
+ *
+ * A more subtle example:
+ *
+ * def get_me_a_return
+ * Proc.new { return 42 }
+ * end
+ * get_me_a_return.call
+ *
+ * <em>raises the exception:</em>
+ *
+ * LocalJumpError: unexpected return
+ */
+
+/*
+ * Document-class: SystemStackError
+ *
+ * Raised in case of a stack overflow.
+ *
+ * def me_myself_and_i
+ * me_myself_and_i
+ * end
+ * me_myself_and_i
+ *
+ * <em>raises the exception:</em>
+ *
+ * SystemStackError: stack level too deep
+ */
+
+/*
+ * <code>Proc</code> objects are blocks of code that have been bound to
+ * a set of local variables. Once bound, the code may be called in
+ * different contexts and still access those variables.
+ *
+ * def gen_times(factor)
+ * return Proc.new {|n| n*factor }
+ * end
+ *
+ * times3 = gen_times(3)
+ * times5 = gen_times(5)
+ *
+ * times3.call(12) #=> 36
+ * times5.call(5) #=> 25
+ * times3.call(times5.call(4)) #=> 60
+ *
+ */
+
+void
+Init_Proc(void)
+{
+ /* Proc */
+ rb_cProc = rb_define_class("Proc", rb_cObject);
+ rb_undef_alloc_func(rb_cProc);
+ rb_define_singleton_method(rb_cProc, "new", rb_proc_s_new, -1);
+
+#if 0 /* incomplete. */
+ rb_add_method(rb_cProc, rb_intern("call"), VM_METHOD_TYPE_OPTIMIZED,
+ (void *)OPTIMIZED_METHOD_TYPE_CALL, 0);
+ rb_add_method(rb_cProc, rb_intern("[]"), VM_METHOD_TYPE_OPTIMIZED,
+ (void *)OPTIMIZED_METHOD_TYPE_CALL, 0);
+ rb_add_method(rb_cProc, rb_intern("==="), VM_METHOD_TYPE_OPTIMIZED,
+ (void *)OPTIMIZED_METHOD_TYPE_CALL, 0);
+ rb_add_method(rb_cProc, rb_intern("yield"), VM_METHOD_TYPE_OPTIMIZED,
+ (void *)OPTIMIZED_METHOD_TYPE_CALL, 0);
+#else
+ rb_define_method(rb_cProc, "call", proc_call, -1);
+ rb_define_method(rb_cProc, "[]", proc_call, -1);
+ rb_define_method(rb_cProc, "===", proc_call, -1);
+ rb_define_method(rb_cProc, "yield", proc_call, -1);
+#endif
+ rb_define_method(rb_cProc, "to_proc", proc_to_proc, 0);
+ rb_define_method(rb_cProc, "arity", proc_arity, 0);
+ rb_define_method(rb_cProc, "clone", proc_clone, 0);
+ rb_define_method(rb_cProc, "dup", proc_dup, 0);
+ rb_define_method(rb_cProc, "hash", proc_hash, 0);
+ rb_define_method(rb_cProc, "to_s", proc_to_s, 0);
+ rb_define_alias(rb_cProc, "inspect", "to_s");
+ rb_define_method(rb_cProc, "lambda?", rb_proc_lambda_p, 0);
+ rb_define_method(rb_cProc, "binding", proc_binding, 0);
+ rb_define_method(rb_cProc, "curry", proc_curry, -1);
+ rb_define_method(rb_cProc, "source_location", rb_proc_location, 0);
+ rb_define_method(rb_cProc, "parameters", rb_proc_parameters, 0);
+
+ /* Exceptions */
+ rb_eLocalJumpError = rb_define_class("LocalJumpError", rb_eStandardError);
+ rb_define_method(rb_eLocalJumpError, "exit_value", localjump_xvalue, 0);
+ rb_define_method(rb_eLocalJumpError, "reason", localjump_reason, 0);
+
+ rb_eSysStackError = rb_define_class("SystemStackError", rb_eException);
+ rb_vm_register_special_exception(ruby_error_sysstack, rb_eSysStackError, "stack level too deep");
+
+ /* utility functions */
+ rb_define_global_function("proc", rb_block_proc, 0);
+ rb_define_global_function("lambda", rb_block_lambda, 0);
+
+ /* Method */
+ rb_cMethod = rb_define_class("Method", rb_cObject);
+ rb_undef_alloc_func(rb_cMethod);
+ rb_undef_method(CLASS_OF(rb_cMethod), "new");
+ rb_define_method(rb_cMethod, "==", method_eq, 1);
+ rb_define_method(rb_cMethod, "eql?", method_eq, 1);
+ rb_define_method(rb_cMethod, "hash", method_hash, 0);
+ rb_define_method(rb_cMethod, "clone", method_clone, 0);
+ rb_define_method(rb_cMethod, "call", rb_method_call, -1);
+ rb_define_method(rb_cMethod, "curry", rb_method_curry, -1);
+ rb_define_method(rb_cMethod, "[]", rb_method_call, -1);
+ rb_define_method(rb_cMethod, "arity", method_arity_m, 0);
+ rb_define_method(rb_cMethod, "inspect", method_inspect, 0);
+ rb_define_method(rb_cMethod, "to_s", method_inspect, 0);
+ rb_define_method(rb_cMethod, "to_proc", method_proc, 0);
+ rb_define_method(rb_cMethod, "receiver", method_receiver, 0);
+ rb_define_method(rb_cMethod, "name", method_name, 0);
+ rb_define_method(rb_cMethod, "original_name", method_original_name, 0);
+ rb_define_method(rb_cMethod, "owner", method_owner, 0);
+ rb_define_method(rb_cMethod, "unbind", method_unbind, 0);
+ rb_define_method(rb_cMethod, "source_location", rb_method_location, 0);
+ rb_define_method(rb_cMethod, "parameters", rb_method_parameters, 0);
+ rb_define_method(rb_cMethod, "super_method", method_super_method, 0);
+ rb_define_method(rb_mKernel, "method", rb_obj_method, 1);
+ rb_define_method(rb_mKernel, "public_method", rb_obj_public_method, 1);
+ rb_define_method(rb_mKernel, "singleton_method", rb_obj_singleton_method, 1);
+
+ /* UnboundMethod */
+ rb_cUnboundMethod = rb_define_class("UnboundMethod", rb_cObject);
+ rb_undef_alloc_func(rb_cUnboundMethod);
+ rb_undef_method(CLASS_OF(rb_cUnboundMethod), "new");
+ rb_define_method(rb_cUnboundMethod, "==", method_eq, 1);
+ rb_define_method(rb_cUnboundMethod, "eql?", method_eq, 1);
+ rb_define_method(rb_cUnboundMethod, "hash", method_hash, 0);
+ rb_define_method(rb_cUnboundMethod, "clone", method_clone, 0);
+ rb_define_method(rb_cUnboundMethod, "arity", method_arity_m, 0);
+ rb_define_method(rb_cUnboundMethod, "inspect", method_inspect, 0);
+ rb_define_method(rb_cUnboundMethod, "to_s", method_inspect, 0);
+ rb_define_method(rb_cUnboundMethod, "name", method_name, 0);
+ rb_define_method(rb_cUnboundMethod, "original_name", method_original_name, 0);
+ rb_define_method(rb_cUnboundMethod, "owner", method_owner, 0);
+ rb_define_method(rb_cUnboundMethod, "bind", umethod_bind, 1);
+ rb_define_method(rb_cUnboundMethod, "source_location", rb_method_location, 0);
+ rb_define_method(rb_cUnboundMethod, "parameters", rb_method_parameters, 0);
+ rb_define_method(rb_cUnboundMethod, "super_method", method_super_method, 0);
+
+ /* Module#*_method */
+ rb_define_method(rb_cModule, "instance_method", rb_mod_instance_method, 1);
+ rb_define_method(rb_cModule, "public_instance_method", rb_mod_public_instance_method, 1);
+ rb_define_private_method(rb_cModule, "define_method", rb_mod_define_method, -1);
+
+ /* Kernel */
+ rb_define_method(rb_mKernel, "define_singleton_method", rb_obj_define_method, -1);
+
+ rb_define_private_method(rb_singleton_class(rb_vm_top_self()),
+ "define_method", top_define_method, -1);
+}
+
+/*
+ * Objects of class <code>Binding</code> encapsulate the execution
+ * context at some particular place in the code and retain this context
+ * for future use. The variables, methods, value of <code>self</code>,
+ * and possibly an iterator block that can be accessed in this context
+ * are all retained. Binding objects can be created using
+ * <code>Kernel#binding</code>, and are made available to the callback
+ * of <code>Kernel#set_trace_func</code>.
+ *
+ * These binding objects can be passed as the second argument of the
+ * <code>Kernel#eval</code> method, establishing an environment for the
+ * evaluation.
+ *
+ * class Demo
+ * def initialize(n)
+ * @secret = n
+ * end
+ * def get_binding
+ * return binding()
+ * end
+ * end
+ *
+ * k1 = Demo.new(99)
+ * b1 = k1.get_binding
+ * k2 = Demo.new(-3)
+ * b2 = k2.get_binding
+ *
+ * eval("@secret", b1) #=> 99
+ * eval("@secret", b2) #=> -3
+ * eval("@secret") #=> nil
+ *
+ * Binding objects have no class-specific methods.
+ *
+ */
+
+void
+Init_Binding(void)
+{
+ rb_cBinding = rb_define_class("Binding", rb_cObject);
+ rb_undef_alloc_func(rb_cBinding);
+ rb_undef_method(CLASS_OF(rb_cBinding), "new");
+ rb_define_method(rb_cBinding, "clone", binding_clone, 0);
+ rb_define_method(rb_cBinding, "dup", binding_dup, 0);
+ rb_define_method(rb_cBinding, "eval", bind_eval, -1);
+ rb_define_method(rb_cBinding, "local_variables", bind_local_variables, 0);
+ rb_define_method(rb_cBinding, "local_variable_get", bind_local_variable_get, 1);
+ rb_define_method(rb_cBinding, "local_variable_set", bind_local_variable_set, 2);
+ rb_define_method(rb_cBinding, "local_variable_defined?", bind_local_variable_defined_p, 1);
+ rb_define_method(rb_cBinding, "receiver", bind_receiver, 0);
+ rb_define_global_function("binding", rb_f_binding, 0);
+}