summaryrefslogtreecommitdiff
path: root/jni/ruby/rational.c
diff options
context:
space:
mode:
authorJari Vetoniemi <jari.vetoniemi@indooratlas.com>2020-03-16 18:49:26 +0900
committerJari Vetoniemi <jari.vetoniemi@indooratlas.com>2020-03-30 00:39:06 +0900
commitfcbf63e62c627deae76c1b8cb8c0876c536ed811 (patch)
tree64cb17de3f41a2b6fef2368028fbd00349946994 /jni/ruby/rational.c
Fresh start
Diffstat (limited to 'jni/ruby/rational.c')
-rw-r--r--jni/ruby/rational.c2625
1 files changed, 2625 insertions, 0 deletions
diff --git a/jni/ruby/rational.c b/jni/ruby/rational.c
new file mode 100644
index 0000000..134db64
--- /dev/null
+++ b/jni/ruby/rational.c
@@ -0,0 +1,2625 @@
+/*
+ rational.c: Coded by Tadayoshi Funaba 2008-2012
+
+ This implementation is based on Keiju Ishitsuka's Rational library
+ which is written in ruby.
+*/
+
+#include "internal.h"
+#include <math.h>
+#include <float.h>
+
+#ifdef HAVE_IEEEFP_H
+#include <ieeefp.h>
+#endif
+
+#define NDEBUG
+#include <assert.h>
+
+#if defined(HAVE_LIBGMP) && defined(HAVE_GMP_H)
+#define USE_GMP
+#include <gmp.h>
+#endif
+
+#define ZERO INT2FIX(0)
+#define ONE INT2FIX(1)
+#define TWO INT2FIX(2)
+
+#define GMP_GCD_DIGITS 1
+
+VALUE rb_cRational;
+
+static ID id_abs, id_cmp, id_convert, id_eqeq_p, id_expt, id_fdiv,
+ id_idiv, id_integer_p, id_negate, id_to_f,
+ id_to_i, id_truncate, id_i_num, id_i_den;
+
+#define f_boolcast(x) ((x) ? Qtrue : Qfalse)
+#define f_inspect rb_inspect
+#define f_to_s rb_obj_as_string
+
+#define binop(n,op) \
+inline static VALUE \
+f_##n(VALUE x, VALUE y)\
+{\
+ return rb_funcall(x, (op), 1, y);\
+}
+
+#define fun1(n) \
+inline static VALUE \
+f_##n(VALUE x)\
+{\
+ return rb_funcall(x, id_##n, 0);\
+}
+
+#define fun2(n) \
+inline static VALUE \
+f_##n(VALUE x, VALUE y)\
+{\
+ return rb_funcall(x, id_##n, 1, y);\
+}
+
+inline static VALUE
+f_add(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y) && FIX2LONG(y) == 0)
+ return x;
+ else if (FIXNUM_P(x) && FIX2LONG(x) == 0)
+ return y;
+ return rb_funcall(x, '+', 1, y);
+}
+
+inline static VALUE
+f_cmp(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(x) && FIXNUM_P(y)) {
+ long c = FIX2LONG(x) - FIX2LONG(y);
+ if (c > 0)
+ c = 1;
+ else if (c < 0)
+ c = -1;
+ return INT2FIX(c);
+ }
+ return rb_funcall(x, id_cmp, 1, y);
+}
+
+inline static VALUE
+f_div(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y) && FIX2LONG(y) == 1)
+ return x;
+ return rb_funcall(x, '/', 1, y);
+}
+
+inline static VALUE
+f_lt_p(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(x) && FIXNUM_P(y))
+ return f_boolcast(FIX2LONG(x) < FIX2LONG(y));
+ return rb_funcall(x, '<', 1, y);
+}
+
+binop(mod, '%')
+
+inline static VALUE
+f_mul(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y)) {
+ long iy = FIX2LONG(y);
+ if (iy == 0) {
+ if (FIXNUM_P(x) || RB_TYPE_P(x, T_BIGNUM))
+ return ZERO;
+ }
+ else if (iy == 1)
+ return x;
+ }
+ else if (FIXNUM_P(x)) {
+ long ix = FIX2LONG(x);
+ if (ix == 0) {
+ if (FIXNUM_P(y) || RB_TYPE_P(y, T_BIGNUM))
+ return ZERO;
+ }
+ else if (ix == 1)
+ return y;
+ }
+ return rb_funcall(x, '*', 1, y);
+}
+
+inline static VALUE
+f_sub(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y) && FIX2LONG(y) == 0)
+ return x;
+ return rb_funcall(x, '-', 1, y);
+}
+
+fun1(abs)
+fun1(integer_p)
+fun1(negate)
+
+inline static VALUE
+f_to_i(VALUE x)
+{
+ if (RB_TYPE_P(x, T_STRING))
+ return rb_str_to_inum(x, 10, 0);
+ return rb_funcall(x, id_to_i, 0);
+}
+inline static VALUE
+f_to_f(VALUE x)
+{
+ if (RB_TYPE_P(x, T_STRING))
+ return DBL2NUM(rb_str_to_dbl(x, 0));
+ return rb_funcall(x, id_to_f, 0);
+}
+
+inline static VALUE
+f_eqeq_p(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(x) && FIXNUM_P(y))
+ return f_boolcast(FIX2LONG(x) == FIX2LONG(y));
+ return rb_funcall(x, id_eqeq_p, 1, y);
+}
+
+fun2(expt)
+fun2(fdiv)
+fun2(idiv)
+
+#define f_expt10(x) f_expt(INT2FIX(10), x)
+
+inline static VALUE
+f_negative_p(VALUE x)
+{
+ if (FIXNUM_P(x))
+ return f_boolcast(FIX2LONG(x) < 0);
+ return rb_funcall(x, '<', 1, ZERO);
+}
+
+#define f_positive_p(x) (!f_negative_p(x))
+
+inline static VALUE
+f_zero_p(VALUE x)
+{
+ if (RB_TYPE_P(x, T_FIXNUM)) {
+ return f_boolcast(FIX2LONG(x) == 0);
+ }
+ else if (RB_TYPE_P(x, T_BIGNUM)) {
+ return Qfalse;
+ }
+ else if (RB_TYPE_P(x, T_RATIONAL)) {
+ VALUE num = RRATIONAL(x)->num;
+
+ return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == 0);
+ }
+ return rb_funcall(x, id_eqeq_p, 1, ZERO);
+}
+
+#define f_nonzero_p(x) (!f_zero_p(x))
+
+inline static VALUE
+f_one_p(VALUE x)
+{
+ if (RB_TYPE_P(x, T_FIXNUM)) {
+ return f_boolcast(FIX2LONG(x) == 1);
+ }
+ else if (RB_TYPE_P(x, T_BIGNUM)) {
+ return Qfalse;
+ }
+ else if (RB_TYPE_P(x, T_RATIONAL)) {
+ VALUE num = RRATIONAL(x)->num;
+ VALUE den = RRATIONAL(x)->den;
+
+ return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == 1 &&
+ FIXNUM_P(den) && FIX2LONG(den) == 1);
+ }
+ return rb_funcall(x, id_eqeq_p, 1, ONE);
+}
+
+inline static VALUE
+f_minus_one_p(VALUE x)
+{
+ if (RB_TYPE_P(x, T_FIXNUM)) {
+ return f_boolcast(FIX2LONG(x) == -1);
+ }
+ else if (RB_TYPE_P(x, T_BIGNUM)) {
+ return Qfalse;
+ }
+ else if (RB_TYPE_P(x, T_RATIONAL)) {
+ VALUE num = RRATIONAL(x)->num;
+ VALUE den = RRATIONAL(x)->den;
+
+ return f_boolcast(FIXNUM_P(num) && FIX2LONG(num) == -1 &&
+ FIXNUM_P(den) && FIX2LONG(den) == 1);
+ }
+ return rb_funcall(x, id_eqeq_p, 1, INT2FIX(-1));
+}
+
+inline static VALUE
+f_kind_of_p(VALUE x, VALUE c)
+{
+ return rb_obj_is_kind_of(x, c);
+}
+
+inline static VALUE
+k_numeric_p(VALUE x)
+{
+ return f_kind_of_p(x, rb_cNumeric);
+}
+
+inline static VALUE
+k_integer_p(VALUE x)
+{
+ return f_kind_of_p(x, rb_cInteger);
+}
+
+inline static VALUE
+k_float_p(VALUE x)
+{
+ return f_kind_of_p(x, rb_cFloat);
+}
+
+inline static VALUE
+k_rational_p(VALUE x)
+{
+ return f_kind_of_p(x, rb_cRational);
+}
+
+#define k_exact_p(x) (!k_float_p(x))
+#define k_inexact_p(x) k_float_p(x)
+
+#define k_exact_zero_p(x) (k_exact_p(x) && f_zero_p(x))
+#define k_exact_one_p(x) (k_exact_p(x) && f_one_p(x))
+
+#ifdef USE_GMP
+VALUE
+rb_gcd_gmp(VALUE x, VALUE y)
+{
+ const size_t nails = (sizeof(BDIGIT)-SIZEOF_BDIGIT)*CHAR_BIT;
+ mpz_t mx, my, mz;
+ size_t count;
+ VALUE z;
+ long zn;
+
+ mpz_init(mx);
+ mpz_init(my);
+ mpz_init(mz);
+ mpz_import(mx, BIGNUM_LEN(x), -1, sizeof(BDIGIT), 0, nails, BIGNUM_DIGITS(x));
+ mpz_import(my, BIGNUM_LEN(y), -1, sizeof(BDIGIT), 0, nails, BIGNUM_DIGITS(y));
+
+ mpz_gcd(mz, mx, my);
+
+ zn = (mpz_sizeinbase(mz, 16) + SIZEOF_BDIGIT*2 - 1) / (SIZEOF_BDIGIT*2);
+ z = rb_big_new(zn, 1);
+ mpz_export(BIGNUM_DIGITS(z), &count, -1, sizeof(BDIGIT), 0, nails, mz);
+
+ return rb_big_norm(z);
+}
+#endif
+
+#ifndef NDEBUG
+#define f_gcd f_gcd_orig
+#endif
+
+inline static long
+i_gcd(long x, long y)
+{
+ if (x < 0)
+ x = -x;
+ if (y < 0)
+ y = -y;
+
+ if (x == 0)
+ return y;
+ if (y == 0)
+ return x;
+
+ while (x > 0) {
+ long t = x;
+ x = y % x;
+ y = t;
+ }
+ return y;
+}
+
+inline static VALUE
+f_gcd_normal(VALUE x, VALUE y)
+{
+ VALUE z;
+
+ if (FIXNUM_P(x) && FIXNUM_P(y))
+ return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y)));
+
+ if (f_negative_p(x))
+ x = f_negate(x);
+ if (f_negative_p(y))
+ y = f_negate(y);
+
+ if (f_zero_p(x))
+ return y;
+ if (f_zero_p(y))
+ return x;
+
+ for (;;) {
+ if (FIXNUM_P(x)) {
+ if (FIX2LONG(x) == 0)
+ return y;
+ if (FIXNUM_P(y))
+ return LONG2NUM(i_gcd(FIX2LONG(x), FIX2LONG(y)));
+ }
+ z = x;
+ x = f_mod(y, x);
+ y = z;
+ }
+ /* NOTREACHED */
+}
+
+VALUE
+rb_gcd_normal(VALUE x, VALUE y)
+{
+ return f_gcd_normal(x, y);
+}
+
+inline static VALUE
+f_gcd(VALUE x, VALUE y)
+{
+#ifdef USE_GMP
+ if (RB_TYPE_P(x, T_BIGNUM) && RB_TYPE_P(y, T_BIGNUM)) {
+ size_t xn = BIGNUM_LEN(x);
+ size_t yn = BIGNUM_LEN(y);
+ if (GMP_GCD_DIGITS <= xn || GMP_GCD_DIGITS <= yn)
+ return rb_gcd_gmp(x, y);
+ }
+#endif
+ return f_gcd_normal(x, y);
+}
+
+#ifndef NDEBUG
+#undef f_gcd
+
+inline static VALUE
+f_gcd(VALUE x, VALUE y)
+{
+ VALUE r = f_gcd_orig(x, y);
+ if (f_nonzero_p(r)) {
+ assert(f_zero_p(f_mod(x, r)));
+ assert(f_zero_p(f_mod(y, r)));
+ }
+ return r;
+}
+#endif
+
+inline static VALUE
+f_lcm(VALUE x, VALUE y)
+{
+ if (f_zero_p(x) || f_zero_p(y))
+ return ZERO;
+ return f_abs(f_mul(f_div(x, f_gcd(x, y)), y));
+}
+
+#define get_dat1(x) \
+ struct RRational *dat;\
+ dat = ((struct RRational *)(x))
+
+#define get_dat2(x,y) \
+ struct RRational *adat, *bdat;\
+ adat = ((struct RRational *)(x));\
+ bdat = ((struct RRational *)(y))
+
+#define RRATIONAL_SET_NUM(rat, n) RB_OBJ_WRITE((rat), &((struct RRational *)(rat))->num,(n))
+#define RRATIONAL_SET_DEN(rat, d) RB_OBJ_WRITE((rat), &((struct RRational *)(rat))->den,(d))
+
+inline static VALUE
+nurat_s_new_internal(VALUE klass, VALUE num, VALUE den)
+{
+ NEWOBJ_OF(obj, struct RRational, klass, T_RATIONAL | (RGENGC_WB_PROTECTED_RATIONAL ? FL_WB_PROTECTED : 0));
+
+ RRATIONAL_SET_NUM(obj, num);
+ RRATIONAL_SET_DEN(obj, den);
+
+ return (VALUE)obj;
+}
+
+static VALUE
+nurat_s_alloc(VALUE klass)
+{
+ return nurat_s_new_internal(klass, ZERO, ONE);
+}
+
+#define rb_raise_zerodiv() rb_raise(rb_eZeroDivError, "divided by 0")
+
+#if 0
+static VALUE
+nurat_s_new_bang(int argc, VALUE *argv, VALUE klass)
+{
+ VALUE num, den;
+
+ switch (rb_scan_args(argc, argv, "11", &num, &den)) {
+ case 1:
+ if (!k_integer_p(num))
+ num = f_to_i(num);
+ den = ONE;
+ break;
+ default:
+ if (!k_integer_p(num))
+ num = f_to_i(num);
+ if (!k_integer_p(den))
+ den = f_to_i(den);
+
+ switch (FIX2INT(f_cmp(den, ZERO))) {
+ case -1:
+ num = f_negate(num);
+ den = f_negate(den);
+ break;
+ case 0:
+ rb_raise_zerodiv();
+ break;
+ }
+ break;
+ }
+
+ return nurat_s_new_internal(klass, num, den);
+}
+#endif
+
+inline static VALUE
+f_rational_new_bang1(VALUE klass, VALUE x)
+{
+ return nurat_s_new_internal(klass, x, ONE);
+}
+
+#ifdef CANONICALIZATION_FOR_MATHN
+#define CANON
+#endif
+
+#ifdef CANON
+static int canonicalization = 0;
+
+RUBY_FUNC_EXPORTED void
+nurat_canonicalization(int f)
+{
+ canonicalization = f;
+}
+#endif
+
+inline static void
+nurat_int_check(VALUE num)
+{
+ if (!(RB_TYPE_P(num, T_FIXNUM) || RB_TYPE_P(num, T_BIGNUM))) {
+ if (!k_numeric_p(num) || !f_integer_p(num))
+ rb_raise(rb_eTypeError, "not an integer");
+ }
+}
+
+inline static VALUE
+nurat_int_value(VALUE num)
+{
+ nurat_int_check(num);
+ if (!k_integer_p(num))
+ num = f_to_i(num);
+ return num;
+}
+
+inline static VALUE
+nurat_s_canonicalize_internal(VALUE klass, VALUE num, VALUE den)
+{
+ VALUE gcd;
+
+ switch (FIX2INT(f_cmp(den, ZERO))) {
+ case -1:
+ num = f_negate(num);
+ den = f_negate(den);
+ break;
+ case 0:
+ rb_raise_zerodiv();
+ break;
+ }
+
+ gcd = f_gcd(num, den);
+ num = f_idiv(num, gcd);
+ den = f_idiv(den, gcd);
+
+#ifdef CANON
+ if (f_one_p(den) && canonicalization)
+ return num;
+#endif
+ return nurat_s_new_internal(klass, num, den);
+}
+
+inline static VALUE
+nurat_s_canonicalize_internal_no_reduce(VALUE klass, VALUE num, VALUE den)
+{
+ switch (FIX2INT(f_cmp(den, ZERO))) {
+ case -1:
+ num = f_negate(num);
+ den = f_negate(den);
+ break;
+ case 0:
+ rb_raise_zerodiv();
+ break;
+ }
+
+#ifdef CANON
+ if (f_one_p(den) && canonicalization)
+ return num;
+#endif
+ return nurat_s_new_internal(klass, num, den);
+}
+
+static VALUE
+nurat_s_new(int argc, VALUE *argv, VALUE klass)
+{
+ VALUE num, den;
+
+ switch (rb_scan_args(argc, argv, "11", &num, &den)) {
+ case 1:
+ num = nurat_int_value(num);
+ den = ONE;
+ break;
+ default:
+ num = nurat_int_value(num);
+ den = nurat_int_value(den);
+ break;
+ }
+
+ return nurat_s_canonicalize_internal(klass, num, den);
+}
+
+inline static VALUE
+f_rational_new2(VALUE klass, VALUE x, VALUE y)
+{
+ assert(!k_rational_p(x));
+ assert(!k_rational_p(y));
+ return nurat_s_canonicalize_internal(klass, x, y);
+}
+
+inline static VALUE
+f_rational_new_no_reduce2(VALUE klass, VALUE x, VALUE y)
+{
+ assert(!k_rational_p(x));
+ assert(!k_rational_p(y));
+ return nurat_s_canonicalize_internal_no_reduce(klass, x, y);
+}
+
+/*
+ * call-seq:
+ * Rational(x[, y]) -> numeric
+ *
+ * Returns x/y;
+ *
+ * Rational(1, 2) #=> (1/2)
+ * Rational('1/2') #=> (1/2)
+ * Rational(nil) #=> TypeError
+ * Rational(1, nil) #=> TypeError
+ *
+ * Syntax of string form:
+ *
+ * string form = extra spaces , rational , extra spaces ;
+ * rational = [ sign ] , unsigned rational ;
+ * unsigned rational = numerator | numerator , "/" , denominator ;
+ * numerator = integer part | fractional part | integer part , fractional part ;
+ * denominator = digits ;
+ * integer part = digits ;
+ * fractional part = "." , digits , [ ( "e" | "E" ) , [ sign ] , digits ] ;
+ * sign = "-" | "+" ;
+ * digits = digit , { digit | "_" , digit } ;
+ * digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
+ * extra spaces = ? \s* ? ;
+ *
+ * See String#to_r.
+ */
+static VALUE
+nurat_f_rational(int argc, VALUE *argv, VALUE klass)
+{
+ return rb_funcall2(rb_cRational, id_convert, argc, argv);
+}
+
+/*
+ * call-seq:
+ * rat.numerator -> integer
+ *
+ * Returns the numerator.
+ *
+ * Rational(7).numerator #=> 7
+ * Rational(7, 1).numerator #=> 7
+ * Rational(9, -4).numerator #=> -9
+ * Rational(-2, -10).numerator #=> 1
+ */
+static VALUE
+nurat_numerator(VALUE self)
+{
+ get_dat1(self);
+ return dat->num;
+}
+
+/*
+ * call-seq:
+ * rat.denominator -> integer
+ *
+ * Returns the denominator (always positive).
+ *
+ * Rational(7).denominator #=> 1
+ * Rational(7, 1).denominator #=> 1
+ * Rational(9, -4).denominator #=> 4
+ * Rational(-2, -10).denominator #=> 5
+ * rat.numerator.gcd(rat.denominator) #=> 1
+ */
+static VALUE
+nurat_denominator(VALUE self)
+{
+ get_dat1(self);
+ return dat->den;
+}
+
+#ifndef NDEBUG
+#define f_imul f_imul_orig
+#endif
+
+inline static VALUE
+f_imul(long a, long b)
+{
+ VALUE r;
+
+ if (a == 0 || b == 0)
+ return ZERO;
+ else if (a == 1)
+ return LONG2NUM(b);
+ else if (b == 1)
+ return LONG2NUM(a);
+
+ if (MUL_OVERFLOW_LONG_P(a, b))
+ r = rb_big_mul(rb_int2big(a), rb_int2big(b));
+ else
+ r = LONG2NUM(a * b);
+ return r;
+}
+
+#ifndef NDEBUG
+#undef f_imul
+
+inline static VALUE
+f_imul(long x, long y)
+{
+ VALUE r = f_imul_orig(x, y);
+ assert(f_eqeq_p(r, f_mul(LONG2NUM(x), LONG2NUM(y))));
+ return r;
+}
+#endif
+
+inline static VALUE
+f_addsub(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
+{
+ VALUE num, den;
+
+ if (FIXNUM_P(anum) && FIXNUM_P(aden) &&
+ FIXNUM_P(bnum) && FIXNUM_P(bden)) {
+ long an = FIX2LONG(anum);
+ long ad = FIX2LONG(aden);
+ long bn = FIX2LONG(bnum);
+ long bd = FIX2LONG(bden);
+ long ig = i_gcd(ad, bd);
+
+ VALUE g = LONG2NUM(ig);
+ VALUE a = f_imul(an, bd / ig);
+ VALUE b = f_imul(bn, ad / ig);
+ VALUE c;
+
+ if (k == '+')
+ c = f_add(a, b);
+ else
+ c = f_sub(a, b);
+
+ b = f_idiv(aden, g);
+ g = f_gcd(c, g);
+ num = f_idiv(c, g);
+ a = f_idiv(bden, g);
+ den = f_mul(a, b);
+ }
+ else {
+ VALUE g = f_gcd(aden, bden);
+ VALUE a = f_mul(anum, f_idiv(bden, g));
+ VALUE b = f_mul(bnum, f_idiv(aden, g));
+ VALUE c;
+
+ if (k == '+')
+ c = f_add(a, b);
+ else
+ c = f_sub(a, b);
+
+ b = f_idiv(aden, g);
+ g = f_gcd(c, g);
+ num = f_idiv(c, g);
+ a = f_idiv(bden, g);
+ den = f_mul(a, b);
+ }
+ return f_rational_new_no_reduce2(CLASS_OF(self), num, den);
+}
+
+/*
+ * call-seq:
+ * rat + numeric -> numeric
+ *
+ * Performs addition.
+ *
+ * Rational(2, 3) + Rational(2, 3) #=> (4/3)
+ * Rational(900) + Rational(1) #=> (900/1)
+ * Rational(-2, 9) + Rational(-9, 2) #=> (-85/18)
+ * Rational(9, 8) + 4 #=> (41/8)
+ * Rational(20, 9) + 9.8 #=> 12.022222222222222
+ */
+static VALUE
+nurat_add(VALUE self, VALUE other)
+{
+ if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
+ {
+ get_dat1(self);
+
+ return f_addsub(self,
+ dat->num, dat->den,
+ other, ONE, '+');
+ }
+ }
+ else if (RB_TYPE_P(other, T_FLOAT)) {
+ return f_add(f_to_f(self), other);
+ }
+ else if (RB_TYPE_P(other, T_RATIONAL)) {
+ {
+ get_dat2(self, other);
+
+ return f_addsub(self,
+ adat->num, adat->den,
+ bdat->num, bdat->den, '+');
+ }
+ }
+ else {
+ return rb_num_coerce_bin(self, other, '+');
+ }
+}
+
+/*
+ * call-seq:
+ * rat - numeric -> numeric
+ *
+ * Performs subtraction.
+ *
+ * Rational(2, 3) - Rational(2, 3) #=> (0/1)
+ * Rational(900) - Rational(1) #=> (899/1)
+ * Rational(-2, 9) - Rational(-9, 2) #=> (77/18)
+ * Rational(9, 8) - 4 #=> (23/8)
+ * Rational(20, 9) - 9.8 #=> -7.577777777777778
+ */
+static VALUE
+nurat_sub(VALUE self, VALUE other)
+{
+ if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
+ {
+ get_dat1(self);
+
+ return f_addsub(self,
+ dat->num, dat->den,
+ other, ONE, '-');
+ }
+ }
+ else if (RB_TYPE_P(other, T_FLOAT)) {
+ return f_sub(f_to_f(self), other);
+ }
+ else if (RB_TYPE_P(other, T_RATIONAL)) {
+ {
+ get_dat2(self, other);
+
+ return f_addsub(self,
+ adat->num, adat->den,
+ bdat->num, bdat->den, '-');
+ }
+ }
+ else {
+ return rb_num_coerce_bin(self, other, '-');
+ }
+}
+
+inline static VALUE
+f_muldiv(VALUE self, VALUE anum, VALUE aden, VALUE bnum, VALUE bden, int k)
+{
+ VALUE num, den;
+
+ if (k == '/') {
+ VALUE t;
+
+ if (f_negative_p(bnum)) {
+ anum = f_negate(anum);
+ bnum = f_negate(bnum);
+ }
+ t = bnum;
+ bnum = bden;
+ bden = t;
+ }
+
+ if (FIXNUM_P(anum) && FIXNUM_P(aden) &&
+ FIXNUM_P(bnum) && FIXNUM_P(bden)) {
+ long an = FIX2LONG(anum);
+ long ad = FIX2LONG(aden);
+ long bn = FIX2LONG(bnum);
+ long bd = FIX2LONG(bden);
+ long g1 = i_gcd(an, bd);
+ long g2 = i_gcd(ad, bn);
+
+ num = f_imul(an / g1, bn / g2);
+ den = f_imul(ad / g2, bd / g1);
+ }
+ else {
+ VALUE g1 = f_gcd(anum, bden);
+ VALUE g2 = f_gcd(aden, bnum);
+
+ num = f_mul(f_idiv(anum, g1), f_idiv(bnum, g2));
+ den = f_mul(f_idiv(aden, g2), f_idiv(bden, g1));
+ }
+ return f_rational_new_no_reduce2(CLASS_OF(self), num, den);
+}
+
+/*
+ * call-seq:
+ * rat * numeric -> numeric
+ *
+ * Performs multiplication.
+ *
+ * Rational(2, 3) * Rational(2, 3) #=> (4/9)
+ * Rational(900) * Rational(1) #=> (900/1)
+ * Rational(-2, 9) * Rational(-9, 2) #=> (1/1)
+ * Rational(9, 8) * 4 #=> (9/2)
+ * Rational(20, 9) * 9.8 #=> 21.77777777777778
+ */
+static VALUE
+nurat_mul(VALUE self, VALUE other)
+{
+ if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
+ {
+ get_dat1(self);
+
+ return f_muldiv(self,
+ dat->num, dat->den,
+ other, ONE, '*');
+ }
+ }
+ else if (RB_TYPE_P(other, T_FLOAT)) {
+ return f_mul(f_to_f(self), other);
+ }
+ else if (RB_TYPE_P(other, T_RATIONAL)) {
+ {
+ get_dat2(self, other);
+
+ return f_muldiv(self,
+ adat->num, adat->den,
+ bdat->num, bdat->den, '*');
+ }
+ }
+ else {
+ return rb_num_coerce_bin(self, other, '*');
+ }
+}
+
+/*
+ * call-seq:
+ * rat / numeric -> numeric
+ * rat.quo(numeric) -> numeric
+ *
+ * Performs division.
+ *
+ * Rational(2, 3) / Rational(2, 3) #=> (1/1)
+ * Rational(900) / Rational(1) #=> (900/1)
+ * Rational(-2, 9) / Rational(-9, 2) #=> (4/81)
+ * Rational(9, 8) / 4 #=> (9/32)
+ * Rational(20, 9) / 9.8 #=> 0.22675736961451246
+ */
+static VALUE
+nurat_div(VALUE self, VALUE other)
+{
+ if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
+ if (f_zero_p(other))
+ rb_raise_zerodiv();
+ {
+ get_dat1(self);
+
+ return f_muldiv(self,
+ dat->num, dat->den,
+ other, ONE, '/');
+ }
+ }
+ else if (RB_TYPE_P(other, T_FLOAT))
+ return rb_funcall(f_to_f(self), '/', 1, other);
+ else if (RB_TYPE_P(other, T_RATIONAL)) {
+ if (f_zero_p(other))
+ rb_raise_zerodiv();
+ {
+ get_dat2(self, other);
+
+ if (f_one_p(self))
+ return f_rational_new_no_reduce2(CLASS_OF(self),
+ bdat->den, bdat->num);
+
+ return f_muldiv(self,
+ adat->num, adat->den,
+ bdat->num, bdat->den, '/');
+ }
+ }
+ else {
+ return rb_num_coerce_bin(self, other, '/');
+ }
+}
+
+/*
+ * call-seq:
+ * rat.fdiv(numeric) -> float
+ *
+ * Performs division and returns the value as a float.
+ *
+ * Rational(2, 3).fdiv(1) #=> 0.6666666666666666
+ * Rational(2, 3).fdiv(0.5) #=> 1.3333333333333333
+ * Rational(2).fdiv(3) #=> 0.6666666666666666
+ */
+static VALUE
+nurat_fdiv(VALUE self, VALUE other)
+{
+ if (f_zero_p(other))
+ return f_div(self, f_to_f(other));
+ return f_to_f(f_div(self, other));
+}
+
+inline static VALUE
+f_odd_p(VALUE integer)
+{
+ if (rb_funcall(integer, '%', 1, INT2FIX(2)) != INT2FIX(0)) {
+ return Qtrue;
+ }
+ return Qfalse;
+}
+
+/*
+ * call-seq:
+ * rat ** numeric -> numeric
+ *
+ * Performs exponentiation.
+ *
+ * Rational(2) ** Rational(3) #=> (8/1)
+ * Rational(10) ** -2 #=> (1/100)
+ * Rational(10) ** -2.0 #=> 0.01
+ * Rational(-4) ** Rational(1,2) #=> (1.2246063538223773e-16+2.0i)
+ * Rational(1, 2) ** 0 #=> (1/1)
+ * Rational(1, 2) ** 0.0 #=> 1.0
+ */
+static VALUE
+nurat_expt(VALUE self, VALUE other)
+{
+ if (k_numeric_p(other) && k_exact_zero_p(other))
+ return f_rational_new_bang1(CLASS_OF(self), ONE);
+
+ if (k_rational_p(other)) {
+ get_dat1(other);
+
+ if (f_one_p(dat->den))
+ other = dat->num; /* c14n */
+ }
+
+ /* Deal with special cases of 0**n and 1**n */
+ if (k_numeric_p(other) && k_exact_p(other)) {
+ get_dat1(self);
+ if (f_one_p(dat->den)) {
+ if (f_one_p(dat->num)) {
+ return f_rational_new_bang1(CLASS_OF(self), ONE);
+ }
+ else if (f_minus_one_p(dat->num) && k_integer_p(other)) {
+ return f_rational_new_bang1(CLASS_OF(self), INT2FIX(f_odd_p(other) ? -1 : 1));
+ }
+ else if (f_zero_p(dat->num)) {
+ if (FIX2INT(f_cmp(other, ZERO)) == -1) {
+ rb_raise_zerodiv();
+ }
+ else {
+ return f_rational_new_bang1(CLASS_OF(self), ZERO);
+ }
+ }
+ }
+ }
+
+ /* General case */
+ if (RB_TYPE_P(other, T_FIXNUM)) {
+ {
+ VALUE num, den;
+
+ get_dat1(self);
+
+ switch (FIX2INT(f_cmp(other, ZERO))) {
+ case 1:
+ num = f_expt(dat->num, other);
+ den = f_expt(dat->den, other);
+ break;
+ case -1:
+ num = f_expt(dat->den, f_negate(other));
+ den = f_expt(dat->num, f_negate(other));
+ break;
+ default:
+ num = ONE;
+ den = ONE;
+ break;
+ }
+ return f_rational_new2(CLASS_OF(self), num, den);
+ }
+ }
+ else if (RB_TYPE_P(other, T_BIGNUM)) {
+ rb_warn("in a**b, b may be too big");
+ return f_expt(f_to_f(self), other);
+ }
+ else if (RB_TYPE_P(other, T_FLOAT) || RB_TYPE_P(other, T_RATIONAL)) {
+ return f_expt(f_to_f(self), other);
+ }
+ else {
+ return rb_num_coerce_bin(self, other, id_expt);
+ }
+}
+
+/*
+ * call-seq:
+ * rational <=> numeric -> -1, 0, +1 or nil
+ *
+ * Performs comparison and returns -1, 0, or +1.
+ *
+ * +nil+ is returned if the two values are incomparable.
+ *
+ * Rational(2, 3) <=> Rational(2, 3) #=> 0
+ * Rational(5) <=> 5 #=> 0
+ * Rational(2,3) <=> Rational(1,3) #=> 1
+ * Rational(1,3) <=> 1 #=> -1
+ * Rational(1,3) <=> 0.3 #=> 1
+ */
+static VALUE
+nurat_cmp(VALUE self, VALUE other)
+{
+ if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
+ {
+ get_dat1(self);
+
+ if (FIXNUM_P(dat->den) && FIX2LONG(dat->den) == 1)
+ return f_cmp(dat->num, other); /* c14n */
+ return f_cmp(self, f_rational_new_bang1(CLASS_OF(self), other));
+ }
+ }
+ else if (RB_TYPE_P(other, T_FLOAT)) {
+ return f_cmp(f_to_f(self), other);
+ }
+ else if (RB_TYPE_P(other, T_RATIONAL)) {
+ {
+ VALUE num1, num2;
+
+ get_dat2(self, other);
+
+ if (FIXNUM_P(adat->num) && FIXNUM_P(adat->den) &&
+ FIXNUM_P(bdat->num) && FIXNUM_P(bdat->den)) {
+ num1 = f_imul(FIX2LONG(adat->num), FIX2LONG(bdat->den));
+ num2 = f_imul(FIX2LONG(bdat->num), FIX2LONG(adat->den));
+ }
+ else {
+ num1 = f_mul(adat->num, bdat->den);
+ num2 = f_mul(bdat->num, adat->den);
+ }
+ return f_cmp(f_sub(num1, num2), ZERO);
+ }
+ }
+ else {
+ return rb_num_coerce_cmp(self, other, id_cmp);
+ }
+}
+
+/*
+ * call-seq:
+ * rat == object -> true or false
+ *
+ * Returns true if rat equals object numerically.
+ *
+ * Rational(2, 3) == Rational(2, 3) #=> true
+ * Rational(5) == 5 #=> true
+ * Rational(0) == 0.0 #=> true
+ * Rational('1/3') == 0.33 #=> false
+ * Rational('1/2') == '1/2' #=> false
+ */
+static VALUE
+nurat_eqeq_p(VALUE self, VALUE other)
+{
+ if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
+ {
+ get_dat1(self);
+
+ if (f_zero_p(dat->num) && f_zero_p(other))
+ return Qtrue;
+
+ if (!FIXNUM_P(dat->den))
+ return Qfalse;
+ if (FIX2LONG(dat->den) != 1)
+ return Qfalse;
+ if (f_eqeq_p(dat->num, other))
+ return Qtrue;
+ return Qfalse;
+ }
+ }
+ else if (RB_TYPE_P(other, T_FLOAT)) {
+ return f_eqeq_p(f_to_f(self), other);
+ }
+ else if (RB_TYPE_P(other, T_RATIONAL)) {
+ {
+ get_dat2(self, other);
+
+ if (f_zero_p(adat->num) && f_zero_p(bdat->num))
+ return Qtrue;
+
+ return f_boolcast(f_eqeq_p(adat->num, bdat->num) &&
+ f_eqeq_p(adat->den, bdat->den));
+ }
+ }
+ else {
+ return f_eqeq_p(other, self);
+ }
+}
+
+/* :nodoc: */
+static VALUE
+nurat_coerce(VALUE self, VALUE other)
+{
+ if (RB_TYPE_P(other, T_FIXNUM) || RB_TYPE_P(other, T_BIGNUM)) {
+ return rb_assoc_new(f_rational_new_bang1(CLASS_OF(self), other), self);
+ }
+ else if (RB_TYPE_P(other, T_FLOAT)) {
+ return rb_assoc_new(other, f_to_f(self));
+ }
+ else if (RB_TYPE_P(other, T_RATIONAL)) {
+ return rb_assoc_new(other, self);
+ }
+ else if (RB_TYPE_P(other, T_COMPLEX)) {
+ if (k_exact_zero_p(RCOMPLEX(other)->imag))
+ return rb_assoc_new(f_rational_new_bang1
+ (CLASS_OF(self), RCOMPLEX(other)->real), self);
+ else
+ return rb_assoc_new(other, rb_Complex(self, INT2FIX(0)));
+ }
+
+ rb_raise(rb_eTypeError, "%s can't be coerced into %s",
+ rb_obj_classname(other), rb_obj_classname(self));
+ return Qnil;
+}
+
+#if 0
+/* :nodoc: */
+static VALUE
+nurat_idiv(VALUE self, VALUE other)
+{
+ return f_idiv(self, other);
+}
+
+/* :nodoc: */
+static VALUE
+nurat_quot(VALUE self, VALUE other)
+{
+ return f_truncate(f_div(self, other));
+}
+
+/* :nodoc: */
+static VALUE
+nurat_quotrem(VALUE self, VALUE other)
+{
+ VALUE val = f_truncate(f_div(self, other));
+ return rb_assoc_new(val, f_sub(self, f_mul(other, val)));
+}
+#endif
+
+#if 0
+/* :nodoc: */
+static VALUE
+nurat_true(VALUE self)
+{
+ return Qtrue;
+}
+#endif
+
+static VALUE
+nurat_floor(VALUE self)
+{
+ get_dat1(self);
+ return f_idiv(dat->num, dat->den);
+}
+
+static VALUE
+nurat_ceil(VALUE self)
+{
+ get_dat1(self);
+ return f_negate(f_idiv(f_negate(dat->num), dat->den));
+}
+
+/*
+ * call-seq:
+ * rat.to_i -> integer
+ *
+ * Returns the truncated value as an integer.
+ *
+ * Equivalent to
+ * rat.truncate.
+ *
+ * Rational(2, 3).to_i #=> 0
+ * Rational(3).to_i #=> 3
+ * Rational(300.6).to_i #=> 300
+ * Rational(98,71).to_i #=> 1
+ * Rational(-30,2).to_i #=> -15
+ */
+static VALUE
+nurat_truncate(VALUE self)
+{
+ get_dat1(self);
+ if (f_negative_p(dat->num))
+ return f_negate(f_idiv(f_negate(dat->num), dat->den));
+ return f_idiv(dat->num, dat->den);
+}
+
+static VALUE
+nurat_round(VALUE self)
+{
+ VALUE num, den, neg;
+
+ get_dat1(self);
+
+ num = dat->num;
+ den = dat->den;
+ neg = f_negative_p(num);
+
+ if (neg)
+ num = f_negate(num);
+
+ num = f_add(f_mul(num, TWO), den);
+ den = f_mul(den, TWO);
+ num = f_idiv(num, den);
+
+ if (neg)
+ num = f_negate(num);
+
+ return num;
+}
+
+static VALUE
+f_round_common(int argc, VALUE *argv, VALUE self, VALUE (*func)(VALUE))
+{
+ VALUE n, b, s;
+
+ if (argc == 0)
+ return (*func)(self);
+
+ rb_scan_args(argc, argv, "01", &n);
+
+ if (!k_integer_p(n))
+ rb_raise(rb_eTypeError, "not an integer");
+
+ b = f_expt10(n);
+ s = f_mul(self, b);
+
+ if (k_float_p(s)) {
+ if (f_lt_p(n, ZERO))
+ return ZERO;
+ return self;
+ }
+
+ if (!k_rational_p(s)) {
+ s = f_rational_new_bang1(CLASS_OF(self), s);
+ }
+
+ s = (*func)(s);
+
+ s = f_div(f_rational_new_bang1(CLASS_OF(self), s), b);
+
+ if (f_lt_p(n, ONE))
+ s = f_to_i(s);
+
+ return s;
+}
+
+/*
+ * call-seq:
+ * rat.floor -> integer
+ * rat.floor(precision=0) -> rational
+ *
+ * Returns the truncated value (toward negative infinity).
+ *
+ * Rational(3).floor #=> 3
+ * Rational(2, 3).floor #=> 0
+ * Rational(-3, 2).floor #=> -1
+ *
+ * decimal - 1 2 3 . 4 5 6
+ * ^ ^ ^ ^ ^ ^
+ * precision -3 -2 -1 0 +1 +2
+ *
+ * '%f' % Rational('-123.456').floor(+1) #=> "-123.500000"
+ * '%f' % Rational('-123.456').floor(-1) #=> "-130.000000"
+ */
+static VALUE
+nurat_floor_n(int argc, VALUE *argv, VALUE self)
+{
+ return f_round_common(argc, argv, self, nurat_floor);
+}
+
+/*
+ * call-seq:
+ * rat.ceil -> integer
+ * rat.ceil(precision=0) -> rational
+ *
+ * Returns the truncated value (toward positive infinity).
+ *
+ * Rational(3).ceil #=> 3
+ * Rational(2, 3).ceil #=> 1
+ * Rational(-3, 2).ceil #=> -1
+ *
+ * decimal - 1 2 3 . 4 5 6
+ * ^ ^ ^ ^ ^ ^
+ * precision -3 -2 -1 0 +1 +2
+ *
+ * '%f' % Rational('-123.456').ceil(+1) #=> "-123.400000"
+ * '%f' % Rational('-123.456').ceil(-1) #=> "-120.000000"
+ */
+static VALUE
+nurat_ceil_n(int argc, VALUE *argv, VALUE self)
+{
+ return f_round_common(argc, argv, self, nurat_ceil);
+}
+
+/*
+ * call-seq:
+ * rat.truncate -> integer
+ * rat.truncate(precision=0) -> rational
+ *
+ * Returns the truncated value (toward zero).
+ *
+ * Rational(3).truncate #=> 3
+ * Rational(2, 3).truncate #=> 0
+ * Rational(-3, 2).truncate #=> -1
+ *
+ * decimal - 1 2 3 . 4 5 6
+ * ^ ^ ^ ^ ^ ^
+ * precision -3 -2 -1 0 +1 +2
+ *
+ * '%f' % Rational('-123.456').truncate(+1) #=> "-123.400000"
+ * '%f' % Rational('-123.456').truncate(-1) #=> "-120.000000"
+ */
+static VALUE
+nurat_truncate_n(int argc, VALUE *argv, VALUE self)
+{
+ return f_round_common(argc, argv, self, nurat_truncate);
+}
+
+/*
+ * call-seq:
+ * rat.round -> integer
+ * rat.round(precision=0) -> rational
+ *
+ * Returns the truncated value (toward the nearest integer;
+ * 0.5 => 1; -0.5 => -1).
+ *
+ * Rational(3).round #=> 3
+ * Rational(2, 3).round #=> 1
+ * Rational(-3, 2).round #=> -2
+ *
+ * decimal - 1 2 3 . 4 5 6
+ * ^ ^ ^ ^ ^ ^
+ * precision -3 -2 -1 0 +1 +2
+ *
+ * '%f' % Rational('-123.456').round(+1) #=> "-123.500000"
+ * '%f' % Rational('-123.456').round(-1) #=> "-120.000000"
+ */
+static VALUE
+nurat_round_n(int argc, VALUE *argv, VALUE self)
+{
+ return f_round_common(argc, argv, self, nurat_round);
+}
+
+/*
+ * call-seq:
+ * rat.to_f -> float
+ *
+ * Return the value as a float.
+ *
+ * Rational(2).to_f #=> 2.0
+ * Rational(9, 4).to_f #=> 2.25
+ * Rational(-3, 4).to_f #=> -0.75
+ * Rational(20, 3).to_f #=> 6.666666666666667
+ */
+static VALUE
+nurat_to_f(VALUE self)
+{
+ get_dat1(self);
+ return f_fdiv(dat->num, dat->den);
+}
+
+/*
+ * call-seq:
+ * rat.to_r -> self
+ *
+ * Returns self.
+ *
+ * Rational(2).to_r #=> (2/1)
+ * Rational(-8, 6).to_r #=> (-4/3)
+ */
+static VALUE
+nurat_to_r(VALUE self)
+{
+ return self;
+}
+
+#define id_ceil rb_intern("ceil")
+#define f_ceil(x) rb_funcall((x), id_ceil, 0)
+
+#define id_quo rb_intern("quo")
+#define f_quo(x,y) rb_funcall((x), id_quo, 1, (y))
+
+#define f_reciprocal(x) f_quo(ONE, (x))
+
+/*
+ The algorithm here is the method described in CLISP. Bruno Haible has
+ graciously given permission to use this algorithm. He says, "You can use
+ it, if you present the following explanation of the algorithm."
+
+ Algorithm (recursively presented):
+ If x is a rational number, return x.
+ If x = 0.0, return 0.
+ If x < 0.0, return (- (rationalize (- x))).
+ If x > 0.0:
+ Call (integer-decode-float x). It returns a m,e,s=1 (mantissa,
+ exponent, sign).
+ If m = 0 or e >= 0: return x = m*2^e.
+ Search a rational number between a = (m-1/2)*2^e and b = (m+1/2)*2^e
+ with smallest possible numerator and denominator.
+ Note 1: If m is a power of 2, we ought to take a = (m-1/4)*2^e.
+ But in this case the result will be x itself anyway, regardless of
+ the choice of a. Therefore we can simply ignore this case.
+ Note 2: At first, we need to consider the closed interval [a,b].
+ but since a and b have the denominator 2^(|e|+1) whereas x itself
+ has a denominator <= 2^|e|, we can restrict the search to the open
+ interval (a,b).
+ So, for given a and b (0 < a < b) we are searching a rational number
+ y with a <= y <= b.
+ Recursive algorithm fraction_between(a,b):
+ c := (ceiling a)
+ if c < b
+ then return c ; because a <= c < b, c integer
+ else
+ ; a is not integer (otherwise we would have had c = a < b)
+ k := c-1 ; k = floor(a), k < a < b <= k+1
+ return y = k + 1/fraction_between(1/(b-k), 1/(a-k))
+ ; note 1 <= 1/(b-k) < 1/(a-k)
+
+ You can see that we are actually computing a continued fraction expansion.
+
+ Algorithm (iterative):
+ If x is rational, return x.
+ Call (integer-decode-float x). It returns a m,e,s (mantissa,
+ exponent, sign).
+ If m = 0 or e >= 0, return m*2^e*s. (This includes the case x = 0.0.)
+ Create rational numbers a := (2*m-1)*2^(e-1) and b := (2*m+1)*2^(e-1)
+ (positive and already in lowest terms because the denominator is a
+ power of two and the numerator is odd).
+ Start a continued fraction expansion
+ p[-1] := 0, p[0] := 1, q[-1] := 1, q[0] := 0, i := 0.
+ Loop
+ c := (ceiling a)
+ if c >= b
+ then k := c-1, partial_quotient(k), (a,b) := (1/(b-k),1/(a-k)),
+ goto Loop
+ finally partial_quotient(c).
+ Here partial_quotient(c) denotes the iteration
+ i := i+1, p[i] := c*p[i-1]+p[i-2], q[i] := c*q[i-1]+q[i-2].
+ At the end, return s * (p[i]/q[i]).
+ This rational number is already in lowest terms because
+ p[i]*q[i-1]-p[i-1]*q[i] = (-1)^i.
+*/
+
+static void
+nurat_rationalize_internal(VALUE a, VALUE b, VALUE *p, VALUE *q)
+{
+ VALUE c, k, t, p0, p1, p2, q0, q1, q2;
+
+ p0 = ZERO;
+ p1 = ONE;
+ q0 = ONE;
+ q1 = ZERO;
+
+ while (1) {
+ c = f_ceil(a);
+ if (f_lt_p(c, b))
+ break;
+ k = f_sub(c, ONE);
+ p2 = f_add(f_mul(k, p1), p0);
+ q2 = f_add(f_mul(k, q1), q0);
+ t = f_reciprocal(f_sub(b, k));
+ b = f_reciprocal(f_sub(a, k));
+ a = t;
+ p0 = p1;
+ q0 = q1;
+ p1 = p2;
+ q1 = q2;
+ }
+ *p = f_add(f_mul(c, p1), p0);
+ *q = f_add(f_mul(c, q1), q0);
+}
+
+/*
+ * call-seq:
+ * rat.rationalize -> self
+ * rat.rationalize(eps) -> rational
+ *
+ * Returns a simpler approximation of the value if the optional
+ * argument eps is given (rat-|eps| <= result <= rat+|eps|), self
+ * otherwise.
+ *
+ * r = Rational(5033165, 16777216)
+ * r.rationalize #=> (5033165/16777216)
+ * r.rationalize(Rational('0.01')) #=> (3/10)
+ * r.rationalize(Rational('0.1')) #=> (1/3)
+ */
+static VALUE
+nurat_rationalize(int argc, VALUE *argv, VALUE self)
+{
+ VALUE e, a, b, p, q;
+
+ if (argc == 0)
+ return self;
+
+ if (f_negative_p(self))
+ return f_negate(nurat_rationalize(argc, argv, f_abs(self)));
+
+ rb_scan_args(argc, argv, "01", &e);
+ e = f_abs(e);
+ a = f_sub(self, e);
+ b = f_add(self, e);
+
+ if (f_eqeq_p(a, b))
+ return self;
+
+ nurat_rationalize_internal(a, b, &p, &q);
+ return f_rational_new2(CLASS_OF(self), p, q);
+}
+
+/* :nodoc: */
+static VALUE
+nurat_hash(VALUE self)
+{
+ st_index_t v, h[2];
+ VALUE n;
+
+ get_dat1(self);
+ n = rb_hash(dat->num);
+ h[0] = NUM2LONG(n);
+ n = rb_hash(dat->den);
+ h[1] = NUM2LONG(n);
+ v = rb_memhash(h, sizeof(h));
+ return LONG2FIX(v);
+}
+
+static VALUE
+f_format(VALUE self, VALUE (*func)(VALUE))
+{
+ VALUE s;
+ get_dat1(self);
+
+ s = (*func)(dat->num);
+ rb_str_cat2(s, "/");
+ rb_str_concat(s, (*func)(dat->den));
+
+ return s;
+}
+
+/*
+ * call-seq:
+ * rat.to_s -> string
+ *
+ * Returns the value as a string.
+ *
+ * Rational(2).to_s #=> "2/1"
+ * Rational(-8, 6).to_s #=> "-4/3"
+ * Rational('1/2').to_s #=> "1/2"
+ */
+static VALUE
+nurat_to_s(VALUE self)
+{
+ return f_format(self, f_to_s);
+}
+
+/*
+ * call-seq:
+ * rat.inspect -> string
+ *
+ * Returns the value as a string for inspection.
+ *
+ * Rational(2).inspect #=> "(2/1)"
+ * Rational(-8, 6).inspect #=> "(-4/3)"
+ * Rational('1/2').inspect #=> "(1/2)"
+ */
+static VALUE
+nurat_inspect(VALUE self)
+{
+ VALUE s;
+
+ s = rb_usascii_str_new2("(");
+ rb_str_concat(s, f_format(self, f_inspect));
+ rb_str_cat2(s, ")");
+
+ return s;
+}
+
+/* :nodoc: */
+static VALUE
+nurat_dumper(VALUE self)
+{
+ return self;
+}
+
+/* :nodoc: */
+static VALUE
+nurat_loader(VALUE self, VALUE a)
+{
+ get_dat1(self);
+
+ RRATIONAL_SET_NUM(dat, rb_ivar_get(a, id_i_num));
+ RRATIONAL_SET_DEN(dat, rb_ivar_get(a, id_i_den));
+
+ return self;
+}
+
+/* :nodoc: */
+static VALUE
+nurat_marshal_dump(VALUE self)
+{
+ VALUE a;
+ get_dat1(self);
+
+ a = rb_assoc_new(dat->num, dat->den);
+ rb_copy_generic_ivar(a, self);
+ return a;
+}
+
+/* :nodoc: */
+static VALUE
+nurat_marshal_load(VALUE self, VALUE a)
+{
+ rb_check_frozen(self);
+ rb_check_trusted(self);
+
+ Check_Type(a, T_ARRAY);
+ if (RARRAY_LEN(a) != 2)
+ rb_raise(rb_eArgError, "marshaled rational must have an array whose length is 2 but %ld", RARRAY_LEN(a));
+ if (f_zero_p(RARRAY_AREF(a, 1)))
+ rb_raise_zerodiv();
+
+ rb_ivar_set(self, id_i_num, RARRAY_AREF(a, 0));
+ rb_ivar_set(self, id_i_den, RARRAY_AREF(a, 1));
+
+ return self;
+}
+
+/* --- */
+
+VALUE
+rb_rational_reciprocal(VALUE x)
+{
+ get_dat1(x);
+ return f_rational_new_no_reduce2(CLASS_OF(x), dat->den, dat->num);
+}
+
+/*
+ * call-seq:
+ * int.gcd(int2) -> integer
+ *
+ * Returns the greatest common divisor (always positive). 0.gcd(x)
+ * and x.gcd(0) return abs(x).
+ *
+ * 2.gcd(2) #=> 2
+ * 3.gcd(-7) #=> 1
+ * ((1<<31)-1).gcd((1<<61)-1) #=> 1
+ */
+VALUE
+rb_gcd(VALUE self, VALUE other)
+{
+ other = nurat_int_value(other);
+ return f_gcd(self, other);
+}
+
+/*
+ * call-seq:
+ * int.lcm(int2) -> integer
+ *
+ * Returns the least common multiple (always positive). 0.lcm(x) and
+ * x.lcm(0) return zero.
+ *
+ * 2.lcm(2) #=> 2
+ * 3.lcm(-7) #=> 21
+ * ((1<<31)-1).lcm((1<<61)-1) #=> 4951760154835678088235319297
+ */
+VALUE
+rb_lcm(VALUE self, VALUE other)
+{
+ other = nurat_int_value(other);
+ return f_lcm(self, other);
+}
+
+/*
+ * call-seq:
+ * int.gcdlcm(int2) -> array
+ *
+ * Returns an array; [int.gcd(int2), int.lcm(int2)].
+ *
+ * 2.gcdlcm(2) #=> [2, 2]
+ * 3.gcdlcm(-7) #=> [1, 21]
+ * ((1<<31)-1).gcdlcm((1<<61)-1) #=> [1, 4951760154835678088235319297]
+ */
+VALUE
+rb_gcdlcm(VALUE self, VALUE other)
+{
+ other = nurat_int_value(other);
+ return rb_assoc_new(f_gcd(self, other), f_lcm(self, other));
+}
+
+VALUE
+rb_rational_raw(VALUE x, VALUE y)
+{
+ return nurat_s_new_internal(rb_cRational, x, y);
+}
+
+VALUE
+rb_rational_new(VALUE x, VALUE y)
+{
+ return nurat_s_canonicalize_internal(rb_cRational, x, y);
+}
+
+static VALUE nurat_s_convert(int argc, VALUE *argv, VALUE klass);
+
+VALUE
+rb_Rational(VALUE x, VALUE y)
+{
+ VALUE a[2];
+ a[0] = x;
+ a[1] = y;
+ return nurat_s_convert(2, a, rb_cRational);
+}
+
+VALUE
+rb_rational_num(VALUE rat)
+{
+ return nurat_numerator(rat);
+}
+
+VALUE
+rb_rational_den(VALUE rat)
+{
+ return nurat_denominator(rat);
+}
+
+#define id_numerator rb_intern("numerator")
+#define f_numerator(x) rb_funcall((x), id_numerator, 0)
+
+#define id_denominator rb_intern("denominator")
+#define f_denominator(x) rb_funcall((x), id_denominator, 0)
+
+#define id_to_r rb_intern("to_r")
+#define f_to_r(x) rb_funcall((x), id_to_r, 0)
+
+/*
+ * call-seq:
+ * num.numerator -> integer
+ *
+ * Returns the numerator.
+ */
+static VALUE
+numeric_numerator(VALUE self)
+{
+ return f_numerator(f_to_r(self));
+}
+
+/*
+ * call-seq:
+ * num.denominator -> integer
+ *
+ * Returns the denominator (always positive).
+ */
+static VALUE
+numeric_denominator(VALUE self)
+{
+ return f_denominator(f_to_r(self));
+}
+
+
+/*
+ * call-seq:
+ * num.quo(int_or_rat) -> rat
+ * num.quo(flo) -> flo
+ *
+ * Returns most exact division (rational for integers, float for floats).
+ */
+
+static VALUE
+numeric_quo(VALUE x, VALUE y)
+{
+ if (RB_TYPE_P(y, T_FLOAT)) {
+ return f_fdiv(x, y);
+ }
+
+#ifdef CANON
+ if (canonicalization) {
+ x = rb_rational_raw1(x);
+ }
+ else
+#endif
+ {
+ x = rb_convert_type(x, T_RATIONAL, "Rational", "to_r");
+ }
+ return rb_funcall(x, '/', 1, y);
+}
+
+
+/*
+ * call-seq:
+ * int.numerator -> self
+ *
+ * Returns self.
+ */
+static VALUE
+integer_numerator(VALUE self)
+{
+ return self;
+}
+
+/*
+ * call-seq:
+ * int.denominator -> 1
+ *
+ * Returns 1.
+ */
+static VALUE
+integer_denominator(VALUE self)
+{
+ return INT2FIX(1);
+}
+
+/*
+ * call-seq:
+ * flo.numerator -> integer
+ *
+ * Returns the numerator. The result is machine dependent.
+ *
+ * n = 0.3.numerator #=> 5404319552844595
+ * d = 0.3.denominator #=> 18014398509481984
+ * n.fdiv(d) #=> 0.3
+ */
+static VALUE
+float_numerator(VALUE self)
+{
+ double d = RFLOAT_VALUE(self);
+ if (isinf(d) || isnan(d))
+ return self;
+ return rb_call_super(0, 0);
+}
+
+/*
+ * call-seq:
+ * flo.denominator -> integer
+ *
+ * Returns the denominator (always positive). The result is machine
+ * dependent.
+ *
+ * See numerator.
+ */
+static VALUE
+float_denominator(VALUE self)
+{
+ double d = RFLOAT_VALUE(self);
+ if (isinf(d) || isnan(d))
+ return INT2FIX(1);
+ return rb_call_super(0, 0);
+}
+
+/*
+ * call-seq:
+ * nil.to_r -> (0/1)
+ *
+ * Returns zero as a rational.
+ */
+static VALUE
+nilclass_to_r(VALUE self)
+{
+ return rb_rational_new1(INT2FIX(0));
+}
+
+/*
+ * call-seq:
+ * nil.rationalize([eps]) -> (0/1)
+ *
+ * Returns zero as a rational. The optional argument eps is always
+ * ignored.
+ */
+static VALUE
+nilclass_rationalize(int argc, VALUE *argv, VALUE self)
+{
+ rb_scan_args(argc, argv, "01", NULL);
+ return nilclass_to_r(self);
+}
+
+/*
+ * call-seq:
+ * int.to_r -> rational
+ *
+ * Returns the value as a rational.
+ *
+ * 1.to_r #=> (1/1)
+ * (1<<64).to_r #=> (18446744073709551616/1)
+ */
+static VALUE
+integer_to_r(VALUE self)
+{
+ return rb_rational_new1(self);
+}
+
+/*
+ * call-seq:
+ * int.rationalize([eps]) -> rational
+ *
+ * Returns the value as a rational. The optional argument eps is
+ * always ignored.
+ */
+static VALUE
+integer_rationalize(int argc, VALUE *argv, VALUE self)
+{
+ rb_scan_args(argc, argv, "01", NULL);
+ return integer_to_r(self);
+}
+
+static void
+float_decode_internal(VALUE self, VALUE *rf, VALUE *rn)
+{
+ double f;
+ int n;
+
+ f = frexp(RFLOAT_VALUE(self), &n);
+ f = ldexp(f, DBL_MANT_DIG);
+ n -= DBL_MANT_DIG;
+ *rf = rb_dbl2big(f);
+ *rn = INT2FIX(n);
+}
+
+#if 0
+static VALUE
+float_decode(VALUE self)
+{
+ VALUE f, n;
+
+ float_decode_internal(self, &f, &n);
+ return rb_assoc_new(f, n);
+}
+#endif
+
+#define id_lshift rb_intern("<<")
+#define f_lshift(x,n) rb_funcall((x), id_lshift, 1, (n))
+
+/*
+ * call-seq:
+ * flt.to_r -> rational
+ *
+ * Returns the value as a rational.
+ *
+ * NOTE: 0.3.to_r isn't the same as '0.3'.to_r. The latter is
+ * equivalent to '3/10'.to_r, but the former isn't so.
+ *
+ * 2.0.to_r #=> (2/1)
+ * 2.5.to_r #=> (5/2)
+ * -0.75.to_r #=> (-3/4)
+ * 0.0.to_r #=> (0/1)
+ *
+ * See rationalize.
+ */
+static VALUE
+float_to_r(VALUE self)
+{
+ VALUE f, n;
+
+ float_decode_internal(self, &f, &n);
+#if FLT_RADIX == 2
+ {
+ long ln = FIX2LONG(n);
+
+ if (ln == 0)
+ return f_to_r(f);
+ if (ln > 0)
+ return f_to_r(f_lshift(f, n));
+ ln = -ln;
+ return rb_rational_new2(f, f_lshift(ONE, INT2FIX(ln)));
+ }
+#else
+ return f_to_r(f_mul(f, f_expt(INT2FIX(FLT_RADIX), n)));
+#endif
+}
+
+VALUE
+rb_flt_rationalize_with_prec(VALUE flt, VALUE prec)
+{
+ VALUE e, a, b, p, q;
+
+ e = f_abs(prec);
+ a = f_sub(flt, e);
+ b = f_add(flt, e);
+
+ if (f_eqeq_p(a, b))
+ return f_to_r(flt);
+
+ nurat_rationalize_internal(a, b, &p, &q);
+ return rb_rational_new2(p, q);
+}
+
+VALUE
+rb_flt_rationalize(VALUE flt)
+{
+ VALUE a, b, f, n, p, q;
+
+ float_decode_internal(flt, &f, &n);
+ if (f_zero_p(f) || f_positive_p(n))
+ return rb_rational_new1(f_lshift(f, n));
+
+#if FLT_RADIX == 2
+ {
+ VALUE two_times_f, den;
+
+ two_times_f = f_mul(TWO, f);
+ den = f_lshift(ONE, f_sub(ONE, n));
+
+ a = rb_rational_new2(f_sub(two_times_f, ONE), den);
+ b = rb_rational_new2(f_add(two_times_f, ONE), den);
+ }
+#else
+ {
+ VALUE radix_times_f, den;
+
+ radix_times_f = f_mul(INT2FIX(FLT_RADIX), f);
+ den = f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n));
+
+ a = rb_rational_new2(f_sub(radix_times_f, INT2FIX(FLT_RADIX - 1)), den);
+ b = rb_rational_new2(f_add(radix_times_f, INT2FIX(FLT_RADIX - 1)), den);
+ }
+#endif
+
+ if (f_eqeq_p(a, b))
+ return f_to_r(flt);
+
+ nurat_rationalize_internal(a, b, &p, &q);
+ return rb_rational_new2(p, q);
+}
+
+/*
+ * call-seq:
+ * flt.rationalize([eps]) -> rational
+ *
+ * Returns a simpler approximation of the value (flt-|eps| <= result
+ * <= flt+|eps|). if the optional eps is not given, it will be chosen
+ * automatically.
+ *
+ * 0.3.rationalize #=> (3/10)
+ * 1.333.rationalize #=> (1333/1000)
+ * 1.333.rationalize(0.01) #=> (4/3)
+ *
+ * See to_r.
+ */
+static VALUE
+float_rationalize(int argc, VALUE *argv, VALUE self)
+{
+ VALUE e;
+
+ if (f_negative_p(self))
+ return f_negate(float_rationalize(argc, argv, f_abs(self)));
+
+ rb_scan_args(argc, argv, "01", &e);
+
+ if (argc != 0) {
+ return rb_flt_rationalize_with_prec(self, e);
+ }
+ else {
+ return rb_flt_rationalize(self);
+ }
+}
+
+#include <ctype.h>
+
+inline static int
+issign(int c)
+{
+ return (c == '-' || c == '+');
+}
+
+static int
+read_sign(const char **s)
+{
+ int sign = '?';
+
+ if (issign(**s)) {
+ sign = **s;
+ (*s)++;
+ }
+ return sign;
+}
+
+inline static int
+isdecimal(int c)
+{
+ return isdigit((unsigned char)c);
+}
+
+static int
+read_digits(const char **s, int strict,
+ VALUE *num, int *count)
+{
+ char *b, *bb;
+ int us = 1, ret = 1;
+ VALUE tmp;
+
+ if (!isdecimal(**s)) {
+ *num = ZERO;
+ return 0;
+ }
+
+ bb = b = ALLOCV_N(char, tmp, strlen(*s) + 1);
+
+ while (isdecimal(**s) || **s == '_') {
+ if (**s == '_') {
+ if (strict) {
+ if (us) {
+ ret = 0;
+ goto conv;
+ }
+ }
+ us = 1;
+ }
+ else {
+ if (count)
+ (*count)++;
+ *b++ = **s;
+ us = 0;
+ }
+ (*s)++;
+ }
+ if (us)
+ do {
+ (*s)--;
+ } while (**s == '_');
+ conv:
+ *b = '\0';
+ *num = rb_cstr_to_inum(bb, 10, 0);
+ ALLOCV_END(tmp);
+ return ret;
+}
+
+inline static int
+islettere(int c)
+{
+ return (c == 'e' || c == 'E');
+}
+
+static int
+read_num(const char **s, int numsign, int strict,
+ VALUE *num)
+{
+ VALUE ip, fp, exp;
+
+ *num = rb_rational_new2(ZERO, ONE);
+ exp = Qnil;
+
+ if (**s != '.') {
+ if (!read_digits(s, strict, &ip, NULL))
+ return 0;
+ *num = rb_rational_new2(ip, ONE);
+ }
+
+ if (**s == '.') {
+ int count = 0;
+
+ (*s)++;
+ if (!read_digits(s, strict, &fp, &count))
+ return 0;
+ {
+ VALUE l = f_expt10(INT2NUM(count));
+ *num = f_mul(*num, l);
+ *num = f_add(*num, fp);
+ *num = f_div(*num, l);
+ }
+ }
+
+ if (islettere(**s)) {
+ int expsign;
+
+ (*s)++;
+ expsign = read_sign(s);
+ if (!read_digits(s, strict, &exp, NULL))
+ return 0;
+ if (expsign == '-')
+ exp = f_negate(exp);
+ }
+
+ if (numsign == '-')
+ *num = f_negate(*num);
+ if (!NIL_P(exp)) {
+ VALUE l = f_expt10(exp);
+ *num = f_mul(*num, l);
+ }
+ return 1;
+}
+
+inline static int
+read_den(const char **s, int strict,
+ VALUE *num)
+{
+ if (!read_digits(s, strict, num, NULL))
+ return 0;
+ return 1;
+}
+
+static int
+read_rat_nos(const char **s, int sign, int strict,
+ VALUE *num)
+{
+ VALUE den;
+
+ if (!read_num(s, sign, strict, num))
+ return 0;
+ if (**s == '/') {
+ (*s)++;
+ if (!read_den(s, strict, &den))
+ return 0;
+ if (!(FIXNUM_P(den) && FIX2LONG(den) == 1))
+ *num = f_div(*num, den);
+ }
+ return 1;
+}
+
+static int
+read_rat(const char **s, int strict,
+ VALUE *num)
+{
+ int sign;
+
+ sign = read_sign(s);
+ if (!read_rat_nos(s, sign, strict, num))
+ return 0;
+ return 1;
+}
+
+inline static void
+skip_ws(const char **s)
+{
+ while (isspace((unsigned char)**s))
+ (*s)++;
+}
+
+static int
+parse_rat(const char *s, int strict,
+ VALUE *num)
+{
+ skip_ws(&s);
+ if (!read_rat(&s, strict, num))
+ return 0;
+ skip_ws(&s);
+
+ if (strict)
+ if (*s != '\0')
+ return 0;
+ return 1;
+}
+
+static VALUE
+string_to_r_strict(VALUE self)
+{
+ char *s;
+ VALUE num;
+
+ rb_must_asciicompat(self);
+
+ s = RSTRING_PTR(self);
+
+ if (!s || memchr(s, '\0', RSTRING_LEN(self)))
+ rb_raise(rb_eArgError, "string contains null byte");
+
+ if (s && s[RSTRING_LEN(self)]) {
+ rb_str_modify(self);
+ s = RSTRING_PTR(self);
+ s[RSTRING_LEN(self)] = '\0';
+ }
+
+ if (!s)
+ s = (char *)"";
+
+ if (!parse_rat(s, 1, &num)) {
+ VALUE ins = f_inspect(self);
+ rb_raise(rb_eArgError, "invalid value for convert(): %s",
+ StringValuePtr(ins));
+ }
+
+ if (RB_TYPE_P(num, T_FLOAT))
+ rb_raise(rb_eFloatDomainError, "Infinity");
+ return num;
+}
+
+/*
+ * call-seq:
+ * str.to_r -> rational
+ *
+ * Returns a rational which denotes the string form. The parser
+ * ignores leading whitespaces and trailing garbage. Any digit
+ * sequences can be separated by an underscore. Returns zero for null
+ * or garbage string.
+ *
+ * NOTE: '0.3'.to_r isn't the same as 0.3.to_r. The former is
+ * equivalent to '3/10'.to_r, but the latter isn't so.
+ *
+ * ' 2 '.to_r #=> (2/1)
+ * '300/2'.to_r #=> (150/1)
+ * '-9.2'.to_r #=> (-46/5)
+ * '-9.2e2'.to_r #=> (-920/1)
+ * '1_234_567'.to_r #=> (1234567/1)
+ * '21 june 09'.to_r #=> (21/1)
+ * '21/06/09'.to_r #=> (7/2)
+ * 'bwv 1079'.to_r #=> (0/1)
+ *
+ * See Kernel.Rational.
+ */
+static VALUE
+string_to_r(VALUE self)
+{
+ char *s;
+ VALUE num;
+
+ rb_must_asciicompat(self);
+
+ s = RSTRING_PTR(self);
+
+ if (s && s[RSTRING_LEN(self)]) {
+ rb_str_modify(self);
+ s = RSTRING_PTR(self);
+ s[RSTRING_LEN(self)] = '\0';
+ }
+
+ if (!s)
+ s = (char *)"";
+
+ (void)parse_rat(s, 0, &num);
+
+ if (RB_TYPE_P(num, T_FLOAT))
+ rb_raise(rb_eFloatDomainError, "Infinity");
+ return num;
+}
+
+VALUE
+rb_cstr_to_rat(const char *s, int strict) /* for complex's internal */
+{
+ VALUE num;
+
+ (void)parse_rat(s, strict, &num);
+
+ if (RB_TYPE_P(num, T_FLOAT))
+ rb_raise(rb_eFloatDomainError, "Infinity");
+ return num;
+}
+
+static VALUE
+nurat_s_convert(int argc, VALUE *argv, VALUE klass)
+{
+ VALUE a1, a2, backref;
+
+ rb_scan_args(argc, argv, "11", &a1, &a2);
+
+ if (NIL_P(a1) || (argc == 2 && NIL_P(a2)))
+ rb_raise(rb_eTypeError, "can't convert nil into Rational");
+
+ if (RB_TYPE_P(a1, T_COMPLEX)) {
+ if (k_exact_zero_p(RCOMPLEX(a1)->imag))
+ a1 = RCOMPLEX(a1)->real;
+ }
+
+ if (RB_TYPE_P(a2, T_COMPLEX)) {
+ if (k_exact_zero_p(RCOMPLEX(a2)->imag))
+ a2 = RCOMPLEX(a2)->real;
+ }
+
+ backref = rb_backref_get();
+ rb_match_busy(backref);
+
+ if (RB_TYPE_P(a1, T_FLOAT)) {
+ a1 = f_to_r(a1);
+ }
+ else if (RB_TYPE_P(a1, T_STRING)) {
+ a1 = string_to_r_strict(a1);
+ }
+
+ if (RB_TYPE_P(a2, T_FLOAT)) {
+ a2 = f_to_r(a2);
+ }
+ else if (RB_TYPE_P(a2, T_STRING)) {
+ a2 = string_to_r_strict(a2);
+ }
+
+ rb_backref_set(backref);
+
+ if (RB_TYPE_P(a1, T_RATIONAL)) {
+ if (argc == 1 || (k_exact_one_p(a2)))
+ return a1;
+ }
+
+ if (argc == 1) {
+ if (!(k_numeric_p(a1) && k_integer_p(a1)))
+ return rb_convert_type(a1, T_RATIONAL, "Rational", "to_r");
+ }
+ else {
+ if ((k_numeric_p(a1) && k_numeric_p(a2)) &&
+ (!f_integer_p(a1) || !f_integer_p(a2)))
+ return f_div(a1, a2);
+ }
+
+ {
+ VALUE argv2[2];
+ argv2[0] = a1;
+ argv2[1] = a2;
+ return nurat_s_new(argc, argv2, klass);
+ }
+}
+
+/*
+ * A rational number can be represented as a paired integer number;
+ * a/b (b>0). Where a is numerator and b is denominator. Integer a
+ * equals rational a/1 mathematically.
+ *
+ * In ruby, you can create rational object with Rational, to_r,
+ * rationalize method or suffixing r to a literal. The return values will be irreducible.
+ *
+ * Rational(1) #=> (1/1)
+ * Rational(2, 3) #=> (2/3)
+ * Rational(4, -6) #=> (-2/3)
+ * 3.to_r #=> (3/1)
+ * 2/3r #=> (2/3)
+ *
+ * You can also create rational object from floating-point numbers or
+ * strings.
+ *
+ * Rational(0.3) #=> (5404319552844595/18014398509481984)
+ * Rational('0.3') #=> (3/10)
+ * Rational('2/3') #=> (2/3)
+ *
+ * 0.3.to_r #=> (5404319552844595/18014398509481984)
+ * '0.3'.to_r #=> (3/10)
+ * '2/3'.to_r #=> (2/3)
+ * 0.3.rationalize #=> (3/10)
+ *
+ * A rational object is an exact number, which helps you to write
+ * program without any rounding errors.
+ *
+ * 10.times.inject(0){|t,| t + 0.1} #=> 0.9999999999999999
+ * 10.times.inject(0){|t,| t + Rational('0.1')} #=> (1/1)
+ *
+ * However, when an expression has inexact factor (numerical value or
+ * operation), will produce an inexact result.
+ *
+ * Rational(10) / 3 #=> (10/3)
+ * Rational(10) / 3.0 #=> 3.3333333333333335
+ *
+ * Rational(-8) ** Rational(1, 3)
+ * #=> (1.0000000000000002+1.7320508075688772i)
+ */
+void
+Init_Rational(void)
+{
+ VALUE compat;
+#undef rb_intern
+#define rb_intern(str) rb_intern_const(str)
+
+ assert(fprintf(stderr, "assert() is now active\n"));
+
+ id_abs = rb_intern("abs");
+ id_cmp = rb_intern("<=>");
+ id_convert = rb_intern("convert");
+ id_eqeq_p = rb_intern("==");
+ id_expt = rb_intern("**");
+ id_fdiv = rb_intern("fdiv");
+ id_idiv = rb_intern("div");
+ id_integer_p = rb_intern("integer?");
+ id_negate = rb_intern("-@");
+ id_to_f = rb_intern("to_f");
+ id_to_i = rb_intern("to_i");
+ id_truncate = rb_intern("truncate");
+ id_i_num = rb_intern("@numerator");
+ id_i_den = rb_intern("@denominator");
+
+ rb_cRational = rb_define_class("Rational", rb_cNumeric);
+
+ rb_define_alloc_func(rb_cRational, nurat_s_alloc);
+ rb_undef_method(CLASS_OF(rb_cRational), "allocate");
+
+#if 0
+ rb_define_private_method(CLASS_OF(rb_cRational), "new!", nurat_s_new_bang, -1);
+ rb_define_private_method(CLASS_OF(rb_cRational), "new", nurat_s_new, -1);
+#else
+ rb_undef_method(CLASS_OF(rb_cRational), "new");
+#endif
+
+ rb_define_global_function("Rational", nurat_f_rational, -1);
+
+ rb_define_method(rb_cRational, "numerator", nurat_numerator, 0);
+ rb_define_method(rb_cRational, "denominator", nurat_denominator, 0);
+
+ rb_define_method(rb_cRational, "+", nurat_add, 1);
+ rb_define_method(rb_cRational, "-", nurat_sub, 1);
+ rb_define_method(rb_cRational, "*", nurat_mul, 1);
+ rb_define_method(rb_cRational, "/", nurat_div, 1);
+ rb_define_method(rb_cRational, "quo", nurat_div, 1);
+ rb_define_method(rb_cRational, "fdiv", nurat_fdiv, 1);
+ rb_define_method(rb_cRational, "**", nurat_expt, 1);
+
+ rb_define_method(rb_cRational, "<=>", nurat_cmp, 1);
+ rb_define_method(rb_cRational, "==", nurat_eqeq_p, 1);
+ rb_define_method(rb_cRational, "coerce", nurat_coerce, 1);
+
+#if 0 /* NUBY */
+ rb_define_method(rb_cRational, "//", nurat_idiv, 1);
+#endif
+
+#if 0
+ rb_define_method(rb_cRational, "quot", nurat_quot, 1);
+ rb_define_method(rb_cRational, "quotrem", nurat_quotrem, 1);
+#endif
+
+#if 0
+ rb_define_method(rb_cRational, "rational?", nurat_true, 0);
+ rb_define_method(rb_cRational, "exact?", nurat_true, 0);
+#endif
+
+ rb_define_method(rb_cRational, "floor", nurat_floor_n, -1);
+ rb_define_method(rb_cRational, "ceil", nurat_ceil_n, -1);
+ rb_define_method(rb_cRational, "truncate", nurat_truncate_n, -1);
+ rb_define_method(rb_cRational, "round", nurat_round_n, -1);
+
+ rb_define_method(rb_cRational, "to_i", nurat_truncate, 0);
+ rb_define_method(rb_cRational, "to_f", nurat_to_f, 0);
+ rb_define_method(rb_cRational, "to_r", nurat_to_r, 0);
+ rb_define_method(rb_cRational, "rationalize", nurat_rationalize, -1);
+
+ rb_define_method(rb_cRational, "hash", nurat_hash, 0);
+
+ rb_define_method(rb_cRational, "to_s", nurat_to_s, 0);
+ rb_define_method(rb_cRational, "inspect", nurat_inspect, 0);
+
+ rb_define_private_method(rb_cRational, "marshal_dump", nurat_marshal_dump, 0);
+ compat = rb_define_class_under(rb_cRational, "compatible", rb_cObject);
+ rb_define_private_method(compat, "marshal_load", nurat_marshal_load, 1);
+ rb_marshal_define_compat(rb_cRational, compat, nurat_dumper, nurat_loader);
+
+ /* --- */
+
+ rb_define_method(rb_cInteger, "gcd", rb_gcd, 1);
+ rb_define_method(rb_cInteger, "lcm", rb_lcm, 1);
+ rb_define_method(rb_cInteger, "gcdlcm", rb_gcdlcm, 1);
+
+ rb_define_method(rb_cNumeric, "numerator", numeric_numerator, 0);
+ rb_define_method(rb_cNumeric, "denominator", numeric_denominator, 0);
+ rb_define_method(rb_cNumeric, "quo", numeric_quo, 1);
+
+ rb_define_method(rb_cInteger, "numerator", integer_numerator, 0);
+ rb_define_method(rb_cInteger, "denominator", integer_denominator, 0);
+
+ rb_define_method(rb_cFloat, "numerator", float_numerator, 0);
+ rb_define_method(rb_cFloat, "denominator", float_denominator, 0);
+
+ rb_define_method(rb_cNilClass, "to_r", nilclass_to_r, 0);
+ rb_define_method(rb_cNilClass, "rationalize", nilclass_rationalize, -1);
+ rb_define_method(rb_cInteger, "to_r", integer_to_r, 0);
+ rb_define_method(rb_cInteger, "rationalize", integer_rationalize, -1);
+ rb_define_method(rb_cFloat, "to_r", float_to_r, 0);
+ rb_define_method(rb_cFloat, "rationalize", float_rationalize, -1);
+
+ rb_define_method(rb_cString, "to_r", string_to_r, 0);
+
+ rb_define_private_method(CLASS_OF(rb_cRational), "convert", nurat_s_convert, -1);
+
+ rb_provide("rational.so"); /* for backward compatibility */
+}
+
+/*
+Local variables:
+c-file-style: "ruby"
+End:
+*/