summaryrefslogtreecommitdiff
path: root/jni/ruby/numeric.c
diff options
context:
space:
mode:
Diffstat (limited to 'jni/ruby/numeric.c')
-rw-r--r--jni/ruby/numeric.c4271
1 files changed, 4271 insertions, 0 deletions
diff --git a/jni/ruby/numeric.c b/jni/ruby/numeric.c
new file mode 100644
index 0000000..bf03f3e
--- /dev/null
+++ b/jni/ruby/numeric.c
@@ -0,0 +1,4271 @@
+/**********************************************************************
+
+ numeric.c -
+
+ $Author: nagachika $
+ created at: Fri Aug 13 18:33:09 JST 1993
+
+ Copyright (C) 1993-2007 Yukihiro Matsumoto
+
+**********************************************************************/
+
+#include "internal.h"
+#include "ruby/util.h"
+#include "id.h"
+#include <ctype.h>
+#include <math.h>
+#include <stdio.h>
+
+#if defined(__FreeBSD__) && __FreeBSD__ < 4
+#include <floatingpoint.h>
+#endif
+
+#ifdef HAVE_FLOAT_H
+#include <float.h>
+#endif
+
+#ifdef HAVE_IEEEFP_H
+#include <ieeefp.h>
+#endif
+
+#if !defined HAVE_ISFINITE && !defined isfinite
+#if defined HAVE_FINITE && !defined finite && !defined _WIN32
+extern int finite(double);
+# define HAVE_ISFINITE 1
+# define isfinite(x) finite(x)
+#endif
+#endif
+
+/* use IEEE 64bit values if not defined */
+#ifndef FLT_RADIX
+#define FLT_RADIX 2
+#endif
+#ifndef FLT_ROUNDS
+#define FLT_ROUNDS 1
+#endif
+#ifndef DBL_MIN
+#define DBL_MIN 2.2250738585072014e-308
+#endif
+#ifndef DBL_MAX
+#define DBL_MAX 1.7976931348623157e+308
+#endif
+#ifndef DBL_MIN_EXP
+#define DBL_MIN_EXP (-1021)
+#endif
+#ifndef DBL_MAX_EXP
+#define DBL_MAX_EXP 1024
+#endif
+#ifndef DBL_MIN_10_EXP
+#define DBL_MIN_10_EXP (-307)
+#endif
+#ifndef DBL_MAX_10_EXP
+#define DBL_MAX_10_EXP 308
+#endif
+#ifndef DBL_DIG
+#define DBL_DIG 15
+#endif
+#ifndef DBL_MANT_DIG
+#define DBL_MANT_DIG 53
+#endif
+#ifndef DBL_EPSILON
+#define DBL_EPSILON 2.2204460492503131e-16
+#endif
+
+#ifdef HAVE_INFINITY
+#elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */
+const union bytesequence4_or_float rb_infinity = {{0x00, 0x00, 0x80, 0x7f}};
+#else
+const union bytesequence4_or_float rb_infinity = {{0x7f, 0x80, 0x00, 0x00}};
+#endif
+
+#ifdef HAVE_NAN
+#elif !defined(WORDS_BIGENDIAN) /* BYTE_ORDER == LITTLE_ENDIAN */
+const union bytesequence4_or_float rb_nan = {{0x00, 0x00, 0xc0, 0x7f}};
+#else
+const union bytesequence4_or_float rb_nan = {{0x7f, 0xc0, 0x00, 0x00}};
+#endif
+
+#ifndef HAVE_ROUND
+double
+round(double x)
+{
+ double f;
+
+ if (x > 0.0) {
+ f = floor(x);
+ x = f + (x - f >= 0.5);
+ }
+ else if (x < 0.0) {
+ f = ceil(x);
+ x = f - (f - x >= 0.5);
+ }
+ return x;
+}
+#endif
+
+static VALUE fix_uminus(VALUE num);
+static VALUE fix_mul(VALUE x, VALUE y);
+static VALUE int_pow(long x, unsigned long y);
+
+static ID id_coerce, id_div;
+#define id_to_i idTo_i
+#define id_eq idEq
+#define id_cmp idCmp
+
+VALUE rb_cNumeric;
+VALUE rb_cFloat;
+VALUE rb_cInteger;
+VALUE rb_cFixnum;
+
+VALUE rb_eZeroDivError;
+VALUE rb_eFloatDomainError;
+
+static ID id_to, id_by;
+
+void
+rb_num_zerodiv(void)
+{
+ rb_raise(rb_eZeroDivError, "divided by 0");
+}
+
+/* experimental API */
+int
+rb_num_to_uint(VALUE val, unsigned int *ret)
+{
+#define NUMERR_TYPE 1
+#define NUMERR_NEGATIVE 2
+#define NUMERR_TOOLARGE 3
+ if (FIXNUM_P(val)) {
+ long v = FIX2LONG(val);
+#if SIZEOF_INT < SIZEOF_LONG
+ if (v > (long)UINT_MAX) return NUMERR_TOOLARGE;
+#endif
+ if (v < 0) return NUMERR_NEGATIVE;
+ *ret = (unsigned int)v;
+ return 0;
+ }
+
+ if (RB_TYPE_P(val, T_BIGNUM)) {
+ if (BIGNUM_NEGATIVE_P(val)) return NUMERR_NEGATIVE;
+#if SIZEOF_INT < SIZEOF_LONG
+ /* long is 64bit */
+ return NUMERR_TOOLARGE;
+#else
+ /* long is 32bit */
+ if (rb_absint_size(val, NULL) > sizeof(int)) return NUMERR_TOOLARGE;
+ *ret = (unsigned int)rb_big2ulong((VALUE)val);
+ return 0;
+#endif
+ }
+ return NUMERR_TYPE;
+}
+
+#define method_basic_p(klass) rb_method_basic_definition_p(klass, mid)
+
+static inline int
+positive_int_p(VALUE num)
+{
+ const ID mid = '>';
+
+ if (FIXNUM_P(num)) {
+ if (method_basic_p(rb_cFixnum))
+ return (SIGNED_VALUE)num > 0;
+ }
+ else if (RB_TYPE_P(num, T_BIGNUM)) {
+ if (method_basic_p(rb_cBignum))
+ return BIGNUM_POSITIVE_P(num);
+ }
+ return RTEST(rb_funcall(num, mid, 1, INT2FIX(0)));
+}
+
+static inline int
+negative_int_p(VALUE num)
+{
+ const ID mid = '<';
+
+ if (FIXNUM_P(num)) {
+ if (method_basic_p(rb_cFixnum))
+ return (SIGNED_VALUE)num < 0;
+ }
+ else if (RB_TYPE_P(num, T_BIGNUM)) {
+ if (method_basic_p(rb_cBignum))
+ return BIGNUM_NEGATIVE_P(num);
+ }
+ return RTEST(rb_funcall(num, mid, 1, INT2FIX(0)));
+}
+
+int
+rb_num_negative_p(VALUE num)
+{
+ return negative_int_p(num);
+}
+
+/*
+ * call-seq:
+ * num.coerce(numeric) -> array
+ *
+ * If a +numeric is the same type as +num+, returns an array containing
+ * +numeric+ and +num+. Otherwise, returns an array with both a +numeric+ and
+ * +num+ represented as Float objects.
+ *
+ * This coercion mechanism is used by Ruby to handle mixed-type numeric
+ * operations: it is intended to find a compatible common type between the two
+ * operands of the operator.
+ *
+ * 1.coerce(2.5) #=> [2.5, 1.0]
+ * 1.2.coerce(3) #=> [3.0, 1.2]
+ * 1.coerce(2) #=> [2, 1]
+ */
+
+static VALUE
+num_coerce(VALUE x, VALUE y)
+{
+ if (CLASS_OF(x) == CLASS_OF(y))
+ return rb_assoc_new(y, x);
+ x = rb_Float(x);
+ y = rb_Float(y);
+ return rb_assoc_new(y, x);
+}
+
+static VALUE
+coerce_body(VALUE *x)
+{
+ return rb_funcall(x[1], id_coerce, 1, x[0]);
+}
+
+NORETURN(static void coerce_failed(VALUE x, VALUE y));
+static void
+coerce_failed(VALUE x, VALUE y)
+{
+ if (SPECIAL_CONST_P(y) || BUILTIN_TYPE(y) == T_FLOAT) {
+ y = rb_inspect(y);
+ }
+ else {
+ y = rb_obj_class(y);
+ }
+ rb_raise(rb_eTypeError, "%"PRIsVALUE" can't be coerced into %"PRIsVALUE,
+ y, rb_obj_class(x));
+}
+
+static VALUE
+coerce_rescue(VALUE *x)
+{
+ coerce_failed(x[0], x[1]);
+ return Qnil; /* dummy */
+}
+
+static VALUE
+coerce_rescue_quiet(VALUE *x)
+{
+ return Qundef;
+}
+
+static int
+do_coerce(VALUE *x, VALUE *y, int err)
+{
+ VALUE ary;
+ VALUE a[2];
+
+ a[0] = *x; a[1] = *y;
+
+ if (!rb_respond_to(*y, id_coerce)) {
+ if (err) {
+ coerce_rescue(a);
+ }
+ return FALSE;
+ }
+
+ ary = rb_rescue(coerce_body, (VALUE)a, err ? coerce_rescue : coerce_rescue_quiet, (VALUE)a);
+ if (ary == Qundef) {
+ rb_warn("Numerical comparison operators will no more rescue exceptions of #coerce");
+ rb_warn("in the next release. Return nil in #coerce if the coercion is impossible.");
+ return FALSE;
+ }
+ if (!RB_TYPE_P(ary, T_ARRAY) || RARRAY_LEN(ary) != 2) {
+ if (err) {
+ rb_raise(rb_eTypeError, "coerce must return [x, y]");
+ } else if (!NIL_P(ary)) {
+ rb_warn("Bad return value for #coerce, called by numerical comparison operators.");
+ rb_warn("#coerce must return [x, y]. The next release will raise an error for this.");
+ }
+ return FALSE;
+ }
+
+ *x = RARRAY_AREF(ary, 0);
+ *y = RARRAY_AREF(ary, 1);
+ return TRUE;
+}
+
+VALUE
+rb_num_coerce_bin(VALUE x, VALUE y, ID func)
+{
+ do_coerce(&x, &y, TRUE);
+ return rb_funcall(x, func, 1, y);
+}
+
+VALUE
+rb_num_coerce_cmp(VALUE x, VALUE y, ID func)
+{
+ if (do_coerce(&x, &y, FALSE))
+ return rb_funcall(x, func, 1, y);
+ return Qnil;
+}
+
+VALUE
+rb_num_coerce_relop(VALUE x, VALUE y, ID func)
+{
+ VALUE c, x0 = x, y0 = y;
+
+ if (!do_coerce(&x, &y, FALSE) ||
+ NIL_P(c = rb_funcall(x, func, 1, y))) {
+ rb_cmperr(x0, y0);
+ return Qnil; /* not reached */
+ }
+ return c;
+}
+
+/*
+ * Trap attempts to add methods to Numeric objects. Always raises a TypeError.
+ *
+ * Numerics should be values; singleton_methods should not be added to them.
+ */
+
+static VALUE
+num_sadded(VALUE x, VALUE name)
+{
+ ID mid = rb_to_id(name);
+ /* ruby_frame = ruby_frame->prev; */ /* pop frame for "singleton_method_added" */
+ rb_remove_method_id(rb_singleton_class(x), mid);
+ rb_raise(rb_eTypeError,
+ "can't define singleton method \"%"PRIsVALUE"\" for %"PRIsVALUE,
+ rb_id2str(mid),
+ rb_obj_class(x));
+
+ UNREACHABLE;
+}
+
+/*
+ * Numerics are immutable values, which should not be copied.
+ *
+ * Any attempt to use this method on a Numeric will raise a TypeError.
+ */
+static VALUE
+num_init_copy(VALUE x, VALUE y)
+{
+ rb_raise(rb_eTypeError, "can't copy %"PRIsVALUE, rb_obj_class(x));
+
+ UNREACHABLE;
+}
+
+/*
+ * call-seq:
+ * +num -> num
+ *
+ * Unary Plus---Returns the receiver's value.
+ */
+
+static VALUE
+num_uplus(VALUE num)
+{
+ return num;
+}
+
+/*
+ * call-seq:
+ * num.i -> Complex(0,num)
+ *
+ * Returns the corresponding imaginary number.
+ * Not available for complex numbers.
+ */
+
+static VALUE
+num_imaginary(VALUE num)
+{
+ return rb_complex_new(INT2FIX(0), num);
+}
+
+
+/*
+ * call-seq:
+ * -num -> numeric
+ *
+ * Unary Minus---Returns the receiver's value, negated.
+ */
+
+static VALUE
+num_uminus(VALUE num)
+{
+ VALUE zero;
+
+ zero = INT2FIX(0);
+ do_coerce(&zero, &num, TRUE);
+
+ return rb_funcall(zero, '-', 1, num);
+}
+
+/*
+ * call-seq:
+ * num.fdiv(numeric) -> float
+ *
+ * Returns float division.
+ */
+
+static VALUE
+num_fdiv(VALUE x, VALUE y)
+{
+ return rb_funcall(rb_Float(x), '/', 1, y);
+}
+
+
+/*
+ * call-seq:
+ * num.div(numeric) -> integer
+ *
+ * Uses +/+ to perform division, then converts the result to an integer.
+ * +numeric+ does not define the +/+ operator; this is left to subclasses.
+ *
+ * Equivalent to <code>num.divmod(numeric)[0]</code>.
+ *
+ * See Numeric#divmod.
+ */
+
+static VALUE
+num_div(VALUE x, VALUE y)
+{
+ if (rb_equal(INT2FIX(0), y)) rb_num_zerodiv();
+ return rb_funcall(rb_funcall(x, '/', 1, y), rb_intern("floor"), 0);
+}
+
+
+/*
+ * call-seq:
+ * num.modulo(numeric) -> real
+ *
+ * x.modulo(y) means x-y*(x/y).floor
+ *
+ * Equivalent to <code>num.divmod(numeric)[1]</code>.
+ *
+ * See Numeric#divmod.
+ */
+
+static VALUE
+num_modulo(VALUE x, VALUE y)
+{
+ return rb_funcall(x, '-', 1,
+ rb_funcall(y, '*', 1,
+ rb_funcall(x, rb_intern("div"), 1, y)));
+}
+
+/*
+ * call-seq:
+ * num.remainder(numeric) -> real
+ *
+ * x.remainder(y) means x-y*(x/y).truncate
+ *
+ * See Numeric#divmod.
+ */
+
+static VALUE
+num_remainder(VALUE x, VALUE y)
+{
+ VALUE z = rb_funcall(x, '%', 1, y);
+
+ if ((!rb_equal(z, INT2FIX(0))) &&
+ ((negative_int_p(x) &&
+ positive_int_p(y)) ||
+ (positive_int_p(x) &&
+ negative_int_p(y)))) {
+ return rb_funcall(z, '-', 1, y);
+ }
+ return z;
+}
+
+/*
+ * call-seq:
+ * num.divmod(numeric) -> array
+ *
+ * Returns an array containing the quotient and modulus obtained by dividing
+ * +num+ by +numeric+.
+ *
+ * If <code>q, r = * x.divmod(y)</code>, then
+ *
+ * q = floor(x/y)
+ * x = q*y+r
+ *
+ * The quotient is rounded toward -infinity, as shown in the following table:
+ *
+ * a | b | a.divmod(b) | a/b | a.modulo(b) | a.remainder(b)
+ * ------+-----+---------------+---------+-------------+---------------
+ * 13 | 4 | 3, 1 | 3 | 1 | 1
+ * ------+-----+---------------+---------+-------------+---------------
+ * 13 | -4 | -4, -3 | -4 | -3 | 1
+ * ------+-----+---------------+---------+-------------+---------------
+ * -13 | 4 | -4, 3 | -4 | 3 | -1
+ * ------+-----+---------------+---------+-------------+---------------
+ * -13 | -4 | 3, -1 | 3 | -1 | -1
+ * ------+-----+---------------+---------+-------------+---------------
+ * 11.5 | 4 | 2, 3.5 | 2.875 | 3.5 | 3.5
+ * ------+-----+---------------+---------+-------------+---------------
+ * 11.5 | -4 | -3, -0.5 | -2.875 | -0.5 | 3.5
+ * ------+-----+---------------+---------+-------------+---------------
+ * -11.5 | 4 | -3, 0.5 | -2.875 | 0.5 | -3.5
+ * ------+-----+---------------+---------+-------------+---------------
+ * -11.5 | -4 | 2, -3.5 | 2.875 | -3.5 | -3.5
+ *
+ *
+ * Examples
+ *
+ * 11.divmod(3) #=> [3, 2]
+ * 11.divmod(-3) #=> [-4, -1]
+ * 11.divmod(3.5) #=> [3, 0.5]
+ * (-11).divmod(3.5) #=> [-4, 3.0]
+ * (11.5).divmod(3.5) #=> [3, 1.0]
+ */
+
+static VALUE
+num_divmod(VALUE x, VALUE y)
+{
+ return rb_assoc_new(num_div(x, y), num_modulo(x, y));
+}
+
+/*
+ * call-seq:
+ * num.real? -> true or false
+ *
+ * Returns +true+ if +num+ is a Real number. (i.e. not Complex).
+ */
+
+static VALUE
+num_real_p(VALUE num)
+{
+ return Qtrue;
+}
+
+/*
+ * call-seq:
+ * num.integer? -> true or false
+ *
+ * Returns +true+ if +num+ is an Integer (including Fixnum and Bignum).
+ *
+ * (1.0).integer? #=> false
+ * (1).integer? #=> true
+ */
+
+static VALUE
+num_int_p(VALUE num)
+{
+ return Qfalse;
+}
+
+/*
+ * call-seq:
+ * num.abs -> numeric
+ * num.magnitude -> numeric
+ *
+ * Returns the absolute value of +num+.
+ *
+ * 12.abs #=> 12
+ * (-34.56).abs #=> 34.56
+ * -34.56.abs #=> 34.56
+ *
+ * Numeric#magnitude is an alias of Numeric#abs.
+ */
+
+static VALUE
+num_abs(VALUE num)
+{
+ if (negative_int_p(num)) {
+ return rb_funcall(num, rb_intern("-@"), 0);
+ }
+ return num;
+}
+
+
+/*
+ * call-seq:
+ * num.zero? -> true or false
+ *
+ * Returns +true+ if +num+ has a zero value.
+ */
+
+static VALUE
+num_zero_p(VALUE num)
+{
+ if (rb_equal(num, INT2FIX(0))) {
+ return Qtrue;
+ }
+ return Qfalse;
+}
+
+
+/*
+ * call-seq:
+ * num.nonzero? -> self or nil
+ *
+ * Returns +self+ if +num+ is not zero, +nil+ otherwise.
+ *
+ * This behavior is useful when chaining comparisons:
+ *
+ * a = %w( z Bb bB bb BB a aA Aa AA A )
+ * b = a.sort {|a,b| (a.downcase <=> b.downcase).nonzero? || a <=> b }
+ * b #=> ["A", "a", "AA", "Aa", "aA", "BB", "Bb", "bB", "bb", "z"]
+ */
+
+static VALUE
+num_nonzero_p(VALUE num)
+{
+ if (RTEST(rb_funcall(num, rb_intern("zero?"), 0, 0))) {
+ return Qnil;
+ }
+ return num;
+}
+
+/*
+ * call-seq:
+ * num.to_int -> integer
+ *
+ * Invokes the child class's +to_i+ method to convert +num+ to an integer.
+ *
+ * 1.0.class => Float
+ * 1.0.to_int.class => Fixnum
+ * 1.0.to_i.class => Fixnum
+ */
+
+static VALUE
+num_to_int(VALUE num)
+{
+ return rb_funcall(num, id_to_i, 0, 0);
+}
+
+
+/********************************************************************
+ *
+ * Document-class: Float
+ *
+ * Float objects represent inexact real numbers using the native
+ * architecture's double-precision floating point representation.
+ *
+ * Floating point has a different arithmetic and is an inexact number.
+ * So you should know its esoteric system. see following:
+ *
+ * - http://docs.sun.com/source/806-3568/ncg_goldberg.html
+ * - http://wiki.github.com/rdp/ruby_tutorials_core/ruby-talk-faq#wiki-floats_imprecise
+ * - http://en.wikipedia.org/wiki/Floating_point#Accuracy_problems
+ */
+
+VALUE
+rb_float_new_in_heap(double d)
+{
+ NEWOBJ_OF(flt, struct RFloat, rb_cFloat, T_FLOAT | (RGENGC_WB_PROTECTED_FLOAT ? FL_WB_PROTECTED : 0));
+
+ flt->float_value = d;
+ OBJ_FREEZE(flt);
+ return (VALUE)flt;
+}
+
+/*
+ * call-seq:
+ * float.to_s -> string
+ *
+ * Returns a string containing a representation of self. As well as a fixed or
+ * exponential form of the +float+, the call may return +NaN+, +Infinity+, and
+ * +-Infinity+.
+ */
+
+static VALUE
+flo_to_s(VALUE flt)
+{
+ enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
+ enum {float_dig = DBL_DIG+1};
+ char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
+ double value = RFLOAT_VALUE(flt);
+ VALUE s;
+ char *p, *e;
+ int sign, decpt, digs;
+
+ if (isinf(value))
+ return rb_usascii_str_new2(value < 0 ? "-Infinity" : "Infinity");
+ else if (isnan(value))
+ return rb_usascii_str_new2("NaN");
+
+ p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
+ s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
+ if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
+ memcpy(buf, p, digs);
+ xfree(p);
+ if (decpt > 0) {
+ if (decpt < digs) {
+ memmove(buf + decpt + 1, buf + decpt, digs - decpt);
+ buf[decpt] = '.';
+ rb_str_cat(s, buf, digs + 1);
+ }
+ else if (decpt <= DBL_DIG) {
+ long len;
+ char *ptr;
+ rb_str_cat(s, buf, digs);
+ rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
+ ptr = RSTRING_PTR(s) + len;
+ if (decpt > digs) {
+ memset(ptr, '0', decpt - digs);
+ ptr += decpt - digs;
+ }
+ memcpy(ptr, ".0", 2);
+ }
+ else {
+ goto exp;
+ }
+ }
+ else if (decpt > -4) {
+ long len;
+ char *ptr;
+ rb_str_cat(s, "0.", 2);
+ rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
+ ptr = RSTRING_PTR(s);
+ memset(ptr += len, '0', -decpt);
+ memcpy(ptr -= decpt, buf, digs);
+ }
+ else {
+ exp:
+ if (digs > 1) {
+ memmove(buf + 2, buf + 1, digs - 1);
+ }
+ else {
+ buf[2] = '0';
+ digs++;
+ }
+ buf[1] = '.';
+ rb_str_cat(s, buf, digs + 1);
+ rb_str_catf(s, "e%+03d", decpt - 1);
+ }
+ return s;
+}
+
+/*
+ * call-seq:
+ * float.coerce(numeric) -> array
+ *
+ * Returns an array with both a +numeric+ and a +float+ represented as Float
+ * objects.
+ *
+ * This is achieved by converting a +numeric+ to a Float.
+ *
+ * 1.2.coerce(3) #=> [3.0, 1.2]
+ * 2.5.coerce(1.1) #=> [1.1, 2.5]
+ */
+
+static VALUE
+flo_coerce(VALUE x, VALUE y)
+{
+ return rb_assoc_new(rb_Float(y), x);
+}
+
+/*
+ * call-seq:
+ * -float -> float
+ *
+ * Returns float, negated.
+ */
+
+static VALUE
+flo_uminus(VALUE flt)
+{
+ return DBL2NUM(-RFLOAT_VALUE(flt));
+}
+
+/*
+ * call-seq:
+ * float + other -> float
+ *
+ * Returns a new float which is the sum of +float+ and +other+.
+ */
+
+static VALUE
+flo_plus(VALUE x, VALUE y)
+{
+ if (RB_TYPE_P(y, T_FIXNUM)) {
+ return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
+ }
+ else {
+ return rb_num_coerce_bin(x, y, '+');
+ }
+}
+
+/*
+ * call-seq:
+ * float - other -> float
+ *
+ * Returns a new float which is the difference of +float+ and +other+.
+ */
+
+static VALUE
+flo_minus(VALUE x, VALUE y)
+{
+ if (RB_TYPE_P(y, T_FIXNUM)) {
+ return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
+ }
+ else {
+ return rb_num_coerce_bin(x, y, '-');
+ }
+}
+
+/*
+ * call-seq:
+ * float * other -> float
+ *
+ * Returns a new float which is the product of +float+ and +other+.
+ */
+
+static VALUE
+flo_mul(VALUE x, VALUE y)
+{
+ if (RB_TYPE_P(y, T_FIXNUM)) {
+ return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
+ }
+ else {
+ return rb_num_coerce_bin(x, y, '*');
+ }
+}
+
+/*
+ * call-seq:
+ * float / other -> float
+ *
+ * Returns a new float which is the result of dividing +float+ by +other+.
+ */
+
+static VALUE
+flo_div(VALUE x, VALUE y)
+{
+ long f_y;
+ double d;
+
+ if (RB_TYPE_P(y, T_FIXNUM)) {
+ f_y = FIX2LONG(y);
+ return DBL2NUM(RFLOAT_VALUE(x) / (double)f_y);
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ d = rb_big2dbl(y);
+ return DBL2NUM(RFLOAT_VALUE(x) / d);
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y));
+ }
+ else {
+ return rb_num_coerce_bin(x, y, '/');
+ }
+}
+
+/*
+ * call-seq:
+ * float.fdiv(numeric) -> float
+ * float.quo(numeric) -> float
+ *
+ * Returns <code>float / numeric</code>, same as Float#/.
+ */
+
+static VALUE
+flo_quo(VALUE x, VALUE y)
+{
+ return rb_funcall(x, '/', 1, y);
+}
+
+static void
+flodivmod(double x, double y, double *divp, double *modp)
+{
+ double div, mod;
+
+ if (isnan(y)) {
+ /* y is NaN so all results are NaN */
+ if (modp) *modp = y;
+ if (divp) *divp = y;
+ return;
+ }
+ if (y == 0.0) rb_num_zerodiv();
+ if ((x == 0.0) || (isinf(y) && !isinf(x)))
+ mod = x;
+ else {
+#ifdef HAVE_FMOD
+ mod = fmod(x, y);
+#else
+ double z;
+
+ modf(x/y, &z);
+ mod = x - z * y;
+#endif
+ }
+ if (isinf(x) && !isinf(y))
+ div = x;
+ else
+ div = (x - mod) / y;
+ if (y*mod < 0) {
+ mod += y;
+ div -= 1.0;
+ }
+ if (modp) *modp = mod;
+ if (divp) *divp = div;
+}
+
+/*
+ * Returns the modulo of division of x by y.
+ * An error will be raised if y == 0.
+ */
+
+double
+ruby_float_mod(double x, double y)
+{
+ double mod;
+ flodivmod(x, y, 0, &mod);
+ return mod;
+}
+
+
+/*
+ * call-seq:
+ * float % other -> float
+ * float.modulo(other) -> float
+ *
+ * Return the modulo after division of +float+ by +other+.
+ *
+ * 6543.21.modulo(137) #=> 104.21
+ * 6543.21.modulo(137.24) #=> 92.9299999999996
+ */
+
+static VALUE
+flo_mod(VALUE x, VALUE y)
+{
+ double fy;
+
+ if (RB_TYPE_P(y, T_FIXNUM)) {
+ fy = (double)FIX2LONG(y);
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ fy = rb_big2dbl(y);
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ fy = RFLOAT_VALUE(y);
+ }
+ else {
+ return rb_num_coerce_bin(x, y, '%');
+ }
+ return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
+}
+
+static VALUE
+dbl2ival(double d)
+{
+ d = round(d);
+ if (FIXABLE(d)) {
+ return LONG2FIX((long)d);
+ }
+ return rb_dbl2big(d);
+}
+
+/*
+ * call-seq:
+ * float.divmod(numeric) -> array
+ *
+ * See Numeric#divmod.
+ *
+ * 42.0.divmod 6 #=> [7, 0.0]
+ * 42.0.divmod 5 #=> [8, 2.0]
+ */
+
+static VALUE
+flo_divmod(VALUE x, VALUE y)
+{
+ double fy, div, mod;
+ volatile VALUE a, b;
+
+ if (RB_TYPE_P(y, T_FIXNUM)) {
+ fy = (double)FIX2LONG(y);
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ fy = rb_big2dbl(y);
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ fy = RFLOAT_VALUE(y);
+ }
+ else {
+ return rb_num_coerce_bin(x, y, rb_intern("divmod"));
+ }
+ flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
+ a = dbl2ival(div);
+ b = DBL2NUM(mod);
+ return rb_assoc_new(a, b);
+}
+
+/*
+ * call-seq:
+ *
+ * float ** other -> float
+ *
+ * Raises +float+ to the power of +other+.
+ *
+ * 2.0**3 #=> 8.0
+ */
+
+static VALUE
+flo_pow(VALUE x, VALUE y)
+{
+ if (RB_TYPE_P(y, T_FIXNUM)) {
+ return DBL2NUM(pow(RFLOAT_VALUE(x), (double)FIX2LONG(y)));
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ return DBL2NUM(pow(RFLOAT_VALUE(x), rb_big2dbl(y)));
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ {
+ double dx = RFLOAT_VALUE(x);
+ double dy = RFLOAT_VALUE(y);
+ if (dx < 0 && dy != round(dy))
+ return rb_funcall(rb_complex_raw1(x), rb_intern("**"), 1, y);
+ return DBL2NUM(pow(dx, dy));
+ }
+ }
+ else {
+ return rb_num_coerce_bin(x, y, rb_intern("**"));
+ }
+}
+
+/*
+ * call-seq:
+ * num.eql?(numeric) -> true or false
+ *
+ * Returns +true+ if +num+ and +numeric+ are the same type and have equal
+ * values.
+ *
+ * 1 == 1.0 #=> true
+ * 1.eql?(1.0) #=> false
+ * (1.0).eql?(1.0) #=> true
+ */
+
+static VALUE
+num_eql(VALUE x, VALUE y)
+{
+ if (TYPE(x) != TYPE(y)) return Qfalse;
+
+ return rb_equal(x, y);
+}
+
+/*
+ * call-seq:
+ * number <=> other -> 0 or nil
+ *
+ * Returns zero if +number+ equals +other+, otherwise +nil+ is returned if the
+ * two values are incomparable.
+ */
+
+static VALUE
+num_cmp(VALUE x, VALUE y)
+{
+ if (x == y) return INT2FIX(0);
+ return Qnil;
+}
+
+static VALUE
+num_equal(VALUE x, VALUE y)
+{
+ if (x == y) return Qtrue;
+ return rb_funcall(y, id_eq, 1, x);
+}
+
+/*
+ * call-seq:
+ * float == obj -> true or false
+ *
+ * Returns +true+ only if +obj+ has the same value as +float+. Contrast this
+ * with Float#eql?, which requires obj to be a Float.
+ *
+ * The result of <code>NaN == NaN</code> is undefined, so the
+ * implementation-dependent value is returned.
+ *
+ * 1.0 == 1 #=> true
+ *
+ */
+
+static VALUE
+flo_eq(VALUE x, VALUE y)
+{
+ volatile double a, b;
+
+ if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
+ return rb_integer_float_eq(y, x);
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ b = RFLOAT_VALUE(y);
+#if defined(_MSC_VER) && _MSC_VER < 1300
+ if (isnan(b)) return Qfalse;
+#endif
+ }
+ else {
+ return num_equal(x, y);
+ }
+ a = RFLOAT_VALUE(x);
+#if defined(_MSC_VER) && _MSC_VER < 1300
+ if (isnan(a)) return Qfalse;
+#endif
+ return (a == b)?Qtrue:Qfalse;
+}
+
+/*
+ * call-seq:
+ * float.hash -> integer
+ *
+ * Returns a hash code for this float.
+ *
+ * See also Object#hash.
+ */
+
+static VALUE
+flo_hash(VALUE num)
+{
+ return rb_dbl_hash(RFLOAT_VALUE(num));
+}
+
+VALUE
+rb_dbl_hash(double d)
+{
+ st_index_t hash;
+
+ /* normalize -0.0 to 0.0 */
+ if (d == 0.0) d = 0.0;
+ hash = rb_memhash(&d, sizeof(d));
+ return LONG2FIX(hash);
+}
+
+VALUE
+rb_dbl_cmp(double a, double b)
+{
+ if (isnan(a) || isnan(b)) return Qnil;
+ if (a == b) return INT2FIX(0);
+ if (a > b) return INT2FIX(1);
+ if (a < b) return INT2FIX(-1);
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * float <=> real -> -1, 0, +1 or nil
+ *
+ * Returns -1, 0, +1 or nil depending on whether +float+ is less than, equal
+ * to, or greater than +real+. This is the basis for the tests in Comparable.
+ *
+ * The result of <code>NaN <=> NaN</code> is undefined, so the
+ * implementation-dependent value is returned.
+ *
+ * +nil+ is returned if the two values are incomparable.
+ */
+
+static VALUE
+flo_cmp(VALUE x, VALUE y)
+{
+ double a, b;
+ VALUE i;
+
+ a = RFLOAT_VALUE(x);
+ if (isnan(a)) return Qnil;
+ if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
+ VALUE rel = rb_integer_float_cmp(y, x);
+ if (FIXNUM_P(rel))
+ return INT2FIX(-FIX2INT(rel));
+ return rel;
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ b = RFLOAT_VALUE(y);
+ }
+ else {
+ if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
+ if (RTEST(i)) {
+ int j = rb_cmpint(i, x, y);
+ j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
+ return INT2FIX(j);
+ }
+ if (a > 0.0) return INT2FIX(1);
+ return INT2FIX(-1);
+ }
+ return rb_num_coerce_cmp(x, y, id_cmp);
+ }
+ return rb_dbl_cmp(a, b);
+}
+
+/*
+ * call-seq:
+ * float > real -> true or false
+ *
+ * Returns +true+ if +float+ is greater than +real+.
+ *
+ * The result of <code>NaN > NaN</code> is undefined, so the
+ * implementation-dependent value is returned.
+ */
+
+static VALUE
+flo_gt(VALUE x, VALUE y)
+{
+ double a, b;
+
+ a = RFLOAT_VALUE(x);
+ if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
+ VALUE rel = rb_integer_float_cmp(y, x);
+ if (FIXNUM_P(rel))
+ return -FIX2INT(rel) > 0 ? Qtrue : Qfalse;
+ return Qfalse;
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ b = RFLOAT_VALUE(y);
+#if defined(_MSC_VER) && _MSC_VER < 1300
+ if (isnan(b)) return Qfalse;
+#endif
+ }
+ else {
+ return rb_num_coerce_relop(x, y, '>');
+ }
+#if defined(_MSC_VER) && _MSC_VER < 1300
+ if (isnan(a)) return Qfalse;
+#endif
+ return (a > b)?Qtrue:Qfalse;
+}
+
+/*
+ * call-seq:
+ * float >= real -> true or false
+ *
+ * Returns +true+ if +float+ is greater than or equal to +real+.
+ *
+ * The result of <code>NaN >= NaN</code> is undefined, so the
+ * implementation-dependent value is returned.
+ */
+
+static VALUE
+flo_ge(VALUE x, VALUE y)
+{
+ double a, b;
+
+ a = RFLOAT_VALUE(x);
+ if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
+ VALUE rel = rb_integer_float_cmp(y, x);
+ if (FIXNUM_P(rel))
+ return -FIX2INT(rel) >= 0 ? Qtrue : Qfalse;
+ return Qfalse;
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ b = RFLOAT_VALUE(y);
+#if defined(_MSC_VER) && _MSC_VER < 1300
+ if (isnan(b)) return Qfalse;
+#endif
+ }
+ else {
+ return rb_num_coerce_relop(x, y, rb_intern(">="));
+ }
+#if defined(_MSC_VER) && _MSC_VER < 1300
+ if (isnan(a)) return Qfalse;
+#endif
+ return (a >= b)?Qtrue:Qfalse;
+}
+
+/*
+ * call-seq:
+ * float < real -> true or false
+ *
+ * Returns +true+ if +float+ is less than +real+.
+ *
+ * The result of <code>NaN < NaN</code> is undefined, so the
+ * implementation-dependent value is returned.
+ */
+
+static VALUE
+flo_lt(VALUE x, VALUE y)
+{
+ double a, b;
+
+ a = RFLOAT_VALUE(x);
+ if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
+ VALUE rel = rb_integer_float_cmp(y, x);
+ if (FIXNUM_P(rel))
+ return -FIX2INT(rel) < 0 ? Qtrue : Qfalse;
+ return Qfalse;
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ b = RFLOAT_VALUE(y);
+#if defined(_MSC_VER) && _MSC_VER < 1300
+ if (isnan(b)) return Qfalse;
+#endif
+ }
+ else {
+ return rb_num_coerce_relop(x, y, '<');
+ }
+#if defined(_MSC_VER) && _MSC_VER < 1300
+ if (isnan(a)) return Qfalse;
+#endif
+ return (a < b)?Qtrue:Qfalse;
+}
+
+/*
+ * call-seq:
+ * float <= real -> true or false
+ *
+ * Returns +true+ if +float+ is less than or equal to +real+.
+ *
+ * The result of <code>NaN <= NaN</code> is undefined, so the
+ * implementation-dependent value is returned.
+ */
+
+static VALUE
+flo_le(VALUE x, VALUE y)
+{
+ double a, b;
+
+ a = RFLOAT_VALUE(x);
+ if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
+ VALUE rel = rb_integer_float_cmp(y, x);
+ if (FIXNUM_P(rel))
+ return -FIX2INT(rel) <= 0 ? Qtrue : Qfalse;
+ return Qfalse;
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ b = RFLOAT_VALUE(y);
+#if defined(_MSC_VER) && _MSC_VER < 1300
+ if (isnan(b)) return Qfalse;
+#endif
+ }
+ else {
+ return rb_num_coerce_relop(x, y, rb_intern("<="));
+ }
+#if defined(_MSC_VER) && _MSC_VER < 1300
+ if (isnan(a)) return Qfalse;
+#endif
+ return (a <= b)?Qtrue:Qfalse;
+}
+
+/*
+ * call-seq:
+ * float.eql?(obj) -> true or false
+ *
+ * Returns +true+ only if +obj+ is a Float with the same value as +float+.
+ * Contrast this with Float#==, which performs type conversions.
+ *
+ * The result of <code>NaN.eql?(NaN)</code> is undefined, so the
+ * implementation-dependent value is returned.
+ *
+ * 1.0.eql?(1) #=> false
+ */
+
+static VALUE
+flo_eql(VALUE x, VALUE y)
+{
+ if (RB_TYPE_P(y, T_FLOAT)) {
+ double a = RFLOAT_VALUE(x);
+ double b = RFLOAT_VALUE(y);
+#if defined(_MSC_VER) && _MSC_VER < 1300
+ if (isnan(a) || isnan(b)) return Qfalse;
+#endif
+ if (a == b)
+ return Qtrue;
+ }
+ return Qfalse;
+}
+
+/*
+ * call-seq:
+ * float.to_f -> self
+ *
+ * Since +float+ is already a float, returns +self+.
+ */
+
+static VALUE
+flo_to_f(VALUE num)
+{
+ return num;
+}
+
+/*
+ * call-seq:
+ * float.abs -> float
+ * float.magnitude -> float
+ *
+ * Returns the absolute value of +float+.
+ *
+ * (-34.56).abs #=> 34.56
+ * -34.56.abs #=> 34.56
+ *
+ */
+
+static VALUE
+flo_abs(VALUE flt)
+{
+ double val = fabs(RFLOAT_VALUE(flt));
+ return DBL2NUM(val);
+}
+
+/*
+ * call-seq:
+ * float.zero? -> true or false
+ *
+ * Returns +true+ if +float+ is 0.0.
+ *
+ */
+
+static VALUE
+flo_zero_p(VALUE num)
+{
+ if (RFLOAT_VALUE(num) == 0.0) {
+ return Qtrue;
+ }
+ return Qfalse;
+}
+
+/*
+ * call-seq:
+ * float.nan? -> true or false
+ *
+ * Returns +true+ if +float+ is an invalid IEEE floating point number.
+ *
+ * a = -1.0 #=> -1.0
+ * a.nan? #=> false
+ * a = 0.0/0.0 #=> NaN
+ * a.nan? #=> true
+ */
+
+static VALUE
+flo_is_nan_p(VALUE num)
+{
+ double value = RFLOAT_VALUE(num);
+
+ return isnan(value) ? Qtrue : Qfalse;
+}
+
+/*
+ * call-seq:
+ * float.infinite? -> nil, -1, +1
+ *
+ * Return values corresponding to the value of +float+:
+ *
+ * +finite+:: +nil+
+ * +-Infinity+:: +-1+
+ * ++Infinity+:: +1+
+ *
+ * For example:
+ *
+ * (0.0).infinite? #=> nil
+ * (-1.0/0.0).infinite? #=> -1
+ * (+1.0/0.0).infinite? #=> 1
+ */
+
+static VALUE
+flo_is_infinite_p(VALUE num)
+{
+ double value = RFLOAT_VALUE(num);
+
+ if (isinf(value)) {
+ return INT2FIX( value < 0 ? -1 : 1 );
+ }
+
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * float.finite? -> true or false
+ *
+ * Returns +true+ if +float+ is a valid IEEE floating point number (it is not
+ * infinite, and Float#nan? is +false+).
+ *
+ */
+
+static VALUE
+flo_is_finite_p(VALUE num)
+{
+ double value = RFLOAT_VALUE(num);
+
+#ifdef HAVE_ISFINITE
+ if (!isfinite(value))
+ return Qfalse;
+#else
+ if (isinf(value) || isnan(value))
+ return Qfalse;
+#endif
+
+ return Qtrue;
+}
+
+/*
+ * call-seq:
+ * float.next_float -> float
+ *
+ * Returns the next representable floating-point number.
+ *
+ * Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY.
+ *
+ * Float::NAN.next_float is Float::NAN.
+ *
+ * For example:
+ *
+ * p 0.01.next_float #=> 0.010000000000000002
+ * p 1.0.next_float #=> 1.0000000000000002
+ * p 100.0.next_float #=> 100.00000000000001
+ *
+ * p 0.01.next_float - 0.01 #=> 1.734723475976807e-18
+ * p 1.0.next_float - 1.0 #=> 2.220446049250313e-16
+ * p 100.0.next_float - 100.0 #=> 1.4210854715202004e-14
+ *
+ * f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float }
+ * #=> 0x1.47ae147ae147bp-7 0.01
+ * # 0x1.47ae147ae147cp-7 0.010000000000000002
+ * # 0x1.47ae147ae147dp-7 0.010000000000000004
+ * # 0x1.47ae147ae147ep-7 0.010000000000000005
+ * # 0x1.47ae147ae147fp-7 0.010000000000000007
+ * # 0x1.47ae147ae148p-7 0.010000000000000009
+ * # 0x1.47ae147ae1481p-7 0.01000000000000001
+ * # 0x1.47ae147ae1482p-7 0.010000000000000012
+ * # 0x1.47ae147ae1483p-7 0.010000000000000014
+ * # 0x1.47ae147ae1484p-7 0.010000000000000016
+ * # 0x1.47ae147ae1485p-7 0.010000000000000018
+ * # 0x1.47ae147ae1486p-7 0.01000000000000002
+ * # 0x1.47ae147ae1487p-7 0.010000000000000021
+ * # 0x1.47ae147ae1488p-7 0.010000000000000023
+ * # 0x1.47ae147ae1489p-7 0.010000000000000024
+ * # 0x1.47ae147ae148ap-7 0.010000000000000026
+ * # 0x1.47ae147ae148bp-7 0.010000000000000028
+ * # 0x1.47ae147ae148cp-7 0.01000000000000003
+ * # 0x1.47ae147ae148dp-7 0.010000000000000031
+ * # 0x1.47ae147ae148ep-7 0.010000000000000033
+ *
+ * f = 0.0
+ * 100.times { f += 0.1 }
+ * p f #=> 9.99999999999998 # should be 10.0 in the ideal world.
+ * p 10-f #=> 1.9539925233402755e-14 # the floating-point error.
+ * p(10.0.next_float-10) #=> 1.7763568394002505e-15 # 1 ulp (units in the last place).
+ * p((10-f)/(10.0.next_float-10)) #=> 11.0 # the error is 11 ulp.
+ * p((10-f)/(10*Float::EPSILON)) #=> 8.8 # approximation of the above.
+ * p "%a" % f #=> "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp.
+ *
+ */
+static VALUE
+flo_next_float(VALUE vx)
+{
+ double x, y;
+ x = NUM2DBL(vx);
+ y = nextafter(x, INFINITY);
+ return DBL2NUM(y);
+}
+
+/*
+ * call-seq:
+ * float.prev_float -> float
+ *
+ * Returns the previous representable floatint-point number.
+ *
+ * (-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.
+ *
+ * Float::NAN.prev_float is Float::NAN.
+ *
+ * For example:
+ *
+ * p 0.01.prev_float #=> 0.009999999999999998
+ * p 1.0.prev_float #=> 0.9999999999999999
+ * p 100.0.prev_float #=> 99.99999999999999
+ *
+ * p 0.01 - 0.01.prev_float #=> 1.734723475976807e-18
+ * p 1.0 - 1.0.prev_float #=> 1.1102230246251565e-16
+ * p 100.0 - 100.0.prev_float #=> 1.4210854715202004e-14
+ *
+ * f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float }
+ * #=> 0x1.47ae147ae147bp-7 0.01
+ * # 0x1.47ae147ae147ap-7 0.009999999999999998
+ * # 0x1.47ae147ae1479p-7 0.009999999999999997
+ * # 0x1.47ae147ae1478p-7 0.009999999999999995
+ * # 0x1.47ae147ae1477p-7 0.009999999999999993
+ * # 0x1.47ae147ae1476p-7 0.009999999999999992
+ * # 0x1.47ae147ae1475p-7 0.00999999999999999
+ * # 0x1.47ae147ae1474p-7 0.009999999999999988
+ * # 0x1.47ae147ae1473p-7 0.009999999999999986
+ * # 0x1.47ae147ae1472p-7 0.009999999999999985
+ * # 0x1.47ae147ae1471p-7 0.009999999999999983
+ * # 0x1.47ae147ae147p-7 0.009999999999999981
+ * # 0x1.47ae147ae146fp-7 0.00999999999999998
+ * # 0x1.47ae147ae146ep-7 0.009999999999999978
+ * # 0x1.47ae147ae146dp-7 0.009999999999999976
+ * # 0x1.47ae147ae146cp-7 0.009999999999999974
+ * # 0x1.47ae147ae146bp-7 0.009999999999999972
+ * # 0x1.47ae147ae146ap-7 0.00999999999999997
+ * # 0x1.47ae147ae1469p-7 0.009999999999999969
+ * # 0x1.47ae147ae1468p-7 0.009999999999999967
+ *
+ */
+static VALUE
+flo_prev_float(VALUE vx)
+{
+ double x, y;
+ x = NUM2DBL(vx);
+ y = nextafter(x, -INFINITY);
+ return DBL2NUM(y);
+}
+
+/*
+ * call-seq:
+ * float.floor -> integer
+ *
+ * Returns the largest integer less than or equal to +float+.
+ *
+ * 1.2.floor #=> 1
+ * 2.0.floor #=> 2
+ * (-1.2).floor #=> -2
+ * (-2.0).floor #=> -2
+ */
+
+static VALUE
+flo_floor(VALUE num)
+{
+ double f = floor(RFLOAT_VALUE(num));
+ long val;
+
+ if (!FIXABLE(f)) {
+ return rb_dbl2big(f);
+ }
+ val = (long)f;
+ return LONG2FIX(val);
+}
+
+/*
+ * call-seq:
+ * float.ceil -> integer
+ *
+ * Returns the smallest Integer greater than or equal to +float+.
+ *
+ * 1.2.ceil #=> 2
+ * 2.0.ceil #=> 2
+ * (-1.2).ceil #=> -1
+ * (-2.0).ceil #=> -2
+ */
+
+static VALUE
+flo_ceil(VALUE num)
+{
+ double f = ceil(RFLOAT_VALUE(num));
+ long val;
+
+ if (!FIXABLE(f)) {
+ return rb_dbl2big(f);
+ }
+ val = (long)f;
+ return LONG2FIX(val);
+}
+
+/*
+ * Assumes num is an Integer, ndigits <= 0
+ */
+static VALUE
+int_round_0(VALUE num, int ndigits)
+{
+ VALUE n, f, h, r;
+ long bytes;
+ ID op;
+ /* If 10**N / 2 > num, then return 0 */
+ /* We have log_256(10) > 0.415241 and log_256(1/2) = -0.125, so */
+ bytes = FIXNUM_P(num) ? sizeof(long) : rb_funcall(num, idSize, 0);
+ if (-0.415241 * ndigits - 0.125 > bytes ) {
+ return INT2FIX(0);
+ }
+
+ f = int_pow(10, -ndigits);
+ if (FIXNUM_P(num) && FIXNUM_P(f)) {
+ SIGNED_VALUE x = FIX2LONG(num), y = FIX2LONG(f);
+ int neg = x < 0;
+ if (neg) x = -x;
+ x = (x + y / 2) / y * y;
+ if (neg) x = -x;
+ return LONG2NUM(x);
+ }
+ if (RB_TYPE_P(f, T_FLOAT)) {
+ /* then int_pow overflow */
+ return INT2FIX(0);
+ }
+ h = rb_funcall(f, '/', 1, INT2FIX(2));
+ r = rb_funcall(num, '%', 1, f);
+ n = rb_funcall(num, '-', 1, r);
+ op = negative_int_p(num) ? rb_intern("<=") : '<';
+ if (!RTEST(rb_funcall(r, op, 1, h))) {
+ n = rb_funcall(n, '+', 1, f);
+ }
+ return n;
+}
+
+static VALUE
+flo_truncate(VALUE num);
+
+/*
+ * call-seq:
+ * float.round([ndigits]) -> integer or float
+ *
+ * Rounds +float+ to a given precision in decimal digits (default 0 digits).
+ *
+ * Precision may be negative. Returns a floating point number when +ndigits+
+ * is more than zero.
+ *
+ * 1.4.round #=> 1
+ * 1.5.round #=> 2
+ * 1.6.round #=> 2
+ * (-1.5).round #=> -2
+ *
+ * 1.234567.round(2) #=> 1.23
+ * 1.234567.round(3) #=> 1.235
+ * 1.234567.round(4) #=> 1.2346
+ * 1.234567.round(5) #=> 1.23457
+ *
+ * 34567.89.round(-5) #=> 0
+ * 34567.89.round(-4) #=> 30000
+ * 34567.89.round(-3) #=> 35000
+ * 34567.89.round(-2) #=> 34600
+ * 34567.89.round(-1) #=> 34570
+ * 34567.89.round(0) #=> 34568
+ * 34567.89.round(1) #=> 34567.9
+ * 34567.89.round(2) #=> 34567.89
+ * 34567.89.round(3) #=> 34567.89
+ *
+ */
+
+static VALUE
+flo_round(int argc, VALUE *argv, VALUE num)
+{
+ VALUE nd;
+ double number, f;
+ int ndigits = 0;
+ int binexp;
+ enum {float_dig = DBL_DIG+2};
+
+ if (argc > 0 && rb_scan_args(argc, argv, "01", &nd) == 1) {
+ ndigits = NUM2INT(nd);
+ }
+ if (ndigits < 0) {
+ return int_round_0(flo_truncate(num), ndigits);
+ }
+ number = RFLOAT_VALUE(num);
+ if (ndigits == 0) {
+ return dbl2ival(number);
+ }
+ frexp(number, &binexp);
+
+/* Let `exp` be such that `number` is written as:"0.#{digits}e#{exp}",
+ i.e. such that 10 ** (exp - 1) <= |number| < 10 ** exp
+ Recall that up to float_dig digits can be needed to represent a double,
+ so if ndigits + exp >= float_dig, the intermediate value (number * 10 ** ndigits)
+ will be an integer and thus the result is the original number.
+ If ndigits + exp <= 0, the result is 0 or "1e#{exp}", so
+ if ndigits + exp < 0, the result is 0.
+ We have:
+ 2 ** (binexp-1) <= |number| < 2 ** binexp
+ 10 ** ((binexp-1)/log_2(10)) <= |number| < 10 ** (binexp/log_2(10))
+ If binexp >= 0, and since log_2(10) = 3.322259:
+ 10 ** (binexp/4 - 1) < |number| < 10 ** (binexp/3)
+ floor(binexp/4) <= exp <= ceil(binexp/3)
+ If binexp <= 0, swap the /4 and the /3
+ So if ndigits + floor(binexp/(4 or 3)) >= float_dig, the result is number
+ If ndigits + ceil(binexp/(3 or 4)) < 0 the result is 0
+*/
+ if (isinf(number) || isnan(number) ||
+ (ndigits >= float_dig - (binexp > 0 ? binexp / 4 : binexp / 3 - 1))) {
+ return num;
+ }
+ if (ndigits < - (binexp > 0 ? binexp / 3 + 1 : binexp / 4)) {
+ return DBL2NUM(0);
+ }
+ f = pow(10, ndigits);
+ return DBL2NUM(round(number * f) / f);
+}
+
+/*
+ * call-seq:
+ * float.to_i -> integer
+ * float.to_int -> integer
+ * float.truncate -> integer
+ *
+ * Returns the +float+ truncated to an Integer.
+ *
+ * Synonyms are #to_i, #to_int, and #truncate.
+ */
+
+static VALUE
+flo_truncate(VALUE num)
+{
+ double f = RFLOAT_VALUE(num);
+ long val;
+
+ if (f > 0.0) f = floor(f);
+ if (f < 0.0) f = ceil(f);
+
+ if (!FIXABLE(f)) {
+ return rb_dbl2big(f);
+ }
+ val = (long)f;
+ return LONG2FIX(val);
+}
+
+/*
+ * call-seq:
+ * num.floor -> integer
+ *
+ * Returns the largest integer less than or equal to +num+.
+ *
+ * Numeric implements this by converting an Integer to a Float and invoking
+ * Float#floor.
+ *
+ * 1.floor #=> 1
+ * (-1).floor #=> -1
+ */
+
+static VALUE
+num_floor(VALUE num)
+{
+ return flo_floor(rb_Float(num));
+}
+
+
+/*
+ * call-seq:
+ * num.ceil -> integer
+ *
+ * Returns the smallest possible Integer that is greater than or equal to
+ * +num+.
+ *
+ * Numeric achieves this by converting itself to a Float then invoking
+ * Float#ceil.
+ *
+ * 1.ceil #=> 1
+ * 1.2.ceil #=> 2
+ * (-1.2).ceil #=> -1
+ * (-1.0).ceil #=> -1
+ */
+
+static VALUE
+num_ceil(VALUE num)
+{
+ return flo_ceil(rb_Float(num));
+}
+
+/*
+ * call-seq:
+ * num.round([ndigits]) -> integer or float
+ *
+ * Rounds +num+ to a given precision in decimal digits (default 0 digits).
+ *
+ * Precision may be negative. Returns a floating point number when +ndigits+
+ * is more than zero.
+ *
+ * Numeric implements this by converting itself to a Float and invoking
+ * Float#round.
+ */
+
+static VALUE
+num_round(int argc, VALUE* argv, VALUE num)
+{
+ return flo_round(argc, argv, rb_Float(num));
+}
+
+/*
+ * call-seq:
+ * num.truncate -> integer
+ *
+ * Returns +num+ truncated to an Integer.
+ *
+ * Numeric implements this by converting its value to a Float and invoking
+ * Float#truncate.
+ */
+
+static VALUE
+num_truncate(VALUE num)
+{
+ return flo_truncate(rb_Float(num));
+}
+
+static double
+ruby_float_step_size(double beg, double end, double unit, int excl)
+{
+ const double epsilon = DBL_EPSILON;
+ double n = (end - beg)/unit;
+ double err = (fabs(beg) + fabs(end) + fabs(end-beg)) / fabs(unit) * epsilon;
+
+ if (isinf(unit)) {
+ return unit > 0 ? beg <= end : beg >= end;
+ }
+ if (unit == 0) {
+ return INFINITY;
+ }
+ if (err>0.5) err=0.5;
+ if (excl) {
+ if (n<=0) return 0;
+ if (n<1)
+ n = 0;
+ else
+ n = floor(n - err);
+ }
+ else {
+ if (n<0) return 0;
+ n = floor(n + err);
+ }
+ return n+1;
+}
+
+int
+ruby_float_step(VALUE from, VALUE to, VALUE step, int excl)
+{
+ if (RB_TYPE_P(from, T_FLOAT) || RB_TYPE_P(to, T_FLOAT) || RB_TYPE_P(step, T_FLOAT)) {
+ double beg = NUM2DBL(from);
+ double end = NUM2DBL(to);
+ double unit = NUM2DBL(step);
+ double n = ruby_float_step_size(beg, end, unit, excl);
+ long i;
+
+ if (isinf(unit)) {
+ /* if unit is infinity, i*unit+beg is NaN */
+ if (n) rb_yield(DBL2NUM(beg));
+ }
+ else if (unit == 0) {
+ VALUE val = DBL2NUM(beg);
+ for (;;)
+ rb_yield(val);
+ }
+ else {
+ for (i=0; i<n; i++) {
+ double d = i*unit+beg;
+ if (unit >= 0 ? end < d : d < end) d = end;
+ rb_yield(DBL2NUM(d));
+ }
+ }
+ return TRUE;
+ }
+ return FALSE;
+}
+
+VALUE
+ruby_num_interval_step_size(VALUE from, VALUE to, VALUE step, int excl)
+{
+ if (FIXNUM_P(from) && FIXNUM_P(to) && FIXNUM_P(step)) {
+ long delta, diff;
+
+ diff = FIX2LONG(step);
+ if (diff == 0) {
+ return DBL2NUM(INFINITY);
+ }
+ delta = FIX2LONG(to) - FIX2LONG(from);
+ if (diff < 0) {
+ diff = -diff;
+ delta = -delta;
+ }
+ if (excl) {
+ delta--;
+ }
+ if (delta < 0) {
+ return INT2FIX(0);
+ }
+ return ULONG2NUM(delta / diff + 1UL);
+ }
+ else if (RB_TYPE_P(from, T_FLOAT) || RB_TYPE_P(to, T_FLOAT) || RB_TYPE_P(step, T_FLOAT)) {
+ double n = ruby_float_step_size(NUM2DBL(from), NUM2DBL(to), NUM2DBL(step), excl);
+
+ if (isinf(n)) return DBL2NUM(n);
+ if (POSFIXABLE(n)) return LONG2FIX(n);
+ return rb_dbl2big(n);
+ }
+ else {
+ VALUE result;
+ ID cmp = '>';
+ switch (rb_cmpint(rb_num_coerce_cmp(step, INT2FIX(0), id_cmp), step, INT2FIX(0))) {
+ case 0: return DBL2NUM(INFINITY);
+ case -1: cmp = '<'; break;
+ }
+ if (RTEST(rb_funcall(from, cmp, 1, to))) return INT2FIX(0);
+ result = rb_funcall(rb_funcall(to, '-', 1, from), id_div, 1, step);
+ if (!excl || RTEST(rb_funcall(rb_funcall(from, '+', 1, rb_funcall(result, '*', 1, step)), cmp, 1, to))) {
+ result = rb_funcall(result, '+', 1, INT2FIX(1));
+ }
+ return result;
+ }
+}
+
+static int
+num_step_scan_args(int argc, const VALUE *argv, VALUE *to, VALUE *step)
+{
+ VALUE hash;
+ int desc;
+
+ argc = rb_scan_args(argc, argv, "02:", to, step, &hash);
+ if (!NIL_P(hash)) {
+ ID keys[2];
+ VALUE values[2];
+ keys[0] = id_to;
+ keys[1] = id_by;
+ rb_get_kwargs(hash, keys, 0, 2, values);
+ if (values[0] != Qundef) {
+ if (argc > 0) rb_raise(rb_eArgError, "to is given twice");
+ *to = values[0];
+ }
+ if (values[1] != Qundef) {
+ if (argc > 1) rb_raise(rb_eArgError, "step is given twice");
+ *step = values[1];
+ }
+ }
+ else {
+ /* compatibility */
+ if (argc > 1 && NIL_P(*step)) {
+ rb_raise(rb_eTypeError, "step must be numeric");
+ }
+ if (rb_equal(*step, INT2FIX(0))) {
+ rb_raise(rb_eArgError, "step can't be 0");
+ }
+ }
+ if (NIL_P(*step)) {
+ *step = INT2FIX(1);
+ }
+ desc = !positive_int_p(*step);
+ if (NIL_P(*to)) {
+ *to = desc ? DBL2NUM(-INFINITY) : DBL2NUM(INFINITY);
+ }
+ return desc;
+}
+
+static VALUE
+num_step_size(VALUE from, VALUE args, VALUE eobj)
+{
+ VALUE to, step;
+ int argc = args ? RARRAY_LENINT(args) : 0;
+ const VALUE *argv = args ? RARRAY_CONST_PTR(args) : 0;
+
+ num_step_scan_args(argc, argv, &to, &step);
+
+ return ruby_num_interval_step_size(from, to, step, FALSE);
+}
+/*
+ * call-seq:
+ * num.step(by: step, to: limit) {|i| block } -> self
+ * num.step(by: step, to: limit) -> an_enumerator
+ * num.step(limit=nil, step=1) {|i| block } -> self
+ * num.step(limit=nil, step=1) -> an_enumerator
+ *
+ * Invokes the given block with the sequence of numbers starting at +num+,
+ * incremented by +step+ (defaulted to +1+) on each call.
+ *
+ * The loop finishes when the value to be passed to the block is greater than
+ * +limit+ (if +step+ is positive) or less than +limit+ (if +step+ is
+ * negative), where <i>limit</i> is defaulted to infinity.
+ *
+ * In the recommended keyword argument style, either or both of
+ * +step+ and +limit+ (default infinity) can be omitted. In the
+ * fixed position argument style, zero as a step
+ * (i.e. num.step(limit, 0)) is not allowed for historical
+ * compatibility reasons.
+ *
+ * If all the arguments are integers, the loop operates using an integer
+ * counter.
+ *
+ * If any of the arguments are floating point numbers, all are converted to floats, and the loop is executed the following expression:
+ *
+ * floor(n + n*epsilon)+ 1
+ *
+ * Where the +n+ is the following:
+ *
+ * n = (limit - num)/step
+ *
+ * Otherwise, the loop starts at +num+, uses either the less-than (<) or
+ * greater-than (>) operator to compare the counter against +limit+, and
+ * increments itself using the <code>+</code> operator.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ * For example:
+ *
+ * p 1.step.take(4)
+ * p 10.step(by: -1).take(4)
+ * 3.step(to: 5) { |i| print i, " " }
+ * 1.step(10, 2) { |i| print i, " " }
+ * Math::E.step(to: Math::PI, by: 0.2) { |f| print f, " " }
+ *
+ * Will produce:
+ *
+ * [1, 2, 3, 4]
+ * [10, 9, 8, 7]
+ * 3 4 5
+ * 1 3 5 7 9
+ * 2.71828182845905 2.91828182845905 3.11828182845905
+ */
+
+static VALUE
+num_step(int argc, VALUE *argv, VALUE from)
+{
+ VALUE to, step;
+ int desc, inf;
+
+ RETURN_SIZED_ENUMERATOR(from, argc, argv, num_step_size);
+
+ desc = num_step_scan_args(argc, argv, &to, &step);
+ if (RTEST(rb_num_coerce_cmp(step, INT2FIX(0), id_eq))) {
+ inf = 1;
+ }
+ else if (RB_TYPE_P(to, T_FLOAT)) {
+ double f = RFLOAT_VALUE(to);
+ inf = isinf(f) && (signbit(f) ? desc : !desc);
+ }
+ else inf = 0;
+
+ if (FIXNUM_P(from) && (inf || FIXNUM_P(to)) && FIXNUM_P(step)) {
+ long i = FIX2LONG(from);
+ long diff = FIX2LONG(step);
+
+ if (inf) {
+ for (;; i += diff)
+ rb_yield(LONG2FIX(i));
+ }
+ else {
+ long end = FIX2LONG(to);
+
+ if (desc) {
+ for (; i >= end; i += diff)
+ rb_yield(LONG2FIX(i));
+ }
+ else {
+ for (; i <= end; i += diff)
+ rb_yield(LONG2FIX(i));
+ }
+ }
+ }
+ else if (!ruby_float_step(from, to, step, FALSE)) {
+ VALUE i = from;
+
+ if (inf) {
+ for (;; i = rb_funcall(i, '+', 1, step))
+ rb_yield(i);
+ }
+ else {
+ ID cmp = desc ? '<' : '>';
+
+ for (; !RTEST(rb_funcall(i, cmp, 1, to)); i = rb_funcall(i, '+', 1, step))
+ rb_yield(i);
+ }
+ }
+ return from;
+}
+
+static char *
+out_of_range_float(char (*pbuf)[24], VALUE val)
+{
+ char *const buf = *pbuf;
+ char *s;
+
+ snprintf(buf, sizeof(*pbuf), "%-.10g", RFLOAT_VALUE(val));
+ if ((s = strchr(buf, ' ')) != 0) *s = '\0';
+ return buf;
+}
+
+#define FLOAT_OUT_OF_RANGE(val, type) do { \
+ char buf[24]; \
+ rb_raise(rb_eRangeError, "float %s out of range of "type, \
+ out_of_range_float(&buf, (val))); \
+} while (0)
+
+#define LONG_MIN_MINUS_ONE ((double)LONG_MIN-1)
+#define LONG_MAX_PLUS_ONE (2*(double)(LONG_MAX/2+1))
+#define ULONG_MAX_PLUS_ONE (2*(double)(ULONG_MAX/2+1))
+#define LONG_MIN_MINUS_ONE_IS_LESS_THAN(n) \
+ (LONG_MIN_MINUS_ONE == (double)LONG_MIN ? \
+ LONG_MIN <= (n): \
+ LONG_MIN_MINUS_ONE < (n))
+
+long
+rb_num2long(VALUE val)
+{
+ again:
+ if (NIL_P(val)) {
+ rb_raise(rb_eTypeError, "no implicit conversion from nil to integer");
+ }
+
+ if (FIXNUM_P(val)) return FIX2LONG(val);
+
+ else if (RB_TYPE_P(val, T_FLOAT)) {
+ if (RFLOAT_VALUE(val) < LONG_MAX_PLUS_ONE
+ && LONG_MIN_MINUS_ONE_IS_LESS_THAN(RFLOAT_VALUE(val))) {
+ return (long)RFLOAT_VALUE(val);
+ }
+ else {
+ FLOAT_OUT_OF_RANGE(val, "integer");
+ }
+ }
+ else if (RB_TYPE_P(val, T_BIGNUM)) {
+ return rb_big2long(val);
+ }
+ else {
+ val = rb_to_int(val);
+ goto again;
+ }
+}
+
+static unsigned long
+rb_num2ulong_internal(VALUE val, int *wrap_p)
+{
+ again:
+ if (NIL_P(val)) {
+ rb_raise(rb_eTypeError, "no implicit conversion from nil to integer");
+ }
+
+ if (FIXNUM_P(val)) {
+ long l = FIX2LONG(val); /* this is FIX2LONG, inteneded */
+ if (wrap_p)
+ *wrap_p = l < 0;
+ return (unsigned long)l;
+ }
+ else if (RB_TYPE_P(val, T_FLOAT)) {
+ if (RFLOAT_VALUE(val) < ULONG_MAX_PLUS_ONE
+ && LONG_MIN_MINUS_ONE_IS_LESS_THAN(RFLOAT_VALUE(val))) {
+ double d = RFLOAT_VALUE(val);
+ if (wrap_p)
+ *wrap_p = d <= -1.0; /* NUM2ULONG(v) uses v.to_int conceptually. */
+ if (0 <= d)
+ return (unsigned long)d;
+ return (unsigned long)(long)d;
+ }
+ else {
+ FLOAT_OUT_OF_RANGE(val, "integer");
+ }
+ }
+ else if (RB_TYPE_P(val, T_BIGNUM)) {
+ {
+ unsigned long ul = rb_big2ulong(val);
+ if (wrap_p)
+ *wrap_p = BIGNUM_NEGATIVE_P(val);
+ return ul;
+ }
+ }
+ else {
+ val = rb_to_int(val);
+ goto again;
+ }
+}
+
+unsigned long
+rb_num2ulong(VALUE val)
+{
+ return rb_num2ulong_internal(val, NULL);
+}
+
+#if SIZEOF_INT < SIZEOF_LONG
+void
+rb_out_of_int(SIGNED_VALUE num)
+{
+ rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `int'",
+ num, num < 0 ? "small" : "big");
+}
+
+static void
+check_int(long num)
+{
+ if ((long)(int)num != num) {
+ rb_out_of_int(num);
+ }
+}
+
+static void
+check_uint(unsigned long num, int sign)
+{
+ if (sign) {
+ /* minus */
+ if (num < (unsigned long)INT_MIN)
+ rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned int'", (long)num);
+ }
+ else {
+ /* plus */
+ if (UINT_MAX < num)
+ rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned int'", num);
+ }
+}
+
+long
+rb_num2int(VALUE val)
+{
+ long num = rb_num2long(val);
+
+ check_int(num);
+ return num;
+}
+
+long
+rb_fix2int(VALUE val)
+{
+ long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val);
+
+ check_int(num);
+ return num;
+}
+
+unsigned long
+rb_num2uint(VALUE val)
+{
+ int wrap;
+ unsigned long num = rb_num2ulong_internal(val, &wrap);
+
+ check_uint(num, wrap);
+ return num;
+}
+
+unsigned long
+rb_fix2uint(VALUE val)
+{
+ unsigned long num;
+
+ if (!FIXNUM_P(val)) {
+ return rb_num2uint(val);
+ }
+ num = FIX2ULONG(val);
+
+ check_uint(num, negative_int_p(val));
+ return num;
+}
+#else
+long
+rb_num2int(VALUE val)
+{
+ return rb_num2long(val);
+}
+
+long
+rb_fix2int(VALUE val)
+{
+ return FIX2INT(val);
+}
+#endif
+
+void
+rb_out_of_short(SIGNED_VALUE num)
+{
+ rb_raise(rb_eRangeError, "integer %"PRIdVALUE " too %s to convert to `short'",
+ num, num < 0 ? "small" : "big");
+}
+
+static void
+check_short(long num)
+{
+ if ((long)(short)num != num) {
+ rb_out_of_short(num);
+ }
+}
+
+static void
+check_ushort(unsigned long num, int sign)
+{
+ if (sign) {
+ /* minus */
+ if (num < (unsigned long)SHRT_MIN)
+ rb_raise(rb_eRangeError, "integer %ld too small to convert to `unsigned short'", (long)num);
+ }
+ else {
+ /* plus */
+ if (USHRT_MAX < num)
+ rb_raise(rb_eRangeError, "integer %lu too big to convert to `unsigned short'", num);
+ }
+}
+
+short
+rb_num2short(VALUE val)
+{
+ long num = rb_num2long(val);
+
+ check_short(num);
+ return num;
+}
+
+short
+rb_fix2short(VALUE val)
+{
+ long num = FIXNUM_P(val)?FIX2LONG(val):rb_num2long(val);
+
+ check_short(num);
+ return num;
+}
+
+unsigned short
+rb_num2ushort(VALUE val)
+{
+ int wrap;
+ unsigned long num = rb_num2ulong_internal(val, &wrap);
+
+ check_ushort(num, wrap);
+ return num;
+}
+
+unsigned short
+rb_fix2ushort(VALUE val)
+{
+ unsigned long num;
+
+ if (!FIXNUM_P(val)) {
+ return rb_num2ushort(val);
+ }
+ num = FIX2ULONG(val);
+
+ check_ushort(num, negative_int_p(val));
+ return num;
+}
+
+VALUE
+rb_num2fix(VALUE val)
+{
+ long v;
+
+ if (FIXNUM_P(val)) return val;
+
+ v = rb_num2long(val);
+ if (!FIXABLE(v))
+ rb_raise(rb_eRangeError, "integer %ld out of range of fixnum", v);
+ return LONG2FIX(v);
+}
+
+#if HAVE_LONG_LONG
+
+#define LLONG_MIN_MINUS_ONE ((double)LLONG_MIN-1)
+#define LLONG_MAX_PLUS_ONE (2*(double)(LLONG_MAX/2+1))
+#define ULLONG_MAX_PLUS_ONE (2*(double)(ULLONG_MAX/2+1))
+#ifndef ULLONG_MAX
+#define ULLONG_MAX ((unsigned LONG_LONG)LLONG_MAX*2+1)
+#endif
+#define LLONG_MIN_MINUS_ONE_IS_LESS_THAN(n) \
+ (LLONG_MIN_MINUS_ONE == (double)LLONG_MIN ? \
+ LLONG_MIN <= (n): \
+ LLONG_MIN_MINUS_ONE < (n))
+
+LONG_LONG
+rb_num2ll(VALUE val)
+{
+ if (NIL_P(val)) {
+ rb_raise(rb_eTypeError, "no implicit conversion from nil");
+ }
+
+ if (FIXNUM_P(val)) return (LONG_LONG)FIX2LONG(val);
+
+ else if (RB_TYPE_P(val, T_FLOAT)) {
+ if (RFLOAT_VALUE(val) < LLONG_MAX_PLUS_ONE
+ && (LLONG_MIN_MINUS_ONE_IS_LESS_THAN(RFLOAT_VALUE(val)))) {
+ return (LONG_LONG)(RFLOAT_VALUE(val));
+ }
+ else {
+ FLOAT_OUT_OF_RANGE(val, "long long");
+ }
+ }
+ else if (RB_TYPE_P(val, T_BIGNUM)) {
+ return rb_big2ll(val);
+ }
+ else if (RB_TYPE_P(val, T_STRING)) {
+ rb_raise(rb_eTypeError, "no implicit conversion from string");
+ }
+ else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) {
+ rb_raise(rb_eTypeError, "no implicit conversion from boolean");
+ }
+
+ val = rb_to_int(val);
+ return NUM2LL(val);
+}
+
+unsigned LONG_LONG
+rb_num2ull(VALUE val)
+{
+ if (RB_TYPE_P(val, T_NIL)) {
+ rb_raise(rb_eTypeError, "no implicit conversion from nil");
+ }
+ else if (RB_TYPE_P(val, T_FIXNUM)) {
+ return (LONG_LONG)FIX2LONG(val); /* this is FIX2LONG, inteneded */
+ }
+ else if (RB_TYPE_P(val, T_FLOAT)) {
+ if (RFLOAT_VALUE(val) < ULLONG_MAX_PLUS_ONE
+ && LLONG_MIN_MINUS_ONE_IS_LESS_THAN(RFLOAT_VALUE(val))) {
+ if (0 <= RFLOAT_VALUE(val))
+ return (unsigned LONG_LONG)(RFLOAT_VALUE(val));
+ return (unsigned LONG_LONG)(LONG_LONG)(RFLOAT_VALUE(val));
+ }
+ else {
+ FLOAT_OUT_OF_RANGE(val, "unsigned long long");
+ }
+ }
+ else if (RB_TYPE_P(val, T_BIGNUM)) {
+ return rb_big2ull(val);
+ }
+ else if (RB_TYPE_P(val, T_STRING)) {
+ rb_raise(rb_eTypeError, "no implicit conversion from string");
+ }
+ else if (RB_TYPE_P(val, T_TRUE) || RB_TYPE_P(val, T_FALSE)) {
+ rb_raise(rb_eTypeError, "no implicit conversion from boolean");
+ }
+
+ val = rb_to_int(val);
+ return NUM2ULL(val);
+}
+
+#endif /* HAVE_LONG_LONG */
+
+/*
+ * Document-class: Integer
+ *
+ * This class is the basis for the two concrete classes that hold whole
+ * numbers, Bignum and Fixnum.
+ *
+ */
+
+/*
+ * call-seq:
+ * int.to_i -> integer
+ *
+ * As +int+ is already an Integer, all these methods simply return the receiver.
+ *
+ * Synonyms are #to_int, #floor, #ceil, #truncate.
+ */
+
+static VALUE
+int_to_i(VALUE num)
+{
+ return num;
+}
+
+/*
+ * call-seq:
+ * int.integer? -> true
+ *
+ * Since +int+ is already an Integer, this always returns +true+.
+ */
+
+static VALUE
+int_int_p(VALUE num)
+{
+ return Qtrue;
+}
+
+/*
+ * call-seq:
+ * int.odd? -> true or false
+ *
+ * Returns +true+ if +int+ is an odd number.
+ */
+
+static VALUE
+int_odd_p(VALUE num)
+{
+ if (rb_funcall(num, '%', 1, INT2FIX(2)) != INT2FIX(0)) {
+ return Qtrue;
+ }
+ return Qfalse;
+}
+
+/*
+ * call-seq:
+ * int.even? -> true or false
+ *
+ * Returns +true+ if +int+ is an even number.
+ */
+
+static VALUE
+int_even_p(VALUE num)
+{
+ if (rb_funcall(num, '%', 1, INT2FIX(2)) == INT2FIX(0)) {
+ return Qtrue;
+ }
+ return Qfalse;
+}
+
+/*
+ * call-seq:
+ * int.next -> integer
+ * int.succ -> integer
+ *
+ * Returns the Integer equal to +int+ + 1.
+ *
+ * 1.next #=> 2
+ * (-1).next #=> 0
+ */
+
+static VALUE
+fix_succ(VALUE num)
+{
+ long i = FIX2LONG(num) + 1;
+ return LONG2NUM(i);
+}
+
+/*
+ * call-seq:
+ * int.next -> integer
+ * int.succ -> integer
+ *
+ * Returns the Integer equal to +int+ + 1, same as Fixnum#next.
+ *
+ * 1.next #=> 2
+ * (-1).next #=> 0
+ */
+
+VALUE
+rb_int_succ(VALUE num)
+{
+ if (FIXNUM_P(num)) {
+ long i = FIX2LONG(num) + 1;
+ return LONG2NUM(i);
+ }
+ if (RB_TYPE_P(num, T_BIGNUM)) {
+ return rb_big_plus(num, INT2FIX(1));
+ }
+ return rb_funcall(num, '+', 1, INT2FIX(1));
+}
+
+#define int_succ rb_int_succ
+
+/*
+ * call-seq:
+ * int.pred -> integer
+ *
+ * Returns the Integer equal to +int+ - 1.
+ *
+ * 1.pred #=> 0
+ * (-1).pred #=> -2
+ */
+
+VALUE
+rb_int_pred(VALUE num)
+{
+ if (FIXNUM_P(num)) {
+ long i = FIX2LONG(num) - 1;
+ return LONG2NUM(i);
+ }
+ if (RB_TYPE_P(num, T_BIGNUM)) {
+ return rb_big_minus(num, INT2FIX(1));
+ }
+ return rb_funcall(num, '-', 1, INT2FIX(1));
+}
+
+#define int_pred rb_int_pred
+
+VALUE
+rb_enc_uint_chr(unsigned int code, rb_encoding *enc)
+{
+ int n;
+ VALUE str;
+ switch (n = rb_enc_codelen(code, enc)) {
+ case ONIGERR_INVALID_CODE_POINT_VALUE:
+ rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc));
+ break;
+ case ONIGERR_TOO_BIG_WIDE_CHAR_VALUE:
+ case 0:
+ rb_raise(rb_eRangeError, "%u out of char range", code);
+ break;
+ }
+ str = rb_enc_str_new(0, n, enc);
+ rb_enc_mbcput(code, RSTRING_PTR(str), enc);
+ if (rb_enc_precise_mbclen(RSTRING_PTR(str), RSTRING_END(str), enc) != n) {
+ rb_raise(rb_eRangeError, "invalid codepoint 0x%X in %s", code, rb_enc_name(enc));
+ }
+ return str;
+}
+
+/*
+ * call-seq:
+ * int.chr([encoding]) -> string
+ *
+ * Returns a string containing the character represented by the +int+'s value
+ * according to +encoding+.
+ *
+ * 65.chr #=> "A"
+ * 230.chr #=> "\346"
+ * 255.chr(Encoding::UTF_8) #=> "\303\277"
+ */
+
+static VALUE
+int_chr(int argc, VALUE *argv, VALUE num)
+{
+ char c;
+ unsigned int i;
+ rb_encoding *enc;
+
+ if (rb_num_to_uint(num, &i) == 0) {
+ }
+ else if (FIXNUM_P(num)) {
+ rb_raise(rb_eRangeError, "%ld out of char range", FIX2LONG(num));
+ }
+ else {
+ rb_raise(rb_eRangeError, "bignum out of char range");
+ }
+
+ switch (argc) {
+ case 0:
+ if (0xff < i) {
+ enc = rb_default_internal_encoding();
+ if (!enc) {
+ rb_raise(rb_eRangeError, "%d out of char range", i);
+ }
+ goto decode;
+ }
+ c = (char)i;
+ if (i < 0x80) {
+ return rb_usascii_str_new(&c, 1);
+ }
+ else {
+ return rb_str_new(&c, 1);
+ }
+ case 1:
+ break;
+ default:
+ rb_check_arity(argc, 0, 1);
+ break;
+ }
+ enc = rb_to_encoding(argv[0]);
+ if (!enc) enc = rb_ascii8bit_encoding();
+ decode:
+ return rb_enc_uint_chr(i, enc);
+}
+
+/*
+ * call-seq:
+ * int.ord -> self
+ *
+ * Returns the +int+ itself.
+ *
+ * ?a.ord #=> 97
+ *
+ * This method is intended for compatibility to character constant in Ruby
+ * 1.9.
+ *
+ * For example, ?a.ord returns 97 both in 1.8 and 1.9.
+ */
+
+static VALUE
+int_ord(VALUE num)
+{
+ return num;
+}
+
+/********************************************************************
+ *
+ * Document-class: Fixnum
+ *
+ * Holds Integer values that can be represented in a native machine word
+ * (minus 1 bit). If any operation on a Fixnum exceeds this range, the value
+ * is automatically converted to a Bignum.
+ *
+ * Fixnum objects have immediate value. This means that when they are assigned
+ * or passed as parameters, the actual object is passed, rather than a
+ * reference to that object.
+ *
+ * Assignment does not alias Fixnum objects. There is effectively only one
+ * Fixnum object instance for any given integer value, so, for example, you
+ * cannot add a singleton method to a Fixnum. Any attempt to add a singleton
+ * method to a Fixnum object will raise a TypeError.
+ */
+
+
+/*
+ * call-seq:
+ * -fix -> integer
+ *
+ * Negates +fix+, which may return a Bignum.
+ */
+
+static VALUE
+fix_uminus(VALUE num)
+{
+ return LONG2NUM(-FIX2LONG(num));
+}
+
+VALUE
+rb_fix2str(VALUE x, int base)
+{
+ char buf[SIZEOF_VALUE*CHAR_BIT + 2], *b = buf + sizeof buf;
+ long val = FIX2LONG(x);
+ int neg = 0;
+
+ if (base < 2 || 36 < base) {
+ rb_raise(rb_eArgError, "invalid radix %d", base);
+ }
+ if (val == 0) {
+ return rb_usascii_str_new2("0");
+ }
+ if (val < 0) {
+ val = -val;
+ neg = 1;
+ }
+ *--b = '\0';
+ do {
+ *--b = ruby_digitmap[(int)(val % base)];
+ } while (val /= base);
+ if (neg) {
+ *--b = '-';
+ }
+
+ return rb_usascii_str_new2(b);
+}
+
+/*
+ * call-seq:
+ * fix.to_s(base=10) -> string
+ *
+ * Returns a string containing the representation of +fix+ radix +base+
+ * (between 2 and 36).
+ *
+ * 12345.to_s #=> "12345"
+ * 12345.to_s(2) #=> "11000000111001"
+ * 12345.to_s(8) #=> "30071"
+ * 12345.to_s(10) #=> "12345"
+ * 12345.to_s(16) #=> "3039"
+ * 12345.to_s(36) #=> "9ix"
+ *
+ */
+static VALUE
+fix_to_s(int argc, VALUE *argv, VALUE x)
+{
+ int base;
+
+ if (argc == 0) base = 10;
+ else {
+ VALUE b;
+
+ rb_scan_args(argc, argv, "01", &b);
+ base = NUM2INT(b);
+ }
+
+ return rb_fix2str(x, base);
+}
+
+/*
+ * call-seq:
+ * fix + numeric -> numeric_result
+ *
+ * Performs addition: the class of the resulting object depends on the class of
+ * +numeric+ and on the magnitude of the result. It may return a Bignum.
+ */
+
+static VALUE
+fix_plus(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y)) {
+ long a, b, c;
+ VALUE r;
+
+ a = FIX2LONG(x);
+ b = FIX2LONG(y);
+ c = a + b;
+ r = LONG2NUM(c);
+
+ return r;
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ return rb_big_plus(y, x);
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ return DBL2NUM((double)FIX2LONG(x) + RFLOAT_VALUE(y));
+ }
+ else {
+ return rb_num_coerce_bin(x, y, '+');
+ }
+}
+
+/*
+ * call-seq:
+ * fix - numeric -> numeric_result
+ *
+ * Performs subtraction: the class of the resulting object depends on the class
+ * of +numeric+ and on the magnitude of the result. It may return a Bignum.
+ */
+
+static VALUE
+fix_minus(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y)) {
+ long a, b, c;
+ VALUE r;
+
+ a = FIX2LONG(x);
+ b = FIX2LONG(y);
+ c = a - b;
+ r = LONG2NUM(c);
+
+ return r;
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ x = rb_int2big(FIX2LONG(x));
+ return rb_big_minus(x, y);
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ return DBL2NUM((double)FIX2LONG(x) - RFLOAT_VALUE(y));
+ }
+ else {
+ return rb_num_coerce_bin(x, y, '-');
+ }
+}
+
+#define SQRT_LONG_MAX ((SIGNED_VALUE)1<<((SIZEOF_LONG*CHAR_BIT-1)/2))
+/*tests if N*N would overflow*/
+#define FIT_SQRT_LONG(n) (((n)<SQRT_LONG_MAX)&&((n)>=-SQRT_LONG_MAX))
+
+/*
+ * call-seq:
+ * fix * numeric -> numeric_result
+ *
+ * Performs multiplication: the class of the resulting object depends on the
+ * class of +numeric+ and on the magnitude of the result. It may return a
+ * Bignum.
+ */
+
+static VALUE
+fix_mul(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y)) {
+#ifdef __HP_cc
+/* avoids an optimization bug of HP aC++/ANSI C B3910B A.06.05 [Jul 25 2005] */
+ volatile
+#endif
+ long a, b;
+#if SIZEOF_LONG * 2 <= SIZEOF_LONG_LONG
+ LONG_LONG d;
+#else
+ VALUE r;
+#endif
+
+ a = FIX2LONG(x);
+ b = FIX2LONG(y);
+
+#if SIZEOF_LONG * 2 <= SIZEOF_LONG_LONG
+ d = (LONG_LONG)a * b;
+ if (FIXABLE(d)) return LONG2FIX(d);
+ return rb_ll2inum(d);
+#else
+ if (a == 0) return x;
+ if (MUL_OVERFLOW_FIXNUM_P(a, b))
+ r = rb_big_mul(rb_int2big(a), rb_int2big(b));
+ else
+ r = LONG2FIX(a * b);
+ return r;
+#endif
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ return rb_big_mul(y, x);
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ return DBL2NUM((double)FIX2LONG(x) * RFLOAT_VALUE(y));
+ }
+ else {
+ return rb_num_coerce_bin(x, y, '*');
+ }
+}
+
+static void
+fixdivmod(long x, long y, long *divp, long *modp)
+{
+ long div, mod;
+
+ if (y == 0) rb_num_zerodiv();
+ if (y < 0) {
+ if (x < 0)
+ div = -x / -y;
+ else
+ div = - (x / -y);
+ }
+ else {
+ if (x < 0)
+ div = - (-x / y);
+ else
+ div = x / y;
+ }
+ mod = x - div*y;
+ if ((mod < 0 && y > 0) || (mod > 0 && y < 0)) {
+ mod += y;
+ div -= 1;
+ }
+ if (divp) *divp = div;
+ if (modp) *modp = mod;
+}
+
+/*
+ * call-seq:
+ * fix.fdiv(numeric) -> float
+ *
+ * Returns the floating point result of dividing +fix+ by +numeric+.
+ *
+ * 654321.fdiv(13731) #=> 47.6528293642124
+ * 654321.fdiv(13731.24) #=> 47.6519964693647
+ *
+ */
+
+static VALUE
+fix_fdiv(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y)) {
+ return DBL2NUM((double)FIX2LONG(x) / (double)FIX2LONG(y));
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ return rb_big_fdiv(rb_int2big(FIX2LONG(x)), y);
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ return DBL2NUM((double)FIX2LONG(x) / RFLOAT_VALUE(y));
+ }
+ else {
+ return rb_num_coerce_bin(x, y, rb_intern("fdiv"));
+ }
+}
+
+static VALUE
+fix_divide(VALUE x, VALUE y, ID op)
+{
+ if (FIXNUM_P(y)) {
+ long div;
+
+ fixdivmod(FIX2LONG(x), FIX2LONG(y), &div, 0);
+ return LONG2NUM(div);
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ x = rb_int2big(FIX2LONG(x));
+ return rb_big_div(x, y);
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ {
+ double div;
+
+ if (op == '/') {
+ div = (double)FIX2LONG(x) / RFLOAT_VALUE(y);
+ return DBL2NUM(div);
+ }
+ else {
+ if (RFLOAT_VALUE(y) == 0) rb_num_zerodiv();
+ div = (double)FIX2LONG(x) / RFLOAT_VALUE(y);
+ return rb_dbl2big(floor(div));
+ }
+ }
+ }
+ else {
+ if (RB_TYPE_P(y, T_RATIONAL) &&
+ op == '/' && FIX2LONG(x) == 1)
+ return rb_rational_reciprocal(y);
+ return rb_num_coerce_bin(x, y, op);
+ }
+}
+
+/*
+ * call-seq:
+ * fix / numeric -> numeric_result
+ *
+ * Performs division: the class of the resulting object depends on the class of
+ * +numeric+ and on the magnitude of the result. It may return a Bignum.
+ */
+
+static VALUE
+fix_div(VALUE x, VALUE y)
+{
+ return fix_divide(x, y, '/');
+}
+
+/*
+ * call-seq:
+ * fix.div(numeric) -> integer
+ *
+ * Performs integer division: returns integer result of dividing +fix+ by
+ * +numeric+.
+ */
+
+static VALUE
+fix_idiv(VALUE x, VALUE y)
+{
+ return fix_divide(x, y, rb_intern("div"));
+}
+
+/*
+ * call-seq:
+ * fix % other -> real
+ * fix.modulo(other) -> real
+ *
+ * Returns +fix+ modulo +other+.
+ *
+ * See Numeric#divmod for more information.
+ */
+
+static VALUE
+fix_mod(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y)) {
+ long mod;
+
+ fixdivmod(FIX2LONG(x), FIX2LONG(y), 0, &mod);
+ return LONG2NUM(mod);
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ x = rb_int2big(FIX2LONG(x));
+ return rb_big_modulo(x, y);
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ return DBL2NUM(ruby_float_mod((double)FIX2LONG(x), RFLOAT_VALUE(y)));
+ }
+ else {
+ return rb_num_coerce_bin(x, y, '%');
+ }
+}
+
+/*
+ * call-seq:
+ * fix.divmod(numeric) -> array
+ *
+ * See Numeric#divmod.
+ */
+static VALUE
+fix_divmod(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y)) {
+ long div, mod;
+
+ fixdivmod(FIX2LONG(x), FIX2LONG(y), &div, &mod);
+
+ return rb_assoc_new(LONG2NUM(div), LONG2NUM(mod));
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ x = rb_int2big(FIX2LONG(x));
+ return rb_big_divmod(x, y);
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ {
+ double div, mod;
+ volatile VALUE a, b;
+
+ flodivmod((double)FIX2LONG(x), RFLOAT_VALUE(y), &div, &mod);
+ a = dbl2ival(div);
+ b = DBL2NUM(mod);
+ return rb_assoc_new(a, b);
+ }
+ }
+ else {
+ return rb_num_coerce_bin(x, y, rb_intern("divmod"));
+ }
+}
+
+static VALUE
+int_pow(long x, unsigned long y)
+{
+ int neg = x < 0;
+ long z = 1;
+
+ if (neg) x = -x;
+ if (y & 1)
+ z = x;
+ else
+ neg = 0;
+ y &= ~1;
+ do {
+ while (y % 2 == 0) {
+ if (!FIT_SQRT_LONG(x)) {
+ VALUE v;
+ bignum:
+ v = rb_big_pow(rb_int2big(x), LONG2NUM(y));
+ if (z != 1) v = rb_big_mul(rb_int2big(neg ? -z : z), v);
+ return v;
+ }
+ x = x * x;
+ y >>= 1;
+ }
+ {
+ if (MUL_OVERFLOW_FIXNUM_P(x, z)) {
+ goto bignum;
+ }
+ z = x * z;
+ }
+ } while (--y);
+ if (neg) z = -z;
+ return LONG2NUM(z);
+}
+
+VALUE
+rb_int_positive_pow(long x, unsigned long y)
+{
+ return int_pow(x, y);
+}
+
+/*
+ * call-seq:
+ * fix ** numeric -> numeric_result
+ *
+ * Raises +fix+ to the power of +numeric+, which may be negative or
+ * fractional.
+ *
+ * 2 ** 3 #=> 8
+ * 2 ** -1 #=> (1/2)
+ * 2 ** 0.5 #=> 1.4142135623731
+ */
+
+static VALUE
+fix_pow(VALUE x, VALUE y)
+{
+ long a = FIX2LONG(x);
+
+ if (FIXNUM_P(y)) {
+ long b = FIX2LONG(y);
+
+ if (a == 1) return INT2FIX(1);
+ if (a == -1) {
+ if (b % 2 == 0)
+ return INT2FIX(1);
+ else
+ return INT2FIX(-1);
+ }
+ if (b < 0)
+ return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y);
+
+ if (b == 0) return INT2FIX(1);
+ if (b == 1) return x;
+ if (a == 0) {
+ if (b > 0) return INT2FIX(0);
+ return DBL2NUM(INFINITY);
+ }
+ return int_pow(a, b);
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ if (a == 1) return INT2FIX(1);
+ if (a == -1) {
+ if (int_even_p(y)) return INT2FIX(1);
+ else return INT2FIX(-1);
+ }
+ if (negative_int_p(y))
+ return rb_funcall(rb_rational_raw1(x), rb_intern("**"), 1, y);
+ if (a == 0) return INT2FIX(0);
+ x = rb_int2big(FIX2LONG(x));
+ return rb_big_pow(x, y);
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ if (RFLOAT_VALUE(y) == 0.0) return DBL2NUM(1.0);
+ if (a == 0) {
+ return DBL2NUM(RFLOAT_VALUE(y) < 0 ? INFINITY : 0.0);
+ }
+ if (a == 1) return DBL2NUM(1.0);
+ {
+ double dy = RFLOAT_VALUE(y);
+ if (a < 0 && dy != round(dy))
+ return rb_funcall(rb_complex_raw1(x), rb_intern("**"), 1, y);
+ return DBL2NUM(pow((double)a, dy));
+ }
+ }
+ else {
+ return rb_num_coerce_bin(x, y, rb_intern("**"));
+ }
+}
+
+/*
+ * call-seq:
+ * fix == other -> true or false
+ *
+ * Return +true+ if +fix+ equals +other+ numerically.
+ *
+ * 1 == 2 #=> false
+ * 1 == 1.0 #=> true
+ */
+
+static VALUE
+fix_equal(VALUE x, VALUE y)
+{
+ if (x == y) return Qtrue;
+ if (FIXNUM_P(y)) return Qfalse;
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ return rb_big_eq(y, x);
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ return rb_integer_float_eq(x, y);
+ }
+ else {
+ return num_equal(x, y);
+ }
+}
+
+/*
+ * call-seq:
+ * fix <=> numeric -> -1, 0, +1 or nil
+ *
+ * Comparison---Returns +-1+, +0+, ++1+ or +nil+ depending on whether +fix+ is
+ * less than, equal to, or greater than +numeric+.
+ *
+ * This is the basis for the tests in the Comparable module.
+ *
+ * +nil+ is returned if the two values are incomparable.
+ */
+
+static VALUE
+fix_cmp(VALUE x, VALUE y)
+{
+ if (x == y) return INT2FIX(0);
+ if (FIXNUM_P(y)) {
+ if (FIX2LONG(x) > FIX2LONG(y)) return INT2FIX(1);
+ return INT2FIX(-1);
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ return rb_big_cmp(rb_int2big(FIX2LONG(x)), y);
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ return rb_integer_float_cmp(x, y);
+ }
+ else {
+ return rb_num_coerce_cmp(x, y, id_cmp);
+ }
+}
+
+/*
+ * call-seq:
+ * fix > real -> true or false
+ *
+ * Returns +true+ if the value of +fix+ is greater than that of +real+.
+ */
+
+static VALUE
+fix_gt(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y)) {
+ if (FIX2LONG(x) > FIX2LONG(y)) return Qtrue;
+ return Qfalse;
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) > 0 ? Qtrue : Qfalse;
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ return rb_integer_float_cmp(x, y) == INT2FIX(1) ? Qtrue : Qfalse;
+ }
+ else {
+ return rb_num_coerce_relop(x, y, '>');
+ }
+}
+
+/*
+ * call-seq:
+ * fix >= real -> true or false
+ *
+ * Returns +true+ if the value of +fix+ is greater than or equal to that of
+ * +real+.
+ */
+
+static VALUE
+fix_ge(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y)) {
+ if (FIX2LONG(x) >= FIX2LONG(y)) return Qtrue;
+ return Qfalse;
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) >= 0 ? Qtrue : Qfalse;
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ VALUE rel = rb_integer_float_cmp(x, y);
+ return rel == INT2FIX(1) || rel == INT2FIX(0) ? Qtrue : Qfalse;
+ }
+ else {
+ return rb_num_coerce_relop(x, y, rb_intern(">="));
+ }
+}
+
+/*
+ * call-seq:
+ * fix < real -> true or false
+ *
+ * Returns +true+ if the value of +fix+ is less than that of +real+.
+ */
+
+static VALUE
+fix_lt(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y)) {
+ if (FIX2LONG(x) < FIX2LONG(y)) return Qtrue;
+ return Qfalse;
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) < 0 ? Qtrue : Qfalse;
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ return rb_integer_float_cmp(x, y) == INT2FIX(-1) ? Qtrue : Qfalse;
+ }
+ else {
+ return rb_num_coerce_relop(x, y, '<');
+ }
+}
+
+/*
+ * call-seq:
+ * fix <= real -> true or false
+ *
+ * Returns +true+ if the value of +fix+ is less than or equal to that of
+ * +real+.
+ */
+
+static VALUE
+fix_le(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y)) {
+ if (FIX2LONG(x) <= FIX2LONG(y)) return Qtrue;
+ return Qfalse;
+ }
+ else if (RB_TYPE_P(y, T_BIGNUM)) {
+ return FIX2INT(rb_big_cmp(rb_int2big(FIX2LONG(x)), y)) <= 0 ? Qtrue : Qfalse;
+ }
+ else if (RB_TYPE_P(y, T_FLOAT)) {
+ VALUE rel = rb_integer_float_cmp(x, y);
+ return rel == INT2FIX(-1) || rel == INT2FIX(0) ? Qtrue : Qfalse;
+ }
+ else {
+ return rb_num_coerce_relop(x, y, rb_intern("<="));
+ }
+}
+
+/*
+ * call-seq:
+ * ~fix -> integer
+ *
+ * One's complement: returns a number where each bit is flipped.
+ */
+
+static VALUE
+fix_rev(VALUE num)
+{
+ return ~num | FIXNUM_FLAG;
+}
+
+static int
+bit_coerce(VALUE *x, VALUE *y)
+{
+ if (!FIXNUM_P(*y) && !RB_TYPE_P(*y, T_BIGNUM)) {
+ VALUE orig = *x;
+ do_coerce(x, y, TRUE);
+ if (!FIXNUM_P(*x) && !RB_TYPE_P(*x, T_BIGNUM)
+ && !FIXNUM_P(*y) && !RB_TYPE_P(*y, T_BIGNUM)) {
+ coerce_failed(orig, *y);
+ }
+ }
+ return TRUE;
+}
+
+VALUE
+rb_num_coerce_bit(VALUE x, VALUE y, ID func)
+{
+ bit_coerce(&x, &y);
+ return rb_funcall(x, func, 1, y);
+}
+
+/*
+ * call-seq:
+ * fix & integer -> integer_result
+ *
+ * Bitwise AND.
+ */
+
+static VALUE
+fix_and(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y)) {
+ long val = FIX2LONG(x) & FIX2LONG(y);
+ return LONG2NUM(val);
+ }
+
+ if (RB_TYPE_P(y, T_BIGNUM)) {
+ return rb_big_and(y, x);
+ }
+
+ bit_coerce(&x, &y);
+ return rb_funcall(x, rb_intern("&"), 1, y);
+}
+
+/*
+ * call-seq:
+ * fix | integer -> integer_result
+ *
+ * Bitwise OR.
+ */
+
+static VALUE
+fix_or(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y)) {
+ long val = FIX2LONG(x) | FIX2LONG(y);
+ return LONG2NUM(val);
+ }
+
+ if (RB_TYPE_P(y, T_BIGNUM)) {
+ return rb_big_or(y, x);
+ }
+
+ bit_coerce(&x, &y);
+ return rb_funcall(x, rb_intern("|"), 1, y);
+}
+
+/*
+ * call-seq:
+ * fix ^ integer -> integer_result
+ *
+ * Bitwise EXCLUSIVE OR.
+ */
+
+static VALUE
+fix_xor(VALUE x, VALUE y)
+{
+ if (FIXNUM_P(y)) {
+ long val = FIX2LONG(x) ^ FIX2LONG(y);
+ return LONG2NUM(val);
+ }
+
+ if (RB_TYPE_P(y, T_BIGNUM)) {
+ return rb_big_xor(y, x);
+ }
+
+ bit_coerce(&x, &y);
+ return rb_funcall(x, rb_intern("^"), 1, y);
+}
+
+static VALUE fix_lshift(long, unsigned long);
+static VALUE fix_rshift(long, unsigned long);
+
+/*
+ * call-seq:
+ * fix << count -> integer
+ *
+ * Shifts +fix+ left +count+ positions, or right if +count+ is negative.
+ */
+
+static VALUE
+rb_fix_lshift(VALUE x, VALUE y)
+{
+ long val, width;
+
+ val = NUM2LONG(x);
+ if (!FIXNUM_P(y))
+ return rb_big_lshift(rb_int2big(val), y);
+ width = FIX2LONG(y);
+ if (width < 0)
+ return fix_rshift(val, (unsigned long)-width);
+ return fix_lshift(val, width);
+}
+
+static VALUE
+fix_lshift(long val, unsigned long width)
+{
+ if (width > (SIZEOF_LONG*CHAR_BIT-1)
+ || ((unsigned long)val)>>(SIZEOF_LONG*CHAR_BIT-1-width) > 0) {
+ return rb_big_lshift(rb_int2big(val), ULONG2NUM(width));
+ }
+ val = val << width;
+ return LONG2NUM(val);
+}
+
+/*
+ * call-seq:
+ * fix >> count -> integer
+ *
+ * Shifts +fix+ right +count+ positions, or left if +count+ is negative.
+ */
+
+static VALUE
+rb_fix_rshift(VALUE x, VALUE y)
+{
+ long i, val;
+
+ val = FIX2LONG(x);
+ if (!FIXNUM_P(y))
+ return rb_big_rshift(rb_int2big(val), y);
+ i = FIX2LONG(y);
+ if (i == 0) return x;
+ if (i < 0)
+ return fix_lshift(val, (unsigned long)-i);
+ return fix_rshift(val, i);
+}
+
+static VALUE
+fix_rshift(long val, unsigned long i)
+{
+ if (i >= sizeof(long)*CHAR_BIT-1) {
+ if (val < 0) return INT2FIX(-1);
+ return INT2FIX(0);
+ }
+ val = RSHIFT(val, i);
+ return LONG2FIX(val);
+}
+
+/*
+ * call-seq:
+ * fix[n] -> 0, 1
+ *
+ * Bit Reference---Returns the +n+th bit in the binary representation of
+ * +fix+, where <code>fix[0]</code> is the least significant bit.
+ *
+ * For example:
+ *
+ * a = 0b11001100101010
+ * 30.downto(0) do |n| print a[n] end
+ * #=> 0000000000000000011001100101010
+ */
+
+static VALUE
+fix_aref(VALUE fix, VALUE idx)
+{
+ long val = FIX2LONG(fix);
+ long i;
+
+ idx = rb_to_int(idx);
+ if (!FIXNUM_P(idx)) {
+ idx = rb_big_norm(idx);
+ if (!FIXNUM_P(idx)) {
+ if (!BIGNUM_SIGN(idx) || val >= 0)
+ return INT2FIX(0);
+ return INT2FIX(1);
+ }
+ }
+ i = FIX2LONG(idx);
+
+ if (i < 0) return INT2FIX(0);
+ if (SIZEOF_LONG*CHAR_BIT-1 <= i) {
+ if (val < 0) return INT2FIX(1);
+ return INT2FIX(0);
+ }
+ if (val & (1L<<i))
+ return INT2FIX(1);
+ return INT2FIX(0);
+}
+
+/*
+ * call-seq:
+ * fix.to_f -> float
+ *
+ * Converts +fix+ to a Float.
+ *
+ */
+
+static VALUE
+fix_to_f(VALUE num)
+{
+ double val;
+
+ val = (double)FIX2LONG(num);
+
+ return DBL2NUM(val);
+}
+
+/*
+ * call-seq:
+ * fix.abs -> integer
+ * fix.magnitude -> integer
+ *
+ * Returns the absolute value of +fix+.
+ *
+ * -12345.abs #=> 12345
+ * 12345.abs #=> 12345
+ *
+ */
+
+static VALUE
+fix_abs(VALUE fix)
+{
+ long i = FIX2LONG(fix);
+
+ if (i < 0) i = -i;
+
+ return LONG2NUM(i);
+}
+
+
+
+/*
+ * call-seq:
+ * fix.size -> fixnum
+ *
+ * Returns the number of bytes in the machine representation of +fix+.
+ *
+ * 1.size #=> 4
+ * -1.size #=> 4
+ * 2147483647.size #=> 4
+ */
+
+static VALUE
+fix_size(VALUE fix)
+{
+ return INT2FIX(sizeof(long));
+}
+
+/*
+ * call-seq:
+ * int.bit_length -> integer
+ *
+ * Returns the number of bits of the value of <i>int</i>.
+ *
+ * "the number of bits" means that
+ * the bit position of the highest bit which is different to the sign bit.
+ * (The bit position of the bit 2**n is n+1.)
+ * If there is no such bit (zero or minus one), zero is returned.
+ *
+ * I.e. This method returns ceil(log2(int < 0 ? -int : int+1)).
+ *
+ * (-2**12-1).bit_length #=> 13
+ * (-2**12).bit_length #=> 12
+ * (-2**12+1).bit_length #=> 12
+ * -0x101.bit_length #=> 9
+ * -0x100.bit_length #=> 8
+ * -0xff.bit_length #=> 8
+ * -2.bit_length #=> 1
+ * -1.bit_length #=> 0
+ * 0.bit_length #=> 0
+ * 1.bit_length #=> 1
+ * 0xff.bit_length #=> 8
+ * 0x100.bit_length #=> 9
+ * (2**12-1).bit_length #=> 12
+ * (2**12).bit_length #=> 13
+ * (2**12+1).bit_length #=> 13
+ *
+ * This method can be used to detect overflow in Array#pack as follows.
+ *
+ * if n.bit_length < 32
+ * [n].pack("l") # no overflow
+ * else
+ * raise "overflow"
+ * end
+ */
+
+static VALUE
+rb_fix_bit_length(VALUE fix)
+{
+ long v = FIX2LONG(fix);
+ if (v < 0)
+ v = ~v;
+ return LONG2FIX(bit_length(v));
+}
+
+static VALUE
+int_upto_size(VALUE from, VALUE args, VALUE eobj)
+{
+ return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(1), FALSE);
+}
+
+/*
+ * call-seq:
+ * int.upto(limit) {|i| block } -> self
+ * int.upto(limit) -> an_enumerator
+ *
+ * Iterates the given block, passing in integer values from +int+ up to and
+ * including +limit+.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ * For example:
+ *
+ * 5.upto(10) { |i| print i, " " }
+ * #=> 5 6 7 8 9 10
+ */
+
+static VALUE
+int_upto(VALUE from, VALUE to)
+{
+ RETURN_SIZED_ENUMERATOR(from, 1, &to, int_upto_size);
+ if (FIXNUM_P(from) && FIXNUM_P(to)) {
+ long i, end;
+
+ end = FIX2LONG(to);
+ for (i = FIX2LONG(from); i <= end; i++) {
+ rb_yield(LONG2FIX(i));
+ }
+ }
+ else {
+ VALUE i = from, c;
+
+ while (!(c = rb_funcall(i, '>', 1, to))) {
+ rb_yield(i);
+ i = rb_funcall(i, '+', 1, INT2FIX(1));
+ }
+ if (NIL_P(c)) rb_cmperr(i, to);
+ }
+ return from;
+}
+
+static VALUE
+int_downto_size(VALUE from, VALUE args, VALUE eobj)
+{
+ return ruby_num_interval_step_size(from, RARRAY_AREF(args, 0), INT2FIX(-1), FALSE);
+}
+
+/*
+ * call-seq:
+ * int.downto(limit) {|i| block } -> self
+ * int.downto(limit) -> an_enumerator
+ *
+ * Iterates the given block, passing decreasing values from +int+ down to and
+ * including +limit+.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ * 5.downto(1) { |n| print n, ".. " }
+ * print " Liftoff!\n"
+ * #=> "5.. 4.. 3.. 2.. 1.. Liftoff!"
+ */
+
+static VALUE
+int_downto(VALUE from, VALUE to)
+{
+ RETURN_SIZED_ENUMERATOR(from, 1, &to, int_downto_size);
+ if (FIXNUM_P(from) && FIXNUM_P(to)) {
+ long i, end;
+
+ end = FIX2LONG(to);
+ for (i=FIX2LONG(from); i >= end; i--) {
+ rb_yield(LONG2FIX(i));
+ }
+ }
+ else {
+ VALUE i = from, c;
+
+ while (!(c = rb_funcall(i, '<', 1, to))) {
+ rb_yield(i);
+ i = rb_funcall(i, '-', 1, INT2FIX(1));
+ }
+ if (NIL_P(c)) rb_cmperr(i, to);
+ }
+ return from;
+}
+
+static VALUE
+int_dotimes_size(VALUE num, VALUE args, VALUE eobj)
+{
+ if (FIXNUM_P(num)) {
+ if (NUM2LONG(num) <= 0) return INT2FIX(0);
+ }
+ else {
+ if (RTEST(rb_funcall(num, '<', 1, INT2FIX(0)))) return INT2FIX(0);
+ }
+ return num;
+}
+
+/*
+ * call-seq:
+ * int.times {|i| block } -> self
+ * int.times -> an_enumerator
+ *
+ * Iterates the given block +int+ times, passing in values from zero to
+ * <code>int - 1</code>.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ * 5.times do |i|
+ * print i, " "
+ * end
+ * #=> 0 1 2 3 4
+ */
+
+static VALUE
+int_dotimes(VALUE num)
+{
+ RETURN_SIZED_ENUMERATOR(num, 0, 0, int_dotimes_size);
+
+ if (FIXNUM_P(num)) {
+ long i, end;
+
+ end = FIX2LONG(num);
+ for (i=0; i<end; i++) {
+ rb_yield(LONG2FIX(i));
+ }
+ }
+ else {
+ VALUE i = INT2FIX(0);
+
+ for (;;) {
+ if (!RTEST(rb_funcall(i, '<', 1, num))) break;
+ rb_yield(i);
+ i = rb_funcall(i, '+', 1, INT2FIX(1));
+ }
+ }
+ return num;
+}
+
+/*
+ * call-seq:
+ * int.round([ndigits]) -> integer or float
+ *
+ * Rounds +int+ to a given precision in decimal digits (default 0 digits).
+ *
+ * Precision may be negative. Returns a floating point number when +ndigits+
+ * is positive, +self+ for zero, and round down for negative.
+ *
+ * 1.round #=> 1
+ * 1.round(2) #=> 1.0
+ * 15.round(-1) #=> 20
+ */
+
+static VALUE
+int_round(int argc, VALUE* argv, VALUE num)
+{
+ VALUE n;
+ int ndigits;
+
+ if (argc == 0) return num;
+ rb_scan_args(argc, argv, "1", &n);
+ ndigits = NUM2INT(n);
+ if (ndigits > 0) {
+ return rb_Float(num);
+ }
+ if (ndigits == 0) {
+ return num;
+ }
+ return int_round_0(num, ndigits);
+}
+
+/*
+ * call-seq:
+ * fix.zero? -> true or false
+ *
+ * Returns +true+ if +fix+ is zero.
+ *
+ */
+
+static VALUE
+fix_zero_p(VALUE num)
+{
+ if (FIX2LONG(num) == 0) {
+ return Qtrue;
+ }
+ return Qfalse;
+}
+
+/*
+ * call-seq:
+ * fix.odd? -> true or false
+ *
+ * Returns +true+ if +fix+ is an odd number.
+ */
+
+static VALUE
+fix_odd_p(VALUE num)
+{
+ if (num & 2) {
+ return Qtrue;
+ }
+ return Qfalse;
+}
+
+/*
+ * call-seq:
+ * fix.even? -> true or false
+ *
+ * Returns +true+ if +fix+ is an even number.
+ */
+
+static VALUE
+fix_even_p(VALUE num)
+{
+ if (num & 2) {
+ return Qfalse;
+ }
+ return Qtrue;
+}
+
+/*
+ * Document-class: ZeroDivisionError
+ *
+ * Raised when attempting to divide an integer by 0.
+ *
+ * 42 / 0
+ * #=> ZeroDivisionError: divided by 0
+ *
+ * Note that only division by an exact 0 will raise the exception:
+ *
+ * 42 / 0.0 #=> Float::INFINITY
+ * 42 / -0.0 #=> -Float::INFINITY
+ * 0 / 0.0 #=> NaN
+ */
+
+/*
+ * Document-class: FloatDomainError
+ *
+ * Raised when attempting to convert special float values (in particular
+ * +infinite+ or +NaN+) to numerical classes which don't support them.
+ *
+ * Float::INFINITY.to_r
+ * #=> FloatDomainError: Infinity
+ */
+
+/*
+ * The top-level number class.
+ */
+void
+Init_Numeric(void)
+{
+#undef rb_intern
+#define rb_intern(str) rb_intern_const(str)
+
+#if defined(__FreeBSD__) && __FreeBSD__ < 4
+ /* allow divide by zero -- Inf */
+ fpsetmask(fpgetmask() & ~(FP_X_DZ|FP_X_INV|FP_X_OFL));
+#elif defined(_UNICOSMP)
+ /* Turn off floating point exceptions for divide by zero, etc. */
+ _set_Creg(0, 0);
+#elif defined(__BORLANDC__)
+ /* Turn off floating point exceptions for overflow, etc. */
+ _control87(MCW_EM, MCW_EM);
+ _control87(_control87(0,0),0x1FFF);
+#endif
+ id_coerce = rb_intern("coerce");
+ id_div = rb_intern("div");
+
+ rb_eZeroDivError = rb_define_class("ZeroDivisionError", rb_eStandardError);
+ rb_eFloatDomainError = rb_define_class("FloatDomainError", rb_eRangeError);
+ rb_cNumeric = rb_define_class("Numeric", rb_cObject);
+
+ rb_define_method(rb_cNumeric, "singleton_method_added", num_sadded, 1);
+ rb_include_module(rb_cNumeric, rb_mComparable);
+ rb_define_method(rb_cNumeric, "initialize_copy", num_init_copy, 1);
+ rb_define_method(rb_cNumeric, "coerce", num_coerce, 1);
+
+ rb_define_method(rb_cNumeric, "i", num_imaginary, 0);
+ rb_define_method(rb_cNumeric, "+@", num_uplus, 0);
+ rb_define_method(rb_cNumeric, "-@", num_uminus, 0);
+ rb_define_method(rb_cNumeric, "<=>", num_cmp, 1);
+ rb_define_method(rb_cNumeric, "eql?", num_eql, 1);
+ rb_define_method(rb_cNumeric, "fdiv", num_fdiv, 1);
+ rb_define_method(rb_cNumeric, "div", num_div, 1);
+ rb_define_method(rb_cNumeric, "divmod", num_divmod, 1);
+ rb_define_method(rb_cNumeric, "%", num_modulo, 1);
+ rb_define_method(rb_cNumeric, "modulo", num_modulo, 1);
+ rb_define_method(rb_cNumeric, "remainder", num_remainder, 1);
+ rb_define_method(rb_cNumeric, "abs", num_abs, 0);
+ rb_define_method(rb_cNumeric, "magnitude", num_abs, 0);
+ rb_define_method(rb_cNumeric, "to_int", num_to_int, 0);
+
+ rb_define_method(rb_cNumeric, "real?", num_real_p, 0);
+ rb_define_method(rb_cNumeric, "integer?", num_int_p, 0);
+ rb_define_method(rb_cNumeric, "zero?", num_zero_p, 0);
+ rb_define_method(rb_cNumeric, "nonzero?", num_nonzero_p, 0);
+
+ rb_define_method(rb_cNumeric, "floor", num_floor, 0);
+ rb_define_method(rb_cNumeric, "ceil", num_ceil, 0);
+ rb_define_method(rb_cNumeric, "round", num_round, -1);
+ rb_define_method(rb_cNumeric, "truncate", num_truncate, 0);
+ rb_define_method(rb_cNumeric, "step", num_step, -1);
+
+ rb_cInteger = rb_define_class("Integer", rb_cNumeric);
+ rb_undef_alloc_func(rb_cInteger);
+ rb_undef_method(CLASS_OF(rb_cInteger), "new");
+
+ rb_define_method(rb_cInteger, "integer?", int_int_p, 0);
+ rb_define_method(rb_cInteger, "odd?", int_odd_p, 0);
+ rb_define_method(rb_cInteger, "even?", int_even_p, 0);
+ rb_define_method(rb_cInteger, "upto", int_upto, 1);
+ rb_define_method(rb_cInteger, "downto", int_downto, 1);
+ rb_define_method(rb_cInteger, "times", int_dotimes, 0);
+ rb_define_method(rb_cInteger, "succ", int_succ, 0);
+ rb_define_method(rb_cInteger, "next", int_succ, 0);
+ rb_define_method(rb_cInteger, "pred", int_pred, 0);
+ rb_define_method(rb_cInteger, "chr", int_chr, -1);
+ rb_define_method(rb_cInteger, "ord", int_ord, 0);
+ rb_define_method(rb_cInteger, "to_i", int_to_i, 0);
+ rb_define_method(rb_cInteger, "to_int", int_to_i, 0);
+ rb_define_method(rb_cInteger, "floor", int_to_i, 0);
+ rb_define_method(rb_cInteger, "ceil", int_to_i, 0);
+ rb_define_method(rb_cInteger, "truncate", int_to_i, 0);
+ rb_define_method(rb_cInteger, "round", int_round, -1);
+
+ rb_cFixnum = rb_define_class("Fixnum", rb_cInteger);
+
+ rb_define_method(rb_cFixnum, "to_s", fix_to_s, -1);
+ rb_define_alias(rb_cFixnum, "inspect", "to_s");
+
+ rb_define_method(rb_cFixnum, "-@", fix_uminus, 0);
+ rb_define_method(rb_cFixnum, "+", fix_plus, 1);
+ rb_define_method(rb_cFixnum, "-", fix_minus, 1);
+ rb_define_method(rb_cFixnum, "*", fix_mul, 1);
+ rb_define_method(rb_cFixnum, "/", fix_div, 1);
+ rb_define_method(rb_cFixnum, "div", fix_idiv, 1);
+ rb_define_method(rb_cFixnum, "%", fix_mod, 1);
+ rb_define_method(rb_cFixnum, "modulo", fix_mod, 1);
+ rb_define_method(rb_cFixnum, "divmod", fix_divmod, 1);
+ rb_define_method(rb_cFixnum, "fdiv", fix_fdiv, 1);
+ rb_define_method(rb_cFixnum, "**", fix_pow, 1);
+
+ rb_define_method(rb_cFixnum, "abs", fix_abs, 0);
+ rb_define_method(rb_cFixnum, "magnitude", fix_abs, 0);
+
+ rb_define_method(rb_cFixnum, "==", fix_equal, 1);
+ rb_define_method(rb_cFixnum, "===", fix_equal, 1);
+ rb_define_method(rb_cFixnum, "<=>", fix_cmp, 1);
+ rb_define_method(rb_cFixnum, ">", fix_gt, 1);
+ rb_define_method(rb_cFixnum, ">=", fix_ge, 1);
+ rb_define_method(rb_cFixnum, "<", fix_lt, 1);
+ rb_define_method(rb_cFixnum, "<=", fix_le, 1);
+
+ rb_define_method(rb_cFixnum, "~", fix_rev, 0);
+ rb_define_method(rb_cFixnum, "&", fix_and, 1);
+ rb_define_method(rb_cFixnum, "|", fix_or, 1);
+ rb_define_method(rb_cFixnum, "^", fix_xor, 1);
+ rb_define_method(rb_cFixnum, "[]", fix_aref, 1);
+
+ rb_define_method(rb_cFixnum, "<<", rb_fix_lshift, 1);
+ rb_define_method(rb_cFixnum, ">>", rb_fix_rshift, 1);
+
+ rb_define_method(rb_cFixnum, "to_f", fix_to_f, 0);
+ rb_define_method(rb_cFixnum, "size", fix_size, 0);
+ rb_define_method(rb_cFixnum, "bit_length", rb_fix_bit_length, 0);
+ rb_define_method(rb_cFixnum, "zero?", fix_zero_p, 0);
+ rb_define_method(rb_cFixnum, "odd?", fix_odd_p, 0);
+ rb_define_method(rb_cFixnum, "even?", fix_even_p, 0);
+ rb_define_method(rb_cFixnum, "succ", fix_succ, 0);
+
+ rb_cFloat = rb_define_class("Float", rb_cNumeric);
+
+ rb_undef_alloc_func(rb_cFloat);
+ rb_undef_method(CLASS_OF(rb_cFloat), "new");
+
+ /*
+ * Represents the rounding mode for floating point addition.
+ *
+ * Usually defaults to 1, rounding to the nearest number.
+ *
+ * Other modes include:
+ *
+ * -1:: Indeterminable
+ * 0:: Rounding towards zero
+ * 1:: Rounding to the nearest number
+ * 2:: Rounding towards positive infinity
+ * 3:: Rounding towards negative infinity
+ */
+ rb_define_const(rb_cFloat, "ROUNDS", INT2FIX(FLT_ROUNDS));
+ /*
+ * The base of the floating point, or number of unique digits used to
+ * represent the number.
+ *
+ * Usually defaults to 2 on most systems, which would represent a base-10 decimal.
+ */
+ rb_define_const(rb_cFloat, "RADIX", INT2FIX(FLT_RADIX));
+ /*
+ * The number of base digits for the +double+ data type.
+ *
+ * Usually defaults to 53.
+ */
+ rb_define_const(rb_cFloat, "MANT_DIG", INT2FIX(DBL_MANT_DIG));
+ /*
+ * The minimum number of significant decimal digits in a double-precision
+ * floating point.
+ *
+ * Usually defaults to 15.
+ */
+ rb_define_const(rb_cFloat, "DIG", INT2FIX(DBL_DIG));
+ /*
+ * The smallest posable exponent value in a double-precision floating
+ * point.
+ *
+ * Usually defaults to -1021.
+ */
+ rb_define_const(rb_cFloat, "MIN_EXP", INT2FIX(DBL_MIN_EXP));
+ /*
+ * The largest possible exponent value in a double-precision floating
+ * point.
+ *
+ * Usually defaults to 1024.
+ */
+ rb_define_const(rb_cFloat, "MAX_EXP", INT2FIX(DBL_MAX_EXP));
+ /*
+ * The smallest negative exponent in a double-precision floating point
+ * where 10 raised to this power minus 1.
+ *
+ * Usually defaults to -307.
+ */
+ rb_define_const(rb_cFloat, "MIN_10_EXP", INT2FIX(DBL_MIN_10_EXP));
+ /*
+ * The largest positive exponent in a double-precision floating point where
+ * 10 raised to this power minus 1.
+ *
+ * Usually defaults to 308.
+ */
+ rb_define_const(rb_cFloat, "MAX_10_EXP", INT2FIX(DBL_MAX_10_EXP));
+ /*
+ * The smallest positive normalized number in a double-precision floating point.
+ *
+ * Usually defaults to 2.2250738585072014e-308.
+ *
+ * If the platform supports denormalized numbers,
+ * there are numbers between zero and Float::MIN.
+ * 0.0.next_float returns the smallest positive floating point number
+ * including denormalized numbers.
+ */
+ rb_define_const(rb_cFloat, "MIN", DBL2NUM(DBL_MIN));
+ /*
+ * The largest possible integer in a double-precision floating point number.
+ *
+ * Usually defaults to 1.7976931348623157e+308.
+ */
+ rb_define_const(rb_cFloat, "MAX", DBL2NUM(DBL_MAX));
+ /*
+ * The difference between 1 and the smallest double-precision floating
+ * point number greater than 1.
+ *
+ * Usually defaults to 2.2204460492503131e-16.
+ */
+ rb_define_const(rb_cFloat, "EPSILON", DBL2NUM(DBL_EPSILON));
+ /*
+ * An expression representing positive infinity.
+ */
+ rb_define_const(rb_cFloat, "INFINITY", DBL2NUM(INFINITY));
+ /*
+ * An expression representing a value which is "not a number".
+ */
+ rb_define_const(rb_cFloat, "NAN", DBL2NUM(NAN));
+
+ rb_define_method(rb_cFloat, "to_s", flo_to_s, 0);
+ rb_define_alias(rb_cFloat, "inspect", "to_s");
+ rb_define_method(rb_cFloat, "coerce", flo_coerce, 1);
+ rb_define_method(rb_cFloat, "-@", flo_uminus, 0);
+ rb_define_method(rb_cFloat, "+", flo_plus, 1);
+ rb_define_method(rb_cFloat, "-", flo_minus, 1);
+ rb_define_method(rb_cFloat, "*", flo_mul, 1);
+ rb_define_method(rb_cFloat, "/", flo_div, 1);
+ rb_define_method(rb_cFloat, "quo", flo_quo, 1);
+ rb_define_method(rb_cFloat, "fdiv", flo_quo, 1);
+ rb_define_method(rb_cFloat, "%", flo_mod, 1);
+ rb_define_method(rb_cFloat, "modulo", flo_mod, 1);
+ rb_define_method(rb_cFloat, "divmod", flo_divmod, 1);
+ rb_define_method(rb_cFloat, "**", flo_pow, 1);
+ rb_define_method(rb_cFloat, "==", flo_eq, 1);
+ rb_define_method(rb_cFloat, "===", flo_eq, 1);
+ rb_define_method(rb_cFloat, "<=>", flo_cmp, 1);
+ rb_define_method(rb_cFloat, ">", flo_gt, 1);
+ rb_define_method(rb_cFloat, ">=", flo_ge, 1);
+ rb_define_method(rb_cFloat, "<", flo_lt, 1);
+ rb_define_method(rb_cFloat, "<=", flo_le, 1);
+ rb_define_method(rb_cFloat, "eql?", flo_eql, 1);
+ rb_define_method(rb_cFloat, "hash", flo_hash, 0);
+ rb_define_method(rb_cFloat, "to_f", flo_to_f, 0);
+ rb_define_method(rb_cFloat, "abs", flo_abs, 0);
+ rb_define_method(rb_cFloat, "magnitude", flo_abs, 0);
+ rb_define_method(rb_cFloat, "zero?", flo_zero_p, 0);
+
+ rb_define_method(rb_cFloat, "to_i", flo_truncate, 0);
+ rb_define_method(rb_cFloat, "to_int", flo_truncate, 0);
+ rb_define_method(rb_cFloat, "floor", flo_floor, 0);
+ rb_define_method(rb_cFloat, "ceil", flo_ceil, 0);
+ rb_define_method(rb_cFloat, "round", flo_round, -1);
+ rb_define_method(rb_cFloat, "truncate", flo_truncate, 0);
+
+ rb_define_method(rb_cFloat, "nan?", flo_is_nan_p, 0);
+ rb_define_method(rb_cFloat, "infinite?", flo_is_infinite_p, 0);
+ rb_define_method(rb_cFloat, "finite?", flo_is_finite_p, 0);
+ rb_define_method(rb_cFloat, "next_float", flo_next_float, 0);
+ rb_define_method(rb_cFloat, "prev_float", flo_prev_float, 0);
+
+ id_to = rb_intern("to");
+ id_by = rb_intern("by");
+}
+
+#undef rb_float_value
+double
+rb_float_value(VALUE v)
+{
+ return rb_float_value_inline(v);
+}
+
+#undef rb_float_new
+VALUE
+rb_float_new(double d)
+{
+ return rb_float_new_inline(d);
+}