summaryrefslogtreecommitdiff
path: root/jni/ruby/benchmark/bm_so_meteor_contest.rb
blob: b8e93bd1504a3f373266acb4d926a5305dfb67a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
#!/usr/bin/env ruby
#
# The Computer Language Shootout
#   http://shootout.alioth.debian.org
#   contributed by Kevin Barnes (Ruby novice)

# PROGRAM:  the main body is at the bottom.
#   1) read about the problem here: http://www-128.ibm.com/developerworks/java/library/j-javaopt/
#   2) see how I represent a board as a bitmask by reading the blank_board comments
#   3) read as your mental paths take you

def print *args
end

# class to represent all information about a particular rotation of a particular piece
class Rotation
  # an array (by location) containing a bit mask for how the piece maps at the given location.
  # if the rotation is invalid at that location the mask will contain false
  attr_reader :start_masks

  # maps a direction to a relative location.  these differ depending on whether it is an even or
  # odd row being mapped from
  @@rotation_even_adder = { :west => -1, :east => 1, :nw => -7, :ne => -6, :sw => 5, :se => 6 }
  @@rotation_odd_adder = { :west => -1, :east => 1, :nw => -6, :ne => -5, :sw => 6, :se => 7 }

  def initialize( directions )
    @even_offsets, @odd_offsets = normalize_offsets( get_values( directions ))

    @even_mask = mask_for_offsets( @even_offsets)
    @odd_mask = mask_for_offsets( @odd_offsets)

    @start_masks = Array.new(60)

    # create the rotational masks by placing the base mask at the location and seeing if
    # 1) it overlaps the boundaries and 2) it produces a prunable board.  if either of these
    # is true the piece cannot be placed
    0.upto(59) do | offset |
      mask = is_even(offset) ? (@even_mask << offset) : (@odd_mask << offset)
      if (blank_board & mask == 0 && !prunable(blank_board | mask, 0, true)) then
        imask = compute_required( mask, offset)
        @start_masks[offset] = [ mask, imask, imask | mask ]
      else
        @start_masks[offset] = false
      end
    end
  end

  def compute_required( mask, offset )
    board = blank_board
    0.upto(offset) { | i | board |= 1 << i }
    board |= mask
    return 0 if (!prunable(board | mask, offset))
    board = flood_fill(board,58)
    count = 0
    imask = 0
    0.upto(59) do | i |
      if (board[i] == 0) then
        imask |= (1 << i)
        count += 1
      end
    end
    (count > 0 && count < 5) ? imask : 0
  end

  def flood_fill( board, location)
    return board if (board[location] == 1)
    board |= 1 << location
    row, col = location.divmod(6)
    board = flood_fill( board, location - 1) if (col > 0)
    board = flood_fill( board, location + 1) if (col < 4)
    if (row % 2 == 0) then
      board = flood_fill( board, location - 7) if (col > 0 && row > 0)
      board = flood_fill( board, location - 6) if (row > 0)
      board = flood_fill( board, location + 6) if (row < 9)
      board = flood_fill( board, location + 5) if (col > 0 && row < 9)
    else
      board = flood_fill( board, location - 5) if (col < 4 && row > 0)
      board = flood_fill( board, location - 6) if (row > 0)
      board = flood_fill( board, location + 6) if (row < 9)
      board = flood_fill( board, location + 7) if (col < 4 && row < 9)
    end
    board
  end

  # given a location, produces a list of relative locations covered by the piece at this rotation
  def offsets( location)
    if is_even( location) then
      @even_offsets.collect { | value | value + location }
    else
      @odd_offsets.collect { | value | value + location }
    end
  end

  # returns a set of offsets relative to the top-left most piece of the rotation (by even or odd rows)
  # this is hard to explain. imagine we have this partial board:
  #   0 0 0 0 0 x        [positions 0-5]
  #    0 0 1 1 0 x       [positions 6-11]
  #   0 0 1 0 0 x        [positions 12-17]
  #    0 1 0 0 0 x       [positions 18-23]
  #   0 1 0 0 0 x        [positions 24-29]
  #    0 0 0 0 0 x       [positions 30-35]
  #       ...
  # The top-left of the piece is at position 8, the
  # board would be passed as a set of positions (values array) containing [8,9,14,19,25] not necessarily in that
  # sorted order.  Since that array starts on an odd row, the offsets for an odd row are: [0,1,6,11,17] obtained
  # by subtracting 8 from everything.  Now imagine the piece shifted up and to the right so it's on an even row:
  #   0 0 0 1 1 x        [positions 0-5]
  #    0 0 1 0 0 x       [positions 6-11]
  #   0 0 1 0 0 x        [positions 12-17]
  #    0 1 0 0 0 x       [positions 18-23]
  #   0 0 0 0 0 x        [positions 24-29]
  #    0 0 0 0 0 x       [positions 30-35]
  #       ...
  # Now the positions are [3,4,8,14,19] which after subtracting the lowest value (3) gives [0,1,5,11,16] thus, the
  # offsets for this particular piece are (in even, odd order) [0,1,5,11,16],[0,1,6,11,17] which is what
  # this function would return
  def normalize_offsets( values)
    min = values.min
    even_min = is_even(min)
    other_min = even_min ? min + 6 : min + 7
    other_values = values.collect do | value |
      if is_even(value) then
        value + 6 - other_min
      else
        value + 7 - other_min
      end
    end
    values.collect! { | value | value - min }

    if even_min then
      [values, other_values]
    else
      [other_values, values]
    end
  end

  # produce a bitmask representation of an array of offset locations
  def mask_for_offsets( offsets )
    mask = 0
    offsets.each { | value | mask = mask + ( 1 << value ) }
    mask
  end

  # finds a "safe" position that a position as described by a list of directions can be placed
  # without falling off any edge of the board.  the values returned a location to place the first piece
  # at so it will fit after making the described moves
  def start_adjust( directions )
    south = east = 0;
    directions.each do | direction |
      east += 1 if ( direction == :sw || direction == :nw || direction == :west )
      south += 1 if ( direction == :nw || direction == :ne )
    end
    south * 6 + east
  end

  # given a set of directions places the piece (as defined by a set of directions) on the board at
  # a location that will not take it off the edge
  def get_values ( directions )
    start = start_adjust(directions)
    values = [ start ]
    directions.each do | direction |
      if (start % 12 >= 6) then
        start += @@rotation_odd_adder[direction]
      else
        start += @@rotation_even_adder[direction]
      end
      values += [ start ]
    end

    # some moves take you back to an existing location, we'll strip duplicates
    values.uniq
  end
end

# describes a piece and caches information about its rotations to as to be efficient for iteration
# ATTRIBUTES:
#   rotations -- all the rotations of the piece
#   type -- a numeic "name" of the piece
#   masks -- an array by location of all legal rotational masks (a n inner array) for that location
#   placed -- the mask that this piece was last placed at (not a location, but the actual mask used)
class Piece
  attr_reader :rotations, :type, :masks
  attr_accessor :placed

  # transform hashes that change one direction into another when you either flip or rotate a set of directions
  @@flip_converter = { :west => :west, :east => :east, :nw => :sw, :ne => :se, :sw => :nw, :se => :ne }
  @@rotate_converter = { :west => :nw, :east => :se, :nw => :ne, :ne => :east, :sw => :west, :se => :sw }

  def initialize( directions, type )
    @type = type
    @rotations = Array.new();
    @map = {}

    generate_rotations( directions )
    directions.collect! { | value | @@flip_converter[value] }
    generate_rotations( directions )

    # creates the masks AND a map that returns [location, rotation] for any given mask
    # this is used when a board is found and we want to draw it, otherwise the map is unused
    @masks = Array.new();
    0.upto(59) do | i |
      even = true
      @masks[i] = @rotations.collect do | rotation |
        mask = rotation.start_masks[i]
        @map[mask[0]] = [ i, rotation ] if (mask)
        mask || nil
      end
      @masks[i].compact!
    end
  end

  # rotates a set of directions through all six angles and adds a Rotation to the list for each one
  def generate_rotations( directions )
    6.times do
      rotations.push( Rotation.new(directions))
      directions.collect! { | value | @@rotate_converter[value] }
    end
  end

  # given a board string, adds this piece to the board at whatever location/rotation
  # important: the outbound board string is 5 wide, the normal location notation is six wide (padded)
  def fill_string( board_string)
    location, rotation = @map[@placed]
    rotation.offsets(location).each do | offset |
      row, col = offset.divmod(6)
      board_string[ row*5 + col, 1 ] = @type.to_s
    end
  end
end

# a blank bit board having this form:
#
#    0 0 0 0 0 1
#     0 0 0 0 0 1
#    0 0 0 0 0 1
#     0 0 0 0 0 1
#    0 0 0 0 0 1
#     0 0 0 0 0 1
#    0 0 0 0 0 1
#     0 0 0 0 0 1
#    0 0 0 0 0 1
#     0 0 0 0 0 1
#    1 1 1 1 1 1
#
# where left lest significant bit is the top left and the most significant is the lower right
# the actual board only consists of the 0 places, the 1 places are blockers to keep things from running
# off the edges or bottom
def blank_board
  0b111111100000100000100000100000100000100000100000100000100000100000
end

def full_board
  0b111111111111111111111111111111111111111111111111111111111111111111
end

# determines if a location (bit position) is in an even row
def is_even( location)
  (location % 12) < 6
end

# support function that create three utility maps:
#  $converter -- for each row an array that maps a five bit row (via array mapping)
#                to the a a five bit representation of the bits below it
#  $bit_count -- maps a five bit row (via array mapping) to the number of 1s in the row
#  @@new_regions -- maps a five bit row (via array mapping) to an array of "region" arrays
#                   a region array has three values the first is a mask of bits in the region,
#                   the second is the count of those bits and the third is identical to the first
#                   examples:
#                           0b10010 => [ 0b01100, 2, 0b01100 ], [ 0b00001, 1, 0b00001]
#                           0b01010 => [ 0b10000, 1, 0b10000 ], [ 0b00100, 1, 0b00100 ], [ 0b00001, 1, 0b00001]
#                           0b10001 => [ 0b01110, 3, 0b01110 ]
def create_collector_support
  odd_map = [0b11, 0b110, 0b1100, 0b11000, 0b10000]
  even_map = [0b1, 0b11, 0b110, 0b1100, 0b11000]

  all_odds = Array.new(0b100000)
  all_evens = Array.new(0b100000)
  bit_counts = Array.new(0b100000)
  new_regions = Array.new(0b100000)
  0.upto(0b11111) do | i |
    bit_count = odd = even = 0
    0.upto(4) do | bit |
      if (i[bit] == 1) then
        bit_count += 1
        odd |= odd_map[bit]
        even |= even_map[bit]
      end
    end
    all_odds[i] = odd
    all_evens[i] = even
    bit_counts[i] = bit_count
    new_regions[i] = create_regions( i)
  end

  $converter = []
  10.times { | row | $converter.push((row % 2 == 0) ? all_evens : all_odds) }
  $bit_counts = bit_counts
  $regions = new_regions.collect { | set | set.collect { | value | [ value, bit_counts[value], value] } }
end

# determines if a board is punable, meaning that there is no possibility that it
# can be filled up with pieces.  A board is prunable if there is a grouping of unfilled spaces
# that are not a multiple of five.  The following board is an example of a prunable board:
#    0 0 1 0 0
#     0 1 0 0 0
#    1 1 0 0 0
#     0 1 0 0 0
#    0 0 0 0 0
#       ...
#
# This board is prunable because the top left corner is only 3 bits in area, no piece will ever fit it
# parameters:
#   board -- an initial bit board (6 bit padded rows, see blank_board for format)
#   location -- starting location, everything above and to the left is already full
#   slotting -- set to true only when testing initial pieces, when filling normally
#               additional assumptions are possible
#
# Algorithm:
#    The algorithm starts at the top row (as determined by location) and iterates a row at a time
#    maintainng counts of active open areas (kept in the collector array) each collector contains
#    three values at the start of an iteration:
#          0: mask of bits that would be adjacent to the collector in this row
#          1: the number of bits collected so far
#          2: a scratch space starting as zero, but used during the computation to represent
#             the empty bits in the new row that are adjacent (position 0)
#  The exact procedure is described in-code
def prunable( board, location, slotting = false)
  collectors = []
  # loop across the rows
  (location / 6).to_i.upto(9) do | row_on |
    # obtain a set of regions representing the bits of the current row.
    regions = $regions[(board >> (row_on * 6)) & 0b11111]
    converter = $converter[row_on]

    # track the number of collectors at the start of the cycle so that
    # we don't compute against newly created collectors, only existing collectors
    initial_collector_count = collectors.length

    # loop against the regions.  For each region of the row
    # we will see if it connects to one or more existing collectors.
    # if it connects to 1 collector, the bits from the region are added to the
    # bits of the collector and the mask is placed in collector[2]
    # If the region overlaps more than one collector then all the collectors
    # it overlaps with are merged into the first one (the others are set to nil in the array)
    # if NO collectors are found then the region is copied as a new collector
    regions.each do | region |
      collector_found = nil
      region_mask = region[2]
      initial_collector_count.times do | collector_num |
        collector = collectors[collector_num]
        if (collector) then
          collector_mask = collector[0]
          if (collector_mask & region_mask != 0) then
            if (collector_found) then
              collector_found[0] |= collector_mask
              collector_found[1] += collector[1]
              collector_found[2] |= collector[2]
              collectors[collector_num] = nil
            else
              collector_found = collector
              collector[1] += region[1]
              collector[2] |= region_mask
            end
          end
        end
      end
      if (collector_found == nil) then
        collectors.push(Array.new(region))
      end
    end

    # check the existing collectors, if any collector overlapped no bits in the region its [2] value will
    # be zero.  The size of any such reaason is tested if it is not a multiple of five true is returned since
    # the board is prunable.  if it is a multiple of five it is removed.
    # Collector that are still active have a new adjacent value [0] set based n the matched bits
    # and have [2] cleared out for the next cycle.
    collectors.length.times do | collector_num |
      collector = collectors[collector_num]
      if (collector) then
        if (collector[2] == 0) then
          return true if (collector[1] % 5 != 0)
          collectors[collector_num] = nil
        else
          # if a collector matches all bits in the row then we can return unprunable early for the
          # following reasons:
          #    1) there can be no more unavailable bits bince we fill from the top left downward
          #    2) all previous regions have been closed or joined so only this region can fail
          #    3) this region must be good since there can never be only 1 region that is nuot
          #       a multiple of five
          # this rule only applies when filling normally, so we ignore the rule if we are "slotting"
          # in pieces to see what configurations work for them (the only other time this algorithm is used).
          return false if (collector[2] == 0b11111 && !slotting)
          collector[0] = converter[collector[2]]
          collector[2] = 0
        end
      end
    end

    # get rid of all the empty converters for the next round
    collectors.compact!
  end
  return false if (collectors.length <= 1) # 1 collector or less and the region is fine
  collectors.any? { | collector | (collector[1] % 5) != 0 } # more than 1 and we test them all for bad size
end

# creates a region given a row mask.  see prunable for what a "region" is
def create_regions( value )
  regions = []
  cur_region = 0
  5.times do | bit |
    if (value[bit] == 0) then
      cur_region |= 1 << bit
    else
      if (cur_region != 0 ) then
        regions.push( cur_region)
        cur_region = 0;
      end
    end
  end
  regions.push(cur_region) if (cur_region != 0)
  regions
end

# find up to the counted number of solutions (or all solutions) and prints the final result
def find_all
  find_top( 1)
  find_top( 0)
  print_results
end

# show the board
def print_results
  print "#{@boards_found} solutions found\n\n"
  print_full_board( @min_board)
  print "\n"
  print_full_board( @max_board)
  print "\n"
end

# finds solutions.  This special version of the main function is only used for the top level
# the reason for it is basically to force a particular ordering on how the rotations are tested for
# the first piece.  It is called twice, first looking for placements of the odd rotations and then
# looking for placements of the even locations.
#
# WHY?
#   Since any found solution has an inverse we want to maximize finding solutions that are not already found
#   as an inverse.  The inverse will ALWAYS be 3 one of the piece configurations that is exactly 3 rotations away
#   (an odd number).  Checking even vs odd then produces a higher probability of finding more pieces earlier
#   in the cycle.  We still need to keep checking all the permutations, but our probability of finding one will
#   diminsh over time.  Since we are TOLD how many to search for this lets us exit before checking all pieces
#   this bennifit is very great when seeking small numbers of solutions and is 0 when looking for more than the
#   maximum number
def find_top( rotation_skip)
  board = blank_board
  (@pieces.length-1).times do
    piece = @pieces.shift
    piece.masks[0].each do | mask, imask, cmask |
      if ((rotation_skip += 1) % 2 == 0) then
        piece.placed = mask
        find( 1, 1, board | mask)
      end
    end
    @pieces.push(piece)
  end
  piece = @pieces.shift
  @pieces.push(piece)
end

# the normail find routine, iterates through the available pieces, checks all rotations at the current location
# and adds any boards found.  depth is acheived via recursion.  the overall approach is described
# here: http://www-128.ibm.com/developerworks/java/library/j-javaopt/
# parameters:
#  start_location -- where to start looking for place for the next piece at
#  placed -- number of pieces placed
#  board -- current state of the board
#
# see in-code comments
def find( start_location, placed, board)
  # find the next location to place a piece by looking for an empty bit
  while board[start_location] == 1
    start_location += 1
  end

  @pieces.length.times do
    piece = @pieces.shift
    piece.masks[start_location].each do | mask, imask, cmask |
      if ( board & cmask == imask) then
        piece.placed = mask
        if (placed == 9) then
          add_board
        else
          find( start_location + 1, placed + 1, board | mask)
        end
      end
    end
    @pieces.push(piece)
  end
end

# print the board
def print_full_board( board_string)
  10.times do | row |
    print " " if (row % 2 == 1)
    5.times do | col |
      print "#{board_string[row*5 + col,1]} "
    end
    print "\n"
  end
end

# when a board is found we "draw it" into a string and then flip that string, adding both to
# the list (hash) of solutions if they are unique.
def add_board
  board_string = "99999999999999999999999999999999999999999999999999"
  @all_pieces.each {  | piece | piece.fill_string( board_string ) }
  save( board_string)
  save( board_string.reverse)
end

# adds a board string to the list (if new) and updates the current best/worst board
def save( board_string)
  if (@all_boards[board_string] == nil) then
    @min_board = board_string if (board_string < @min_board)
    @max_board = board_string if (board_string > @max_board)
    @all_boards.store(board_string,true)
    @boards_found += 1

    # the exit motif is a time saver.  Ideally the function should return, but those tests
    # take noticeable time (performance).
    if (@boards_found == @stop_count) then
      print_results
      exit(0)
    end
  end
end


##
## MAIN BODY :)
##
create_collector_support
@pieces = [
  Piece.new( [ :nw, :ne, :east, :east ], 2),
  Piece.new( [ :ne, :se, :east, :ne ], 7),
  Piece.new( [ :ne, :east, :ne, :nw ], 1),
  Piece.new( [ :east, :sw, :sw, :se ], 6),
  Piece.new( [ :east, :ne, :se, :ne ], 5),
  Piece.new( [ :east, :east, :east, :se ], 0),
  Piece.new( [ :ne, :nw, :se, :east, :se ], 4),
  Piece.new( [ :se, :se, :se, :west ], 9),
  Piece.new( [ :se, :se, :east, :se ], 8),
  Piece.new( [ :east, :east, :sw, :se ], 3)
  ];

@all_pieces = Array.new( @pieces)

@min_board = "99999999999999999999999999999999999999999999999999"
@max_board = "00000000000000000000000000000000000000000000000000"
@stop_count = ARGV[0].to_i || 2089
@all_boards = {}
@boards_found = 0

find_all ######## DO IT!!!