1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
void *ffi_prep_args(char *stack, extended_cif *ecif)
{
register unsigned int i;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
register int count = 0;
p_argv = ecif->avalue;
argp = stack;
if (ecif->cif->rtype->type == FFI_TYPE_STRUCT)
{
*(void **) argp = ecif->rvalue;
argp += 4;
}
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
(i != 0);
i--, p_arg++)
{
size_t z;
z = (*p_arg)->size;
if ((*p_arg)->type == FFI_TYPE_STRUCT)
{
z = sizeof(void*);
*(void **) argp = *p_argv;
}
else if (z < sizeof(int))
{
z = sizeof(int);
switch ((*p_arg)->type)
{
case FFI_TYPE_SINT8:
*(signed int *) argp = (signed int)*(SINT8 *)(* p_argv);
break;
case FFI_TYPE_UINT8:
*(unsigned int *) argp = (unsigned int)*(UINT8 *)(* p_argv);
break;
case FFI_TYPE_SINT16:
*(signed int *) argp = (signed int)*(SINT16 *)(* p_argv);
break;
case FFI_TYPE_UINT16:
*(unsigned int *) argp = (unsigned int)*(UINT16 *)(* p_argv);
break;
default:
FFI_ASSERT(0);
}
}
else if (z == sizeof(int))
{
*(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv);
}
else
{
memcpy(argp, *p_argv, z);
}
p_argv++;
argp += z;
count += z;
}
return (stack + ((count > 24) ? 24 : ALIGN_DOWN(count, 8)));
}
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
{
if (cif->rtype->type == FFI_TYPE_STRUCT)
cif->flags = -1;
else
cif->flags = cif->rtype->size;
cif->bytes = ALIGN (cif->bytes, 8);
return FFI_OK;
}
extern void ffi_call_EABI(void *(*)(char *, extended_cif *),
extended_cif *,
unsigned, unsigned,
unsigned *,
void (*fn)(void));
void ffi_call(ffi_cif *cif,
void (*fn)(void),
void *rvalue,
void **avalue)
{
extended_cif ecif;
ecif.cif = cif;
ecif.avalue = avalue;
if ((rvalue == NULL) &&
(cif->rtype->type == FFI_TYPE_STRUCT))
{
ecif.rvalue = alloca(cif->rtype->size);
}
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
case FFI_EABI:
ffi_call_EABI(ffi_prep_args, &ecif, cif->bytes,
cif->flags, ecif.rvalue, fn);
break;
default:
FFI_ASSERT(0);
break;
}
}
void ffi_closure_eabi (unsigned arg1, unsigned arg2, unsigned arg3,
unsigned arg4, unsigned arg5, unsigned arg6)
{
register ffi_closure *creg __asm__ ("$r12");
ffi_closure *closure = creg;
register char *frame_pointer __asm__ ("$fp");
void *struct_rvalue = (void *) arg1;
char *stack_args = frame_pointer + 9*4;
unsigned register_args[6] =
{ arg1, arg2, arg3, arg4, arg5, arg6 };
char *register_args_ptr = (char *) register_args;
ffi_cif *cif = closure->cif;
ffi_type **arg_types = cif->arg_types;
void **avalue = alloca (cif->nargs * sizeof(void *));
char *ptr = (char *) register_args;
int i;
if ((cif->rtype != NULL) && (cif->rtype->type == FFI_TYPE_STRUCT)) {
ptr += 4;
register_args_ptr = (char *)®ister_args[1];
}
for (i = 0; i < cif->nargs; i++)
{
switch (arg_types[i]->type)
{
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT8:
avalue[i] = ptr + 3;
break;
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT16:
avalue[i] = ptr + 2;
break;
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT32:
case FFI_TYPE_FLOAT:
case FFI_TYPE_POINTER:
avalue[i] = ptr;
break;
case FFI_TYPE_STRUCT:
avalue[i] = *(void**)ptr;
break;
default:
avalue[i] = ptr;
ptr += 4;
break;
}
ptr += 4;
if (ptr == ®ister_args[6])
ptr = stack_args;
}
if (cif->rtype && (cif->rtype->type == FFI_TYPE_STRUCT))
{
(closure->fun) (cif, struct_rvalue, avalue, closure->user_data);
}
else
{
long long rvalue;
(closure->fun) (cif, &rvalue, avalue, closure->user_data);
asm ("mov $r12, %0\n ld.l $r0, ($r12)\n ldo.l $r1, 4($r12)" : : "r" (&rvalue));
}
}
ffi_status
ffi_prep_closure_loc (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*, void*, void**, void*),
void *user_data,
void *codeloc)
{
unsigned short *tramp = (unsigned short *) &closure->tramp[0];
unsigned long fn = (long) ffi_closure_eabi;
unsigned long cls = (long) codeloc;
if (cif->abi != FFI_EABI)
return FFI_BAD_ABI;
fn = (unsigned long) ffi_closure_eabi;
tramp[0] = 0x01e0;
tramp[1] = cls >> 16;
tramp[2] = cls & 0xffff;
tramp[3] = 0x1a00;
tramp[4] = fn >> 16;
tramp[5] = fn & 0xffff;
closure->cif = cif;
closure->fun = fun;
closure->user_data = user_data;
return FFI_OK;
}
|