1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
|
# encoding: utf-8
require 'minitest/unit'
class MiniTest::Unit # :nodoc:
def run_benchmarks # :nodoc:
_run_anything :benchmark
end
def benchmark_suite_header suite # :nodoc:
"\n#{suite}\t#{suite.bench_range.join("\t")}"
end
class TestCase
##
# Returns a set of ranges stepped exponentially from +min+ to
# +max+ by powers of +base+. Eg:
#
# bench_exp(2, 16, 2) # => [2, 4, 8, 16]
def self.bench_exp min, max, base = 10
min = (Math.log10(min) / Math.log10(base)).to_i
max = (Math.log10(max) / Math.log10(base)).to_i
(min..max).map { |m| base ** m }.to_a
end
##
# Returns a set of ranges stepped linearly from +min+ to +max+ by
# +step+. Eg:
#
# bench_linear(20, 40, 10) # => [20, 30, 40]
def self.bench_linear min, max, step = 10
(min..max).step(step).to_a
rescue LocalJumpError # 1.8.6
r = []; (min..max).step(step) { |n| r << n }; r
end
##
# Returns the benchmark methods (methods that start with bench_)
# for that class.
def self.benchmark_methods # :nodoc:
public_instance_methods(true).grep(/^bench_/).map { |m| m.to_s }.sort
end
##
# Returns all test suites that have benchmark methods.
def self.benchmark_suites
TestCase.test_suites.reject { |s| s.benchmark_methods.empty? }
end
##
# Specifies the ranges used for benchmarking for that class.
# Defaults to exponential growth from 1 to 10k by powers of 10.
# Override if you need different ranges for your benchmarks.
#
# See also: ::bench_exp and ::bench_linear.
def self.bench_range
bench_exp 1, 10_000
end
##
# Runs the given +work+, gathering the times of each run. Range
# and times are then passed to a given +validation+ proc. Outputs
# the benchmark name and times in tab-separated format, making it
# easy to paste into a spreadsheet for graphing or further
# analysis.
#
# Ranges are specified by ::bench_range.
#
# Eg:
#
# def bench_algorithm
# validation = proc { |x, y| ... }
# assert_performance validation do |n|
# @obj.algorithm(n)
# end
# end
def assert_performance validation, &work
range = self.class.bench_range
io.print "#{__name__}"
times = []
range.each do |x|
GC.start
t0 = Time.now
instance_exec(x, &work)
t = Time.now - t0
io.print "\t%9.6f" % t
times << t
end
io.puts
validation[range, times]
end
##
# Runs the given +work+ and asserts that the times gathered fit to
# match a constant rate (eg, linear slope == 0) within a given
# +threshold+. Note: because we're testing for a slope of 0, R^2
# is not a good determining factor for the fit, so the threshold
# is applied against the slope itself. As such, you probably want
# to tighten it from the default.
#
# See http://www.graphpad.com/curvefit/goodness_of_fit.htm for
# more details.
#
# Fit is calculated by #fit_linear.
#
# Ranges are specified by ::bench_range.
#
# Eg:
#
# def bench_algorithm
# assert_performance_constant 0.9999 do |n|
# @obj.algorithm(n)
# end
# end
def assert_performance_constant threshold = 0.99, &work
validation = proc do |range, times|
a, b, rr = fit_linear range, times
assert_in_delta 0, b, 1 - threshold
[a, b, rr]
end
assert_performance validation, &work
end
##
# Runs the given +work+ and asserts that the times gathered fit to
# match a exponential curve within a given error +threshold+.
#
# Fit is calculated by #fit_exponential.
#
# Ranges are specified by ::bench_range.
#
# Eg:
#
# def bench_algorithm
# assert_performance_exponential 0.9999 do |n|
# @obj.algorithm(n)
# end
# end
def assert_performance_exponential threshold = 0.99, &work
assert_performance validation_for_fit(:exponential, threshold), &work
end
##
# Runs the given +work+ and asserts that the times gathered fit to
# match a logarithmic curve within a given error +threshold+.
#
# Fit is calculated by #fit_logarithmic.
#
# Ranges are specified by ::bench_range.
#
# Eg:
#
# def bench_algorithm
# assert_performance_logarithmic 0.9999 do |n|
# @obj.algorithm(n)
# end
# end
def assert_performance_logarithmic threshold = 0.99, &work
assert_performance validation_for_fit(:logarithmic, threshold), &work
end
##
# Runs the given +work+ and asserts that the times gathered fit to
# match a straight line within a given error +threshold+.
#
# Fit is calculated by #fit_linear.
#
# Ranges are specified by ::bench_range.
#
# Eg:
#
# def bench_algorithm
# assert_performance_linear 0.9999 do |n|
# @obj.algorithm(n)
# end
# end
def assert_performance_linear threshold = 0.99, &work
assert_performance validation_for_fit(:linear, threshold), &work
end
##
# Runs the given +work+ and asserts that the times gathered curve
# fit to match a power curve within a given error +threshold+.
#
# Fit is calculated by #fit_power.
#
# Ranges are specified by ::bench_range.
#
# Eg:
#
# def bench_algorithm
# assert_performance_power 0.9999 do |x|
# @obj.algorithm
# end
# end
def assert_performance_power threshold = 0.99, &work
assert_performance validation_for_fit(:power, threshold), &work
end
##
# Takes an array of x/y pairs and calculates the general R^2 value.
#
# See: http://en.wikipedia.org/wiki/Coefficient_of_determination
def fit_error xys
y_bar = sigma(xys) { |x, y| y } / xys.size.to_f
ss_tot = sigma(xys) { |x, y| (y - y_bar) ** 2 }
ss_err = sigma(xys) { |x, y| (yield(x) - y) ** 2 }
1 - (ss_err / ss_tot)
end
##
# To fit a functional form: y = ae^(bx).
#
# Takes x and y values and returns [a, b, r^2].
#
# See: http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
def fit_exponential xs, ys
n = xs.size
xys = xs.zip(ys)
sxlny = sigma(xys) { |x,y| x * Math.log(y) }
slny = sigma(xys) { |x,y| Math.log(y) }
sx2 = sigma(xys) { |x,y| x * x }
sx = sigma xs
c = n * sx2 - sx ** 2
a = (slny * sx2 - sx * sxlny) / c
b = ( n * sxlny - sx * slny ) / c
return Math.exp(a), b, fit_error(xys) { |x| Math.exp(a + b * x) }
end
##
# To fit a functional form: y = a + b*ln(x).
#
# Takes x and y values and returns [a, b, r^2].
#
# See: http://mathworld.wolfram.com/LeastSquaresFittingLogarithmic.html
def fit_logarithmic xs, ys
n = xs.size
xys = xs.zip(ys)
slnx2 = sigma(xys) { |x,y| Math.log(x) ** 2 }
slnx = sigma(xys) { |x,y| Math.log(x) }
sylnx = sigma(xys) { |x,y| y * Math.log(x) }
sy = sigma(xys) { |x,y| y }
c = n * slnx2 - slnx ** 2
b = ( n * sylnx - sy * slnx ) / c
a = (sy - b * slnx) / n
return a, b, fit_error(xys) { |x| a + b * Math.log(x) }
end
##
# Fits the functional form: a + bx.
#
# Takes x and y values and returns [a, b, r^2].
#
# See: http://mathworld.wolfram.com/LeastSquaresFitting.html
def fit_linear xs, ys
n = xs.size
xys = xs.zip(ys)
sx = sigma xs
sy = sigma ys
sx2 = sigma(xs) { |x| x ** 2 }
sxy = sigma(xys) { |x,y| x * y }
c = n * sx2 - sx**2
a = (sy * sx2 - sx * sxy) / c
b = ( n * sxy - sx * sy ) / c
return a, b, fit_error(xys) { |x| a + b * x }
end
##
# To fit a functional form: y = ax^b.
#
# Takes x and y values and returns [a, b, r^2].
#
# See: http://mathworld.wolfram.com/LeastSquaresFittingPowerLaw.html
def fit_power xs, ys
n = xs.size
xys = xs.zip(ys)
slnxlny = sigma(xys) { |x, y| Math.log(x) * Math.log(y) }
slnx = sigma(xs) { |x | Math.log(x) }
slny = sigma(ys) { | y| Math.log(y) }
slnx2 = sigma(xs) { |x | Math.log(x) ** 2 }
b = (n * slnxlny - slnx * slny) / (n * slnx2 - slnx ** 2);
a = (slny - b * slnx) / n
return Math.exp(a), b, fit_error(xys) { |x| (Math.exp(a) * (x ** b)) }
end
##
# Enumerates over +enum+ mapping +block+ if given, returning the
# sum of the result. Eg:
#
# sigma([1, 2, 3]) # => 1 + 2 + 3 => 7
# sigma([1, 2, 3]) { |n| n ** 2 } # => 1 + 4 + 9 => 14
def sigma enum, &block
enum = enum.map(&block) if block
enum.inject { |sum, n| sum + n }
end
##
# Returns a proc that calls the specified fit method and asserts
# that the error is within a tolerable threshold.
def validation_for_fit msg, threshold
proc do |range, times|
a, b, rr = send "fit_#{msg}", range, times
assert_operator rr, :>=, threshold
[a, b, rr]
end
end
end
end
class MiniTest::Spec
##
# This is used to define a new benchmark method. You usually don't
# use this directly and is intended for those needing to write new
# performance curve fits (eg: you need a specific polynomial fit).
#
# See ::bench_performance_linear for an example of how to use this.
def self.bench name, &block
define_method "bench_#{name.gsub(/\W+/, '_')}", &block
end
##
# Specifies the ranges used for benchmarking for that class.
#
# bench_range do
# bench_exp(2, 16, 2)
# end
#
# See Unit::TestCase.bench_range for more details.
def self.bench_range &block
return super unless block
meta = (class << self; self; end)
meta.send :define_method, "bench_range", &block
end
##
# Create a benchmark that verifies that the performance is linear.
#
# describe "my class" do
# bench_performance_linear "fast_algorithm", 0.9999 do |n|
# @obj.fast_algorithm(n)
# end
# end
def self.bench_performance_linear name, threshold = 0.99, &work
bench name do
assert_performance_linear threshold, &work
end
end
##
# Create a benchmark that verifies that the performance is constant.
#
# describe "my class" do
# bench_performance_constant "zoom_algorithm!" do |n|
# @obj.zoom_algorithm!(n)
# end
# end
def self.bench_performance_constant name, threshold = 0.99, &work
bench name do
assert_performance_constant threshold, &work
end
end
##
# Create a benchmark that verifies that the performance is exponential.
#
# describe "my class" do
# bench_performance_exponential "algorithm" do |n|
# @obj.algorithm(n)
# end
# end
def self.bench_performance_exponential name, threshold = 0.99, &work
bench name do
assert_performance_exponential threshold, &work
end
end
end
|