summaryrefslogtreecommitdiff
path: root/jni/ruby/test/minitest/test_minitest_benchmark.rb
blob: d04bb9a125690a588b9e7c8864343487a9bcd49e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# encoding: utf-8

require 'minitest/autorun'
require 'minitest/benchmark'

##
# Used to verify data:
# http://www.wolframalpha.com/examples/RegressionAnalysis.html

class TestMiniTestBenchmark < MiniTest::Unit::TestCase
  def test_cls_bench_exp
    assert_equal [2, 4, 8, 16, 32], self.class.bench_exp(2, 32, 2)
  end

  def test_cls_bench_linear
    assert_equal [2, 4, 6, 8, 10], self.class.bench_linear(2, 10, 2)
  end

  def test_cls_benchmark_methods
    assert_equal [], self.class.benchmark_methods

    c = Class.new(MiniTest::Unit::TestCase) do
      def bench_blah
      end
    end

    assert_equal ["bench_blah"], c.benchmark_methods
  end

  def test_cls_bench_range
    assert_equal [1, 10, 100, 1_000, 10_000], self.class.bench_range
  end

  def test_fit_exponential_clean
    x = [1.0, 2.0, 3.0, 4.0, 5.0]
    y = x.map { |n| 1.1 * Math.exp(2.1 * n) }

    assert_fit :exponential, x, y, 1.0, 1.1, 2.1
  end

  def test_fit_exponential_noisy
    x = [1.0, 1.9, 2.6, 3.4, 5.0]
    y = [12, 10, 8.2, 6.9, 5.9]

    # verified with Numbers and R
    assert_fit :exponential, x, y, 0.95, 13.81148, -0.1820
  end

  def test_fit_logarithmic_clean
    x = [1.0, 2.0, 3.0, 4.0, 5.0]
    y = x.map { |n| 1.1 + 2.1 * Math.log(n) }

    assert_fit :logarithmic, x, y, 1.0, 1.1, 2.1
  end

  def test_fit_logarithmic_noisy
    x = [1.0, 2.0, 3.0, 4.0, 5.0]
    # Generated with
    # y = x.map { |n| jitter = 0.999 + 0.002 * rand; (Math.log(n) ) * jitter }
    y = [0.0, 0.6935, 1.0995, 1.3873, 1.6097]

    assert_fit :logarithmic, x, y, 0.95, 0, 1
  end

  def test_fit_constant_clean
    x = (1..5).to_a
    y = [5.0, 5.0, 5.0, 5.0, 5.0]

    assert_fit :linear, x, y, nil, 5.0, 0
  end

  def test_fit_constant_noisy
    x = (1..5).to_a
    y = [1.0, 1.2, 1.0, 0.8, 1.0]

    # verified in numbers and R
    assert_fit :linear, x, y, nil, 1.12, -0.04
  end

  def test_fit_linear_clean
    # y = m * x + b where m = 2.2, b = 3.1
    x = (1..5).to_a
    y = x.map { |n| 2.2 * n + 3.1 }

    assert_fit :linear, x, y, 1.0, 3.1, 2.2
  end

  def test_fit_linear_noisy
    x = [ 60,  61,  62,  63,  65]
    y = [3.1, 3.6, 3.8, 4.0, 4.1]

    # verified in numbers and R
    assert_fit :linear, x, y, 0.8315, -7.9635, 0.1878
  end

  def test_fit_power_clean
    # y = A x ** B, where B = b and A = e ** a
    # if, A = 1, B = 2, then

    x = [1.0, 2.0, 3.0, 4.0, 5.0]
    y = [1.0, 4.0, 9.0, 16.0, 25.0]

    assert_fit :power, x, y, 1.0, 1.0, 2.0
  end

  def test_fit_power_noisy
    # from www.engr.uidaho.edu/thompson/courses/ME330/lecture/least_squares.html
    x = [10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35]
    y = [95, 105, 125, 141, 173, 200, 253, 298, 385, 459, 602]

    # verified in numbers
    assert_fit :power, x, y, 0.90, 2.6217, 1.4556

    # income to % of households below income amount
    # http://library.wolfram.com/infocenter/Conferences/6461/PowerLaws.nb
    x = [15000, 25000, 35000, 50000, 75000, 100000]
    y = [0.154, 0.283, 0.402, 0.55, 0.733, 0.843]

    # verified in numbers
    assert_fit :power, x, y, 0.96, 3.119e-5, 0.8959
  end

  def assert_fit msg, x, y, fit, exp_a, exp_b
    a, b, rr = send "fit_#{msg}", x, y

    assert_operator rr, :>=, fit if fit
    assert_in_delta exp_a, a
    assert_in_delta exp_b, b
  end
end