summaryrefslogtreecommitdiff
path: root/jni/ruby/array.c
diff options
context:
space:
mode:
authorJari Vetoniemi <jari.vetoniemi@indooratlas.com>2020-03-16 18:49:26 +0900
committerJari Vetoniemi <jari.vetoniemi@indooratlas.com>2020-03-30 00:39:06 +0900
commitfcbf63e62c627deae76c1b8cb8c0876c536ed811 (patch)
tree64cb17de3f41a2b6fef2368028fbd00349946994 /jni/ruby/array.c
Fresh start
Diffstat (limited to 'jni/ruby/array.c')
-rw-r--r--jni/ruby/array.c5811
1 files changed, 5811 insertions, 0 deletions
diff --git a/jni/ruby/array.c b/jni/ruby/array.c
new file mode 100644
index 0000000..baa7193
--- /dev/null
+++ b/jni/ruby/array.c
@@ -0,0 +1,5811 @@
+/**********************************************************************
+
+ array.c -
+
+ $Author: nagachika $
+ created at: Fri Aug 6 09:46:12 JST 1993
+
+ Copyright (C) 1993-2007 Yukihiro Matsumoto
+ Copyright (C) 2000 Network Applied Communication Laboratory, Inc.
+ Copyright (C) 2000 Information-technology Promotion Agency, Japan
+
+**********************************************************************/
+
+#include "internal.h"
+#include "ruby/util.h"
+#include "ruby/st.h"
+#include "probes.h"
+#include "id.h"
+
+#ifndef ARRAY_DEBUG
+# define NDEBUG
+#endif
+#include <assert.h>
+
+VALUE rb_cArray;
+
+static ID id_cmp, id_div, id_power;
+
+#define ARY_DEFAULT_SIZE 16
+#define ARY_MAX_SIZE (LONG_MAX / (int)sizeof(VALUE))
+
+# define ARY_SHARED_P(ary) \
+ (assert(!FL_TEST((ary), ELTS_SHARED) || !FL_TEST((ary), RARRAY_EMBED_FLAG)), \
+ FL_TEST((ary),ELTS_SHARED)!=0)
+# define ARY_EMBED_P(ary) \
+ (assert(!FL_TEST((ary), ELTS_SHARED) || !FL_TEST((ary), RARRAY_EMBED_FLAG)), \
+ FL_TEST((ary), RARRAY_EMBED_FLAG)!=0)
+
+#define ARY_HEAP_PTR(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.ptr)
+#define ARY_HEAP_LEN(a) (assert(!ARY_EMBED_P(a)), RARRAY(a)->as.heap.len)
+#define ARY_EMBED_PTR(a) (assert(ARY_EMBED_P(a)), RARRAY(a)->as.ary)
+#define ARY_EMBED_LEN(a) \
+ (assert(ARY_EMBED_P(a)), \
+ (long)((RBASIC(a)->flags >> RARRAY_EMBED_LEN_SHIFT) & \
+ (RARRAY_EMBED_LEN_MASK >> RARRAY_EMBED_LEN_SHIFT)))
+#define ARY_HEAP_SIZE(a) (assert(!ARY_EMBED_P(a)), assert(ARY_OWNS_HEAP_P(a)), RARRAY(a)->as.heap.aux.capa * sizeof(VALUE))
+
+#define ARY_OWNS_HEAP_P(a) (!FL_TEST((a), ELTS_SHARED|RARRAY_EMBED_FLAG))
+#define FL_SET_EMBED(a) do { \
+ assert(!ARY_SHARED_P(a)); \
+ FL_SET((a), RARRAY_EMBED_FLAG); \
+} while (0)
+#define FL_UNSET_EMBED(ary) FL_UNSET((ary), RARRAY_EMBED_FLAG|RARRAY_EMBED_LEN_MASK)
+#define FL_SET_SHARED(ary) do { \
+ assert(!ARY_EMBED_P(ary)); \
+ FL_SET((ary), ELTS_SHARED); \
+} while (0)
+#define FL_UNSET_SHARED(ary) FL_UNSET((ary), ELTS_SHARED)
+
+#define ARY_SET_PTR(ary, p) do { \
+ assert(!ARY_EMBED_P(ary)); \
+ assert(!OBJ_FROZEN(ary)); \
+ RARRAY(ary)->as.heap.ptr = (p); \
+} while (0)
+#define ARY_SET_EMBED_LEN(ary, n) do { \
+ long tmp_n = (n); \
+ assert(ARY_EMBED_P(ary)); \
+ assert(!OBJ_FROZEN(ary)); \
+ RBASIC(ary)->flags &= ~RARRAY_EMBED_LEN_MASK; \
+ RBASIC(ary)->flags |= (tmp_n) << RARRAY_EMBED_LEN_SHIFT; \
+} while (0)
+#define ARY_SET_HEAP_LEN(ary, n) do { \
+ assert(!ARY_EMBED_P(ary)); \
+ RARRAY(ary)->as.heap.len = (n); \
+} while (0)
+#define ARY_SET_LEN(ary, n) do { \
+ if (ARY_EMBED_P(ary)) { \
+ ARY_SET_EMBED_LEN((ary), (n)); \
+ } \
+ else { \
+ ARY_SET_HEAP_LEN((ary), (n)); \
+ } \
+ assert(RARRAY_LEN(ary) == (n)); \
+} while (0)
+#define ARY_INCREASE_PTR(ary, n) do { \
+ assert(!ARY_EMBED_P(ary)); \
+ assert(!OBJ_FROZEN(ary)); \
+ RARRAY(ary)->as.heap.ptr += (n); \
+} while (0)
+#define ARY_INCREASE_LEN(ary, n) do { \
+ assert(!OBJ_FROZEN(ary)); \
+ if (ARY_EMBED_P(ary)) { \
+ ARY_SET_EMBED_LEN((ary), RARRAY_LEN(ary)+(n)); \
+ } \
+ else { \
+ RARRAY(ary)->as.heap.len += (n); \
+ } \
+} while (0)
+
+#define ARY_CAPA(ary) (ARY_EMBED_P(ary) ? RARRAY_EMBED_LEN_MAX : \
+ ARY_SHARED_ROOT_P(ary) ? RARRAY_LEN(ary) : RARRAY(ary)->as.heap.aux.capa)
+#define ARY_SET_CAPA(ary, n) do { \
+ assert(!ARY_EMBED_P(ary)); \
+ assert(!ARY_SHARED_P(ary)); \
+ assert(!OBJ_FROZEN(ary)); \
+ RARRAY(ary)->as.heap.aux.capa = (n); \
+} while (0)
+
+#define ARY_SHARED(ary) (assert(ARY_SHARED_P(ary)), RARRAY(ary)->as.heap.aux.shared)
+#define ARY_SET_SHARED(ary, value) do { \
+ const VALUE _ary_ = (ary); \
+ const VALUE _value_ = (value); \
+ assert(!ARY_EMBED_P(_ary_)); \
+ assert(ARY_SHARED_P(_ary_)); \
+ assert(ARY_SHARED_ROOT_P(_value_)); \
+ RB_OBJ_WRITE(_ary_, &RARRAY(_ary_)->as.heap.aux.shared, _value_); \
+} while (0)
+#define RARRAY_SHARED_ROOT_FLAG FL_USER5
+#define ARY_SHARED_ROOT_P(ary) (FL_TEST((ary), RARRAY_SHARED_ROOT_FLAG))
+#define ARY_SHARED_NUM(ary) \
+ (assert(ARY_SHARED_ROOT_P(ary)), RARRAY(ary)->as.heap.aux.capa)
+#define ARY_SHARED_OCCUPIED(ary) (ARY_SHARED_NUM(ary) == 1)
+#define ARY_SET_SHARED_NUM(ary, value) do { \
+ assert(ARY_SHARED_ROOT_P(ary)); \
+ RARRAY(ary)->as.heap.aux.capa = (value); \
+} while (0)
+#define FL_SET_SHARED_ROOT(ary) do { \
+ assert(!ARY_EMBED_P(ary)); \
+ FL_SET((ary), RARRAY_SHARED_ROOT_FLAG); \
+} while (0)
+
+#define ARY_SET(a, i, v) RARRAY_ASET((assert(!ARY_SHARED_P(a)), (a)), (i), (v))
+
+void
+rb_mem_clear(register VALUE *mem, register long size)
+{
+ while (size--) {
+ *mem++ = Qnil;
+ }
+}
+
+static void
+ary_mem_clear(VALUE ary, long beg, long size)
+{
+ RARRAY_PTR_USE(ary, ptr, {
+ rb_mem_clear(ptr + beg, size);
+ });
+}
+
+static inline void
+memfill(register VALUE *mem, register long size, register VALUE val)
+{
+ while (size--) {
+ *mem++ = val;
+ }
+}
+
+static void
+ary_memfill(VALUE ary, long beg, long size, VALUE val)
+{
+ RARRAY_PTR_USE(ary, ptr, {
+ memfill(ptr + beg, size, val);
+ RB_OBJ_WRITTEN(ary, Qundef, val);
+ });
+}
+
+static void
+ary_memcpy0(VALUE ary, long beg, long argc, const VALUE *argv, VALUE buff_owner_ary)
+{
+#if 1
+ assert(!ARY_SHARED_P(buff_owner_ary));
+
+ if (argc > (int)(128/sizeof(VALUE)) /* is magic number (cache line size) */) {
+ rb_gc_writebarrier_remember(buff_owner_ary);
+ RARRAY_PTR_USE(ary, ptr, {
+ MEMCPY(ptr+beg, argv, VALUE, argc);
+ });
+ }
+ else {
+ int i;
+ RARRAY_PTR_USE(ary, ptr, {
+ for (i=0; i<argc; i++) {
+ RB_OBJ_WRITE(buff_owner_ary, &ptr[i+beg], argv[i]);
+ }
+ });
+ }
+#else
+ /* giveup write barrier (traditional way) */
+ RARRAY_PTR(buff_owner_ary);
+ MEMCPY(RARRAY_PTR(ary)+beg, argv, VALUE, argc);
+#endif
+}
+
+static void
+ary_memcpy(VALUE ary, long beg, long argc, const VALUE *argv)
+{
+ ary_memcpy0(ary, beg, argc, argv, ary);
+}
+
+static void
+ary_resize_capa(VALUE ary, long capacity)
+{
+ assert(RARRAY_LEN(ary) <= capacity);
+ assert(!OBJ_FROZEN(ary));
+ assert(!ARY_SHARED_P(ary));
+ if (capacity > RARRAY_EMBED_LEN_MAX) {
+ if (ARY_EMBED_P(ary)) {
+ long len = ARY_EMBED_LEN(ary);
+ VALUE *ptr = ALLOC_N(VALUE, (capacity));
+ MEMCPY(ptr, ARY_EMBED_PTR(ary), VALUE, len);
+ FL_UNSET_EMBED(ary);
+ ARY_SET_PTR(ary, ptr);
+ ARY_SET_HEAP_LEN(ary, len);
+ }
+ else {
+ SIZED_REALLOC_N(RARRAY(ary)->as.heap.ptr, VALUE, capacity, RARRAY(ary)->as.heap.aux.capa);
+ }
+ ARY_SET_CAPA(ary, (capacity));
+ }
+ else {
+ if (!ARY_EMBED_P(ary)) {
+ long len = RARRAY_LEN(ary);
+ const VALUE *ptr = RARRAY_CONST_PTR(ary);
+
+ if (len > capacity) len = capacity;
+ MEMCPY((VALUE *)RARRAY(ary)->as.ary, ptr, VALUE, len);
+ FL_SET_EMBED(ary);
+ ARY_SET_LEN(ary, len);
+ ruby_xfree((VALUE *)ptr);
+ }
+ }
+}
+
+static inline void
+ary_shrink_capa(VALUE ary)
+{
+ long capacity = ARY_HEAP_LEN(ary);
+ long old_capa = RARRAY(ary)->as.heap.aux.capa;
+ assert(!ARY_SHARED_P(ary));
+ assert(old_capa >= capacity);
+ if (old_capa > capacity)
+ REALLOC_N(RARRAY(ary)->as.heap.ptr, VALUE, capacity);
+}
+
+static void
+ary_double_capa(VALUE ary, long min)
+{
+ long new_capa = ARY_CAPA(ary) / 2;
+
+ if (new_capa < ARY_DEFAULT_SIZE) {
+ new_capa = ARY_DEFAULT_SIZE;
+ }
+ if (new_capa >= ARY_MAX_SIZE - min) {
+ new_capa = (ARY_MAX_SIZE - min) / 2;
+ }
+ new_capa += min;
+ ary_resize_capa(ary, new_capa);
+}
+
+static void
+rb_ary_decrement_share(VALUE shared)
+{
+ if (shared) {
+ long num = ARY_SHARED_NUM(shared) - 1;
+ if (num == 0) {
+ rb_ary_free(shared);
+ rb_gc_force_recycle(shared);
+ }
+ else if (num > 0) {
+ ARY_SET_SHARED_NUM(shared, num);
+ }
+ }
+}
+
+static void
+rb_ary_unshare(VALUE ary)
+{
+ VALUE shared = RARRAY(ary)->as.heap.aux.shared;
+ rb_ary_decrement_share(shared);
+ FL_UNSET_SHARED(ary);
+}
+
+static inline void
+rb_ary_unshare_safe(VALUE ary)
+{
+ if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) {
+ rb_ary_unshare(ary);
+ }
+}
+
+static VALUE
+rb_ary_increment_share(VALUE shared)
+{
+ long num = ARY_SHARED_NUM(shared);
+ if (num >= 0) {
+ ARY_SET_SHARED_NUM(shared, num + 1);
+ }
+ return shared;
+}
+
+static void
+rb_ary_set_shared(VALUE ary, VALUE shared)
+{
+ rb_ary_increment_share(shared);
+ FL_SET_SHARED(ary);
+ ARY_SET_SHARED(ary, shared);
+}
+
+static inline void
+rb_ary_modify_check(VALUE ary)
+{
+ rb_check_frozen(ary);
+}
+
+void
+rb_ary_modify(VALUE ary)
+{
+ rb_ary_modify_check(ary);
+ if (ARY_SHARED_P(ary)) {
+ long shared_len, len = RARRAY_LEN(ary);
+ VALUE shared = ARY_SHARED(ary);
+ if (len <= RARRAY_EMBED_LEN_MAX) {
+ const VALUE *ptr = ARY_HEAP_PTR(ary);
+ FL_UNSET_SHARED(ary);
+ FL_SET_EMBED(ary);
+ MEMCPY((VALUE *)ARY_EMBED_PTR(ary), ptr, VALUE, len);
+ rb_ary_decrement_share(shared);
+ ARY_SET_EMBED_LEN(ary, len);
+ }
+ else if (ARY_SHARED_OCCUPIED(shared) && len > ((shared_len = RARRAY_LEN(shared))>>1)) {
+ long shift = RARRAY_CONST_PTR(ary) - RARRAY_CONST_PTR(shared);
+ FL_UNSET_SHARED(ary);
+ ARY_SET_PTR(ary, RARRAY_CONST_PTR(shared));
+ ARY_SET_CAPA(ary, shared_len);
+ RARRAY_PTR_USE(ary, ptr, {
+ MEMMOVE(ptr, ptr+shift, VALUE, len);
+ });
+ FL_SET_EMBED(shared);
+ rb_ary_decrement_share(shared);
+ }
+ else {
+ VALUE *ptr = ALLOC_N(VALUE, len);
+ MEMCPY(ptr, RARRAY_CONST_PTR(ary), VALUE, len);
+ rb_ary_unshare(ary);
+ ARY_SET_CAPA(ary, len);
+ ARY_SET_PTR(ary, ptr);
+ }
+
+ rb_gc_writebarrier_remember(ary);
+ }
+}
+
+static VALUE
+ary_ensure_room_for_push(VALUE ary, long add_len)
+{
+ long old_len = RARRAY_LEN(ary);
+ long new_len = old_len + add_len;
+ long capa;
+
+ if (old_len > ARY_MAX_SIZE - add_len) {
+ rb_raise(rb_eIndexError, "index %ld too big", new_len);
+ }
+ if (ARY_SHARED_P(ary)) {
+ if (new_len > RARRAY_EMBED_LEN_MAX) {
+ VALUE shared = ARY_SHARED(ary);
+ if (ARY_SHARED_OCCUPIED(shared)) {
+ if (RARRAY_CONST_PTR(ary) - RARRAY_CONST_PTR(shared) + new_len <= RARRAY_LEN(shared)) {
+ rb_ary_modify_check(ary);
+ return shared;
+ }
+ else {
+ /* if array is shared, then it is likely it participate in push/shift pattern */
+ rb_ary_modify(ary);
+ capa = ARY_CAPA(ary);
+ if (new_len > capa - (capa >> 6)) {
+ ary_double_capa(ary, new_len);
+ }
+ return ary;
+ }
+ }
+ }
+ }
+ rb_ary_modify(ary);
+ capa = ARY_CAPA(ary);
+ if (new_len > capa) {
+ ary_double_capa(ary, new_len);
+ }
+
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.freeze -> ary
+ *
+ * Calls Object#freeze on +ary+ to prevent any further
+ * modification. A RuntimeError will be raised if a modification
+ * attempt is made.
+ *
+ */
+
+VALUE
+rb_ary_freeze(VALUE ary)
+{
+ return rb_obj_freeze(ary);
+}
+
+/*
+ * call-seq:
+ * ary.frozen? -> true or false
+ *
+ * Return +true+ if this array is frozen (or temporarily frozen
+ * while being sorted). See also Object#frozen?
+ */
+
+static VALUE
+rb_ary_frozen_p(VALUE ary)
+{
+ if (OBJ_FROZEN(ary)) return Qtrue;
+ return Qfalse;
+}
+
+/* This can be used to take a snapshot of an array (with
+ e.g. rb_ary_replace) and check later whether the array has been
+ modified from the snapshot. The snapshot is cheap, though if
+ something does modify the array it will pay the cost of copying
+ it. If Array#pop or Array#shift has been called, the array will
+ be still shared with the snapshot, but the array length will
+ differ. */
+VALUE
+rb_ary_shared_with_p(VALUE ary1, VALUE ary2)
+{
+ if (!ARY_EMBED_P(ary1) && ARY_SHARED_P(ary1) &&
+ !ARY_EMBED_P(ary2) && ARY_SHARED_P(ary2) &&
+ RARRAY(ary1)->as.heap.aux.shared == RARRAY(ary2)->as.heap.aux.shared &&
+ RARRAY(ary1)->as.heap.len == RARRAY(ary2)->as.heap.len) {
+ return Qtrue;
+ }
+ return Qfalse;
+}
+
+static VALUE
+ary_alloc(VALUE klass)
+{
+ NEWOBJ_OF(ary, struct RArray, klass, T_ARRAY | RARRAY_EMBED_FLAG | (RGENGC_WB_PROTECTED_ARRAY ? FL_WB_PROTECTED : 0));
+ /* Created array is:
+ * FL_SET_EMBED((VALUE)ary);
+ * ARY_SET_EMBED_LEN((VALUE)ary, 0);
+ */
+ return (VALUE)ary;
+}
+
+static VALUE
+empty_ary_alloc(VALUE klass)
+{
+ if (RUBY_DTRACE_ARRAY_CREATE_ENABLED()) {
+ RUBY_DTRACE_ARRAY_CREATE(0, rb_sourcefile(), rb_sourceline());
+ }
+
+ return ary_alloc(klass);
+}
+
+static VALUE
+ary_new(VALUE klass, long capa)
+{
+ VALUE ary,*ptr;
+
+ if (capa < 0) {
+ rb_raise(rb_eArgError, "negative array size (or size too big)");
+ }
+ if (capa > ARY_MAX_SIZE) {
+ rb_raise(rb_eArgError, "array size too big");
+ }
+
+ if (RUBY_DTRACE_ARRAY_CREATE_ENABLED()) {
+ RUBY_DTRACE_ARRAY_CREATE(capa, rb_sourcefile(), rb_sourceline());
+ }
+
+ ary = ary_alloc(klass);
+ if (capa > RARRAY_EMBED_LEN_MAX) {
+ ptr = ALLOC_N(VALUE, capa);
+ FL_UNSET_EMBED(ary);
+ ARY_SET_PTR(ary, ptr);
+ ARY_SET_CAPA(ary, capa);
+ ARY_SET_HEAP_LEN(ary, 0);
+ }
+
+ return ary;
+}
+
+VALUE
+rb_ary_new_capa(long capa)
+{
+ return ary_new(rb_cArray, capa);
+}
+
+VALUE
+rb_ary_new(void)
+{
+ return rb_ary_new2(RARRAY_EMBED_LEN_MAX);
+}
+
+VALUE
+(rb_ary_new_from_args)(long n, ...)
+{
+ va_list ar;
+ VALUE ary;
+ long i;
+
+ ary = rb_ary_new2(n);
+
+ va_start(ar, n);
+ for (i=0; i<n; i++) {
+ ARY_SET(ary, i, va_arg(ar, VALUE));
+ }
+ va_end(ar);
+
+ ARY_SET_LEN(ary, n);
+ return ary;
+}
+
+VALUE
+rb_ary_new_from_values(long n, const VALUE *elts)
+{
+ VALUE ary;
+
+ ary = rb_ary_new2(n);
+ if (n > 0 && elts) {
+ ary_memcpy(ary, 0, n, elts);
+ ARY_SET_LEN(ary, n);
+ }
+
+ return ary;
+}
+
+VALUE
+rb_ary_tmp_new(long capa)
+{
+ return ary_new(0, capa);
+}
+
+VALUE
+rb_ary_tmp_new_fill(long capa)
+{
+ VALUE ary = ary_new(0, capa);
+ ary_memfill(ary, 0, capa, Qnil);
+ ARY_SET_LEN(ary, capa);
+ return ary;
+}
+
+void
+rb_ary_free(VALUE ary)
+{
+ if (ARY_OWNS_HEAP_P(ary)) {
+ ruby_sized_xfree((void *)ARY_HEAP_PTR(ary), ARY_HEAP_SIZE(ary));
+ }
+}
+
+RUBY_FUNC_EXPORTED size_t
+rb_ary_memsize(VALUE ary)
+{
+ if (ARY_OWNS_HEAP_P(ary)) {
+ return RARRAY(ary)->as.heap.aux.capa * sizeof(VALUE);
+ }
+ else {
+ return 0;
+ }
+}
+
+static inline void
+ary_discard(VALUE ary)
+{
+ rb_ary_free(ary);
+ RBASIC(ary)->flags |= RARRAY_EMBED_FLAG;
+ RBASIC(ary)->flags &= ~RARRAY_EMBED_LEN_MASK;
+}
+
+static VALUE
+ary_make_shared(VALUE ary)
+{
+ assert(!ARY_EMBED_P(ary));
+ if (ARY_SHARED_P(ary)) {
+ return ARY_SHARED(ary);
+ }
+ else if (ARY_SHARED_ROOT_P(ary)) {
+ return ary;
+ }
+ else if (OBJ_FROZEN(ary)) {
+ ary_shrink_capa(ary);
+ FL_SET_SHARED_ROOT(ary);
+ ARY_SET_SHARED_NUM(ary, 1);
+ return ary;
+ }
+ else {
+ long capa = ARY_CAPA(ary), len = RARRAY_LEN(ary);
+ NEWOBJ_OF(shared, struct RArray, 0, T_ARRAY | (RGENGC_WB_PROTECTED_ARRAY ? FL_WB_PROTECTED : 0));
+ FL_UNSET_EMBED(shared);
+
+ ARY_SET_LEN((VALUE)shared, capa);
+ ARY_SET_PTR((VALUE)shared, RARRAY_CONST_PTR(ary));
+ ary_mem_clear((VALUE)shared, len, capa - len);
+ FL_SET_SHARED_ROOT(shared);
+ ARY_SET_SHARED_NUM((VALUE)shared, 1);
+ FL_SET_SHARED(ary);
+ ARY_SET_SHARED(ary, (VALUE)shared);
+ OBJ_FREEZE(shared);
+ return (VALUE)shared;
+ }
+}
+
+static VALUE
+ary_make_substitution(VALUE ary)
+{
+ long len = RARRAY_LEN(ary);
+
+ if (len <= RARRAY_EMBED_LEN_MAX) {
+ VALUE subst = rb_ary_new2(len);
+ ary_memcpy(subst, 0, len, RARRAY_CONST_PTR(ary));
+ ARY_SET_EMBED_LEN(subst, len);
+ return subst;
+ }
+ else {
+ return rb_ary_increment_share(ary_make_shared(ary));
+ }
+}
+
+VALUE
+rb_assoc_new(VALUE car, VALUE cdr)
+{
+ return rb_ary_new3(2, car, cdr);
+}
+
+static VALUE
+to_ary(VALUE ary)
+{
+ return rb_convert_type(ary, T_ARRAY, "Array", "to_ary");
+}
+
+VALUE
+rb_check_array_type(VALUE ary)
+{
+ return rb_check_convert_type(ary, T_ARRAY, "Array", "to_ary");
+}
+
+/*
+ * call-seq:
+ * Array.try_convert(obj) -> array or nil
+ *
+ * Tries to convert +obj+ into an array, using +to_ary+ method. Returns the
+ * converted array or +nil+ if +obj+ cannot be converted for any reason.
+ * This method can be used to check if an argument is an array.
+ *
+ * Array.try_convert([1]) #=> [1]
+ * Array.try_convert("1") #=> nil
+ *
+ * if tmp = Array.try_convert(arg)
+ * # the argument is an array
+ * elsif tmp = String.try_convert(arg)
+ * # the argument is a string
+ * end
+ *
+ */
+
+static VALUE
+rb_ary_s_try_convert(VALUE dummy, VALUE ary)
+{
+ return rb_check_array_type(ary);
+}
+
+/*
+ * call-seq:
+ * Array.new(size=0, default=nil)
+ * Array.new(array)
+ * Array.new(size) {|index| block }
+ *
+ * Returns a new array.
+ *
+ * In the first form, if no arguments are sent, the new array will be empty.
+ * When a +size+ and an optional +default+ are sent, an array is created with
+ * +size+ copies of +default+. Take notice that all elements will reference the
+ * same object +default+.
+ *
+ * The second form creates a copy of the array passed as a parameter (the
+ * array is generated by calling to_ary on the parameter).
+ *
+ * first_array = ["Matz", "Guido"]
+ *
+ * second_array = Array.new(first_array) #=> ["Matz", "Guido"]
+ *
+ * first_array.equal? second_array #=> false
+ *
+ * In the last form, an array of the given size is created. Each element in
+ * this array is created by passing the element's index to the given block
+ * and storing the return value.
+ *
+ * Array.new(3){ |index| index ** 2 }
+ * # => [0, 1, 4]
+ *
+ * == Common gotchas
+ *
+ * When sending the second parameter, the same object will be used as the
+ * value for all the array elements:
+ *
+ * a = Array.new(2, Hash.new)
+ * # => [{}, {}]
+ *
+ * a[0]['cat'] = 'feline'
+ * a # => [{"cat"=>"feline"}, {"cat"=>"feline"}]
+ *
+ * a[1]['cat'] = 'Felix'
+ * a # => [{"cat"=>"Felix"}, {"cat"=>"Felix"}]
+ *
+ * Since all the Array elements store the same hash, changes to one of them
+ * will affect them all.
+ *
+ * If multiple copies are what you want, you should use the block
+ * version which uses the result of that block each time an element
+ * of the array needs to be initialized:
+ *
+ * a = Array.new(2) { Hash.new }
+ * a[0]['cat'] = 'feline'
+ * a # => [{"cat"=>"feline"}, {}]
+ *
+ */
+
+static VALUE
+rb_ary_initialize(int argc, VALUE *argv, VALUE ary)
+{
+ long len;
+ VALUE size, val;
+
+ rb_ary_modify(ary);
+ if (argc == 0) {
+ if (ARY_OWNS_HEAP_P(ary) && RARRAY_CONST_PTR(ary) != 0) {
+ ruby_sized_xfree((void *)RARRAY_CONST_PTR(ary), ARY_HEAP_SIZE(ary));
+ }
+ rb_ary_unshare_safe(ary);
+ FL_SET_EMBED(ary);
+ ARY_SET_EMBED_LEN(ary, 0);
+ if (rb_block_given_p()) {
+ rb_warning("given block not used");
+ }
+ return ary;
+ }
+ rb_scan_args(argc, argv, "02", &size, &val);
+ if (argc == 1 && !FIXNUM_P(size)) {
+ val = rb_check_array_type(size);
+ if (!NIL_P(val)) {
+ rb_ary_replace(ary, val);
+ return ary;
+ }
+ }
+
+ len = NUM2LONG(size);
+ /* NUM2LONG() may call size.to_int, ary can be frozen, modified, etc */
+ if (len < 0) {
+ rb_raise(rb_eArgError, "negative array size");
+ }
+ if (len > ARY_MAX_SIZE) {
+ rb_raise(rb_eArgError, "array size too big");
+ }
+ /* recheck after argument conversion */
+ rb_ary_modify(ary);
+ ary_resize_capa(ary, len);
+ if (rb_block_given_p()) {
+ long i;
+
+ if (argc == 2) {
+ rb_warn("block supersedes default value argument");
+ }
+ for (i=0; i<len; i++) {
+ rb_ary_store(ary, i, rb_yield(LONG2NUM(i)));
+ ARY_SET_LEN(ary, i + 1);
+ }
+ }
+ else {
+ ary_memfill(ary, 0, len, val);
+ ARY_SET_LEN(ary, len);
+ }
+ return ary;
+}
+
+/*
+ * Returns a new array populated with the given objects.
+ *
+ * Array.[]( 1, 'a', /^A/ ) # => [1, "a", /^A/]
+ * Array[ 1, 'a', /^A/ ] # => [1, "a", /^A/]
+ * [ 1, 'a', /^A/ ] # => [1, "a", /^A/]
+ */
+
+static VALUE
+rb_ary_s_create(int argc, VALUE *argv, VALUE klass)
+{
+ VALUE ary = ary_new(klass, argc);
+ if (argc > 0 && argv) {
+ ary_memcpy(ary, 0, argc, argv);
+ ARY_SET_LEN(ary, argc);
+ }
+
+ return ary;
+}
+
+void
+rb_ary_store(VALUE ary, long idx, VALUE val)
+{
+ long len = RARRAY_LEN(ary);
+
+ if (idx < 0) {
+ idx += len;
+ if (idx < 0) {
+ rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld",
+ idx - len, -len);
+ }
+ }
+ else if (idx >= ARY_MAX_SIZE) {
+ rb_raise(rb_eIndexError, "index %ld too big", idx);
+ }
+
+ rb_ary_modify(ary);
+ if (idx >= ARY_CAPA(ary)) {
+ ary_double_capa(ary, idx);
+ }
+ if (idx > len) {
+ ary_mem_clear(ary, len, idx - len + 1);
+ }
+
+ if (idx >= len) {
+ ARY_SET_LEN(ary, idx + 1);
+ }
+ ARY_SET(ary, idx, val);
+}
+
+static VALUE
+ary_make_partial(VALUE ary, VALUE klass, long offset, long len)
+{
+ assert(offset >= 0);
+ assert(len >= 0);
+ assert(offset+len <= RARRAY_LEN(ary));
+
+ if (len <= RARRAY_EMBED_LEN_MAX) {
+ VALUE result = ary_alloc(klass);
+ ary_memcpy(result, 0, len, RARRAY_CONST_PTR(ary) + offset);
+ ARY_SET_EMBED_LEN(result, len);
+ return result;
+ }
+ else {
+ VALUE shared, result = ary_alloc(klass);
+ FL_UNSET_EMBED(result);
+
+ shared = ary_make_shared(ary);
+ ARY_SET_PTR(result, RARRAY_CONST_PTR(ary));
+ ARY_SET_LEN(result, RARRAY_LEN(ary));
+ rb_ary_set_shared(result, shared);
+
+ ARY_INCREASE_PTR(result, offset);
+ ARY_SET_LEN(result, len);
+ return result;
+ }
+}
+
+static VALUE
+ary_make_shared_copy(VALUE ary)
+{
+ return ary_make_partial(ary, rb_obj_class(ary), 0, RARRAY_LEN(ary));
+}
+
+enum ary_take_pos_flags
+{
+ ARY_TAKE_FIRST = 0,
+ ARY_TAKE_LAST = 1
+};
+
+static VALUE
+ary_take_first_or_last(int argc, const VALUE *argv, VALUE ary, enum ary_take_pos_flags last)
+{
+ VALUE nv;
+ long n;
+ long len;
+ long offset = 0;
+
+ rb_scan_args(argc, argv, "1", &nv);
+ n = NUM2LONG(nv);
+ len = RARRAY_LEN(ary);
+ if (n > len) {
+ n = len;
+ }
+ else if (n < 0) {
+ rb_raise(rb_eArgError, "negative array size");
+ }
+ if (last) {
+ offset = len - n;
+ }
+ return ary_make_partial(ary, rb_cArray, offset, n);
+}
+
+/*
+ * call-seq:
+ * ary << obj -> ary
+ *
+ * Append---Pushes the given object on to the end of this array. This
+ * expression returns the array itself, so several appends
+ * may be chained together.
+ *
+ * [ 1, 2 ] << "c" << "d" << [ 3, 4 ]
+ * #=> [ 1, 2, "c", "d", [ 3, 4 ] ]
+ *
+ */
+
+VALUE
+rb_ary_push(VALUE ary, VALUE item)
+{
+ long idx = RARRAY_LEN(ary);
+ VALUE target_ary = ary_ensure_room_for_push(ary, 1);
+ RARRAY_PTR_USE(ary, ptr, {
+ RB_OBJ_WRITE(target_ary, &ptr[idx], item);
+ });
+ ARY_SET_LEN(ary, idx + 1);
+ return ary;
+}
+
+VALUE
+rb_ary_cat(VALUE ary, const VALUE *argv, long len)
+{
+ long oldlen = RARRAY_LEN(ary);
+ VALUE target_ary = ary_ensure_room_for_push(ary, len);
+ ary_memcpy0(ary, oldlen, len, argv, target_ary);
+ ARY_SET_LEN(ary, oldlen + len);
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.push(obj, ... ) -> ary
+ *
+ * Append --- Pushes the given object(s) on to the end of this array. This
+ * expression returns the array itself, so several appends
+ * may be chained together. See also Array#pop for the opposite
+ * effect.
+ *
+ * a = [ "a", "b", "c" ]
+ * a.push("d", "e", "f")
+ * #=> ["a", "b", "c", "d", "e", "f"]
+ * [1, 2, 3,].push(4).push(5)
+ * #=> [1, 2, 3, 4, 5]
+ */
+
+static VALUE
+rb_ary_push_m(int argc, VALUE *argv, VALUE ary)
+{
+ return rb_ary_cat(ary, argv, argc);
+}
+
+VALUE
+rb_ary_pop(VALUE ary)
+{
+ long n;
+ rb_ary_modify_check(ary);
+ n = RARRAY_LEN(ary);
+ if (n == 0) return Qnil;
+ if (ARY_OWNS_HEAP_P(ary) &&
+ n * 3 < ARY_CAPA(ary) &&
+ ARY_CAPA(ary) > ARY_DEFAULT_SIZE)
+ {
+ ary_resize_capa(ary, n * 2);
+ }
+ --n;
+ ARY_SET_LEN(ary, n);
+ return RARRAY_AREF(ary, n);
+}
+
+/*
+ * call-seq:
+ * ary.pop -> obj or nil
+ * ary.pop(n) -> new_ary
+ *
+ * Removes the last element from +self+ and returns it, or
+ * +nil+ if the array is empty.
+ *
+ * If a number +n+ is given, returns an array of the last +n+ elements
+ * (or less) just like <code>array.slice!(-n, n)</code> does. See also
+ * Array#push for the opposite effect.
+ *
+ * a = [ "a", "b", "c", "d" ]
+ * a.pop #=> "d"
+ * a.pop(2) #=> ["b", "c"]
+ * a #=> ["a"]
+ */
+
+static VALUE
+rb_ary_pop_m(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE result;
+
+ if (argc == 0) {
+ return rb_ary_pop(ary);
+ }
+
+ rb_ary_modify_check(ary);
+ result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
+ ARY_INCREASE_LEN(ary, -RARRAY_LEN(result));
+ return result;
+}
+
+VALUE
+rb_ary_shift(VALUE ary)
+{
+ VALUE top;
+ long len = RARRAY_LEN(ary);
+
+ rb_ary_modify_check(ary);
+ if (len == 0) return Qnil;
+ top = RARRAY_AREF(ary, 0);
+ if (!ARY_SHARED_P(ary)) {
+ if (len < ARY_DEFAULT_SIZE) {
+ RARRAY_PTR_USE(ary, ptr, {
+ MEMMOVE(ptr, ptr+1, VALUE, len-1);
+ }); /* WB: no new reference */
+ ARY_INCREASE_LEN(ary, -1);
+ return top;
+ }
+ assert(!ARY_EMBED_P(ary)); /* ARY_EMBED_LEN_MAX < ARY_DEFAULT_SIZE */
+
+ ARY_SET(ary, 0, Qnil);
+ ary_make_shared(ary);
+ }
+ else if (ARY_SHARED_OCCUPIED(ARY_SHARED(ary))) {
+ RARRAY_PTR_USE(ary, ptr, ptr[0] = Qnil);
+ }
+ ARY_INCREASE_PTR(ary, 1); /* shift ptr */
+ ARY_INCREASE_LEN(ary, -1);
+
+ return top;
+}
+
+/*
+ * call-seq:
+ * ary.shift -> obj or nil
+ * ary.shift(n) -> new_ary
+ *
+ * Removes the first element of +self+ and returns it (shifting all
+ * other elements down by one). Returns +nil+ if the array
+ * is empty.
+ *
+ * If a number +n+ is given, returns an array of the first +n+ elements
+ * (or less) just like <code>array.slice!(0, n)</code> does. With +ary+
+ * containing only the remainder elements, not including what was shifted to
+ * +new_ary+. See also Array#unshift for the opposite effect.
+ *
+ * args = [ "-m", "-q", "filename" ]
+ * args.shift #=> "-m"
+ * args #=> ["-q", "filename"]
+ *
+ * args = [ "-m", "-q", "filename" ]
+ * args.shift(2) #=> ["-m", "-q"]
+ * args #=> ["filename"]
+ */
+
+static VALUE
+rb_ary_shift_m(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE result;
+ long n;
+
+ if (argc == 0) {
+ return rb_ary_shift(ary);
+ }
+
+ rb_ary_modify_check(ary);
+ result = ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
+ n = RARRAY_LEN(result);
+ if (ARY_SHARED_P(ary)) {
+ if (ARY_SHARED_OCCUPIED(ARY_SHARED(ary))) {
+ ary_mem_clear(ary, 0, n);
+ }
+ ARY_INCREASE_PTR(ary, n);
+ }
+ else {
+ RARRAY_PTR_USE(ary, ptr, {
+ MEMMOVE(ptr, ptr + n, VALUE, RARRAY_LEN(ary)-n);
+ }); /* WB: no new reference */
+ }
+ ARY_INCREASE_LEN(ary, -n);
+
+ return result;
+}
+
+static VALUE
+ary_ensure_room_for_unshift(VALUE ary, int argc)
+{
+ long len = RARRAY_LEN(ary);
+ long new_len = len + argc;
+ long capa;
+ const VALUE *head, *sharedp;
+
+ if (len > ARY_MAX_SIZE - argc) {
+ rb_raise(rb_eIndexError, "index %ld too big", new_len);
+ }
+
+ if (ARY_SHARED_P(ary)) {
+ VALUE shared = ARY_SHARED(ary);
+ capa = RARRAY_LEN(shared);
+ if (ARY_SHARED_OCCUPIED(shared) && capa > new_len) {
+ head = RARRAY_CONST_PTR(ary);
+ sharedp = RARRAY_CONST_PTR(shared);
+ goto makeroom_if_need;
+ }
+ }
+
+ rb_ary_modify(ary);
+ capa = ARY_CAPA(ary);
+ if (capa - (capa >> 6) <= new_len) {
+ ary_double_capa(ary, new_len);
+ }
+
+ /* use shared array for big "queues" */
+ if (new_len > ARY_DEFAULT_SIZE * 4) {
+ /* make a room for unshifted items */
+ capa = ARY_CAPA(ary);
+ ary_make_shared(ary);
+
+ head = sharedp = RARRAY_CONST_PTR(ary);
+ goto makeroom;
+ makeroom_if_need:
+ if (head - sharedp < argc) {
+ long room;
+ makeroom:
+ room = capa - new_len;
+ room -= room >> 4;
+ MEMMOVE((VALUE *)sharedp + argc + room, head, VALUE, len);
+ head = sharedp + argc + room;
+ }
+ ARY_SET_PTR(ary, head - argc);
+ assert(ARY_SHARED_OCCUPIED(ARY_SHARED(ary)));
+ return ARY_SHARED(ary);
+ }
+ else {
+ /* sliding items */
+ RARRAY_PTR_USE(ary, ptr, {
+ MEMMOVE(ptr + argc, ptr, VALUE, len);
+ });
+
+ return ary;
+ }
+}
+
+/*
+ * call-seq:
+ * ary.unshift(obj, ...) -> ary
+ *
+ * Prepends objects to the front of +self+, moving other elements upwards.
+ * See also Array#shift for the opposite effect.
+ *
+ * a = [ "b", "c", "d" ]
+ * a.unshift("a") #=> ["a", "b", "c", "d"]
+ * a.unshift(1, 2) #=> [ 1, 2, "a", "b", "c", "d"]
+ */
+
+static VALUE
+rb_ary_unshift_m(int argc, VALUE *argv, VALUE ary)
+{
+ long len = RARRAY_LEN(ary);
+ VALUE target_ary;
+
+ if (argc == 0) {
+ rb_ary_modify_check(ary);
+ return ary;
+ }
+
+ target_ary = ary_ensure_room_for_unshift(ary, argc);
+ ary_memcpy0(ary, 0, argc, argv, target_ary);
+ ARY_SET_LEN(ary, len + argc);
+ return ary;
+}
+
+VALUE
+rb_ary_unshift(VALUE ary, VALUE item)
+{
+ return rb_ary_unshift_m(1,&item,ary);
+}
+
+/* faster version - use this if you don't need to treat negative offset */
+static inline VALUE
+rb_ary_elt(VALUE ary, long offset)
+{
+ long len = RARRAY_LEN(ary);
+ if (len == 0) return Qnil;
+ if (offset < 0 || len <= offset) {
+ return Qnil;
+ }
+ return RARRAY_AREF(ary, offset);
+}
+
+VALUE
+rb_ary_entry(VALUE ary, long offset)
+{
+ if (offset < 0) {
+ offset += RARRAY_LEN(ary);
+ }
+ return rb_ary_elt(ary, offset);
+}
+
+VALUE
+rb_ary_subseq(VALUE ary, long beg, long len)
+{
+ VALUE klass;
+ long alen = RARRAY_LEN(ary);
+
+ if (beg > alen) return Qnil;
+ if (beg < 0 || len < 0) return Qnil;
+
+ if (alen < len || alen < beg + len) {
+ len = alen - beg;
+ }
+ klass = rb_obj_class(ary);
+ if (len == 0) return ary_new(klass, 0);
+
+ return ary_make_partial(ary, klass, beg, len);
+}
+
+/*
+ * call-seq:
+ * ary[index] -> obj or nil
+ * ary[start, length] -> new_ary or nil
+ * ary[range] -> new_ary or nil
+ * ary.slice(index) -> obj or nil
+ * ary.slice(start, length) -> new_ary or nil
+ * ary.slice(range) -> new_ary or nil
+ *
+ * Element Reference --- Returns the element at +index+, or returns a
+ * subarray starting at the +start+ index and continuing for +length+
+ * elements, or returns a subarray specified by +range+ of indices.
+ *
+ * Negative indices count backward from the end of the array (-1 is the last
+ * element). For +start+ and +range+ cases the starting index is just before
+ * an element. Additionally, an empty array is returned when the starting
+ * index for an element range is at the end of the array.
+ *
+ * Returns +nil+ if the index (or starting index) are out of range.
+ *
+ * a = [ "a", "b", "c", "d", "e" ]
+ * a[2] + a[0] + a[1] #=> "cab"
+ * a[6] #=> nil
+ * a[1, 2] #=> [ "b", "c" ]
+ * a[1..3] #=> [ "b", "c", "d" ]
+ * a[4..7] #=> [ "e" ]
+ * a[6..10] #=> nil
+ * a[-3, 3] #=> [ "c", "d", "e" ]
+ * # special cases
+ * a[5] #=> nil
+ * a[6, 1] #=> nil
+ * a[5, 1] #=> []
+ * a[5..10] #=> []
+ *
+ */
+
+VALUE
+rb_ary_aref(int argc, const VALUE *argv, VALUE ary)
+{
+ VALUE arg;
+ long beg, len;
+
+ if (argc == 2) {
+ beg = NUM2LONG(argv[0]);
+ len = NUM2LONG(argv[1]);
+ if (beg < 0) {
+ beg += RARRAY_LEN(ary);
+ }
+ return rb_ary_subseq(ary, beg, len);
+ }
+ if (argc != 1) {
+ rb_scan_args(argc, argv, "11", NULL, NULL);
+ }
+ arg = argv[0];
+ /* special case - speeding up */
+ if (FIXNUM_P(arg)) {
+ return rb_ary_entry(ary, FIX2LONG(arg));
+ }
+ /* check if idx is Range */
+ switch (rb_range_beg_len(arg, &beg, &len, RARRAY_LEN(ary), 0)) {
+ case Qfalse:
+ break;
+ case Qnil:
+ return Qnil;
+ default:
+ return rb_ary_subseq(ary, beg, len);
+ }
+ return rb_ary_entry(ary, NUM2LONG(arg));
+}
+
+/*
+ * call-seq:
+ * ary.at(index) -> obj or nil
+ *
+ * Returns the element at +index+. A negative index counts from the end of
+ * +self+. Returns +nil+ if the index is out of range. See also
+ * Array#[].
+ *
+ * a = [ "a", "b", "c", "d", "e" ]
+ * a.at(0) #=> "a"
+ * a.at(-1) #=> "e"
+ */
+
+static VALUE
+rb_ary_at(VALUE ary, VALUE pos)
+{
+ return rb_ary_entry(ary, NUM2LONG(pos));
+}
+
+/*
+ * call-seq:
+ * ary.first -> obj or nil
+ * ary.first(n) -> new_ary
+ *
+ * Returns the first element, or the first +n+ elements, of the array.
+ * If the array is empty, the first form returns +nil+, and the
+ * second form returns an empty array. See also Array#last for
+ * the opposite effect.
+ *
+ * a = [ "q", "r", "s", "t" ]
+ * a.first #=> "q"
+ * a.first(2) #=> ["q", "r"]
+ */
+
+static VALUE
+rb_ary_first(int argc, VALUE *argv, VALUE ary)
+{
+ if (argc == 0) {
+ if (RARRAY_LEN(ary) == 0) return Qnil;
+ return RARRAY_AREF(ary, 0);
+ }
+ else {
+ return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_FIRST);
+ }
+}
+
+/*
+ * call-seq:
+ * ary.last -> obj or nil
+ * ary.last(n) -> new_ary
+ *
+ * Returns the last element(s) of +self+. If the array is empty,
+ * the first form returns +nil+.
+ *
+ * See also Array#first for the opposite effect.
+ *
+ * a = [ "w", "x", "y", "z" ]
+ * a.last #=> "z"
+ * a.last(2) #=> ["y", "z"]
+ */
+
+VALUE
+rb_ary_last(int argc, const VALUE *argv, VALUE ary)
+{
+ if (argc == 0) {
+ long len = RARRAY_LEN(ary);
+ if (len == 0) return Qnil;
+ return RARRAY_AREF(ary, len-1);
+ }
+ else {
+ return ary_take_first_or_last(argc, argv, ary, ARY_TAKE_LAST);
+ }
+}
+
+/*
+ * call-seq:
+ * ary.fetch(index) -> obj
+ * ary.fetch(index, default) -> obj
+ * ary.fetch(index) { |index| block } -> obj
+ *
+ * Tries to return the element at position +index+, but throws an IndexError
+ * exception if the referenced +index+ lies outside of the array bounds. This
+ * error can be prevented by supplying a second argument, which will act as a
+ * +default+ value.
+ *
+ * Alternatively, if a block is given it will only be executed when an
+ * invalid +index+ is referenced. Negative values of +index+ count from the
+ * end of the array.
+ *
+ * a = [ 11, 22, 33, 44 ]
+ * a.fetch(1) #=> 22
+ * a.fetch(-1) #=> 44
+ * a.fetch(4, 'cat') #=> "cat"
+ * a.fetch(100) { |i| puts "#{i} is out of bounds" }
+ * #=> "100 is out of bounds"
+ */
+
+static VALUE
+rb_ary_fetch(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE pos, ifnone;
+ long block_given;
+ long idx;
+
+ rb_scan_args(argc, argv, "11", &pos, &ifnone);
+ block_given = rb_block_given_p();
+ if (block_given && argc == 2) {
+ rb_warn("block supersedes default value argument");
+ }
+ idx = NUM2LONG(pos);
+
+ if (idx < 0) {
+ idx += RARRAY_LEN(ary);
+ }
+ if (idx < 0 || RARRAY_LEN(ary) <= idx) {
+ if (block_given) return rb_yield(pos);
+ if (argc == 1) {
+ rb_raise(rb_eIndexError, "index %ld outside of array bounds: %ld...%ld",
+ idx - (idx < 0 ? RARRAY_LEN(ary) : 0), -RARRAY_LEN(ary), RARRAY_LEN(ary));
+ }
+ return ifnone;
+ }
+ return RARRAY_AREF(ary, idx);
+}
+
+/*
+ * call-seq:
+ * ary.find_index(obj) -> int or nil
+ * ary.find_index { |item| block } -> int or nil
+ * ary.find_index -> Enumerator
+ * ary.index(obj) -> int or nil
+ * ary.index { |item| block } -> int or nil
+ * ary.index -> Enumerator
+ *
+ * Returns the _index_ of the first object in +ary+ such that the object is
+ * <code>==</code> to +obj+.
+ *
+ * If a block is given instead of an argument, returns the _index_ of the
+ * first object for which the block returns +true+. Returns +nil+ if no
+ * match is found.
+ *
+ * See also Array#rindex.
+ *
+ * An Enumerator is returned if neither a block nor argument is given.
+ *
+ * a = [ "a", "b", "c" ]
+ * a.index("b") #=> 1
+ * a.index("z") #=> nil
+ * a.index { |x| x == "b" } #=> 1
+ */
+
+static VALUE
+rb_ary_index(int argc, VALUE *argv, VALUE ary)
+{
+ const VALUE *ptr;
+ VALUE val;
+ long i, len;
+
+ if (argc == 0) {
+ RETURN_ENUMERATOR(ary, 0, 0);
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
+ return LONG2NUM(i);
+ }
+ }
+ return Qnil;
+ }
+ rb_check_arity(argc, 0, 1);
+ val = argv[0];
+ if (rb_block_given_p())
+ rb_warn("given block not used");
+ len = RARRAY_LEN(ary);
+ ptr = RARRAY_CONST_PTR(ary);
+ for (i=0; i<len; i++) {
+ VALUE e = ptr[i];
+ switch (rb_equal_opt(e, val)) {
+ case Qundef:
+ if (!rb_equal(e, val)) break;
+ case Qtrue:
+ return LONG2NUM(i);
+ case Qfalse:
+ continue;
+ }
+ len = RARRAY_LEN(ary);
+ ptr = RARRAY_CONST_PTR(ary);
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * ary.rindex(obj) -> int or nil
+ * ary.rindex { |item| block } -> int or nil
+ * ary.rindex -> Enumerator
+ *
+ * Returns the _index_ of the last object in +self+ <code>==</code> to +obj+.
+ *
+ * If a block is given instead of an argument, returns the _index_ of the
+ * first object for which the block returns +true+, starting from the last
+ * object.
+ *
+ * Returns +nil+ if no match is found.
+ *
+ * See also Array#index.
+ *
+ * If neither block nor argument is given, an Enumerator is returned instead.
+ *
+ * a = [ "a", "b", "b", "b", "c" ]
+ * a.rindex("b") #=> 3
+ * a.rindex("z") #=> nil
+ * a.rindex { |x| x == "b" } #=> 3
+ */
+
+static VALUE
+rb_ary_rindex(int argc, VALUE *argv, VALUE ary)
+{
+ const VALUE *ptr;
+ VALUE val;
+ long i = RARRAY_LEN(ary), len;
+
+ if (argc == 0) {
+ RETURN_ENUMERATOR(ary, 0, 0);
+ while (i--) {
+ if (RTEST(rb_yield(RARRAY_AREF(ary, i))))
+ return LONG2NUM(i);
+ if (i > (len = RARRAY_LEN(ary))) {
+ i = len;
+ }
+ }
+ return Qnil;
+ }
+ rb_check_arity(argc, 0, 1);
+ val = argv[0];
+ if (rb_block_given_p())
+ rb_warn("given block not used");
+ ptr = RARRAY_CONST_PTR(ary);
+ while (i--) {
+ VALUE e = ptr[i];
+ switch (rb_equal_opt(e, val)) {
+ case Qundef:
+ if (!rb_equal(e, val)) break;
+ case Qtrue:
+ return LONG2NUM(i);
+ case Qfalse:
+ continue;
+ }
+ if (i > (len = RARRAY_LEN(ary))) {
+ i = len;
+ }
+ ptr = RARRAY_CONST_PTR(ary);
+ }
+ return Qnil;
+}
+
+VALUE
+rb_ary_to_ary(VALUE obj)
+{
+ VALUE tmp = rb_check_array_type(obj);
+
+ if (!NIL_P(tmp)) return tmp;
+ return rb_ary_new3(1, obj);
+}
+
+static void
+rb_ary_splice(VALUE ary, long beg, long len, VALUE rpl)
+{
+ long rlen;
+ long olen;
+
+ if (len < 0) rb_raise(rb_eIndexError, "negative length (%ld)", len);
+ olen = RARRAY_LEN(ary);
+ if (beg < 0) {
+ beg += olen;
+ if (beg < 0) {
+ rb_raise(rb_eIndexError, "index %ld too small for array; minimum: %ld",
+ beg - olen, -olen);
+ }
+ }
+ if (olen < len || olen < beg + len) {
+ len = olen - beg;
+ }
+
+ if (rpl == Qundef) {
+ rlen = 0;
+ }
+ else {
+ rpl = rb_ary_to_ary(rpl);
+ rlen = RARRAY_LEN(rpl);
+ olen = RARRAY_LEN(ary); /* ary may be resized in rpl.to_ary too */
+ }
+ if (beg >= olen) {
+ VALUE target_ary;
+ if (beg > ARY_MAX_SIZE - rlen) {
+ rb_raise(rb_eIndexError, "index %ld too big", beg);
+ }
+ target_ary = ary_ensure_room_for_push(ary, rlen-len); /* len is 0 or negative */
+ len = beg + rlen;
+ ary_mem_clear(ary, olen, beg - olen);
+ if (rlen > 0) {
+ ary_memcpy0(ary, beg, rlen, RARRAY_CONST_PTR(rpl), target_ary);
+ }
+ ARY_SET_LEN(ary, len);
+ }
+ else {
+ long alen;
+
+ if (olen - len > ARY_MAX_SIZE - rlen) {
+ rb_raise(rb_eIndexError, "index %ld too big", olen + rlen - len);
+ }
+ rb_ary_modify(ary);
+ alen = olen + rlen - len;
+ if (alen >= ARY_CAPA(ary)) {
+ ary_double_capa(ary, alen);
+ }
+
+ if (len != rlen) {
+ RARRAY_PTR_USE(ary, ptr,
+ MEMMOVE(ptr + beg + rlen, ptr + beg + len,
+ VALUE, olen - (beg + len)));
+ ARY_SET_LEN(ary, alen);
+ }
+ if (rlen > 0) {
+ MEMMOVE(RARRAY_PTR(ary) + beg, RARRAY_CONST_PTR(rpl), VALUE, rlen);
+ }
+ }
+ RB_GC_GUARD(rpl);
+}
+
+void
+rb_ary_set_len(VALUE ary, long len)
+{
+ long capa;
+
+ rb_ary_modify_check(ary);
+ if (ARY_SHARED_P(ary)) {
+ rb_raise(rb_eRuntimeError, "can't set length of shared ");
+ }
+ if (len > (capa = (long)ARY_CAPA(ary))) {
+ rb_bug("probable buffer overflow: %ld for %ld", len, capa);
+ }
+ ARY_SET_LEN(ary, len);
+}
+
+/*!
+ * expands or shrinks \a ary to \a len elements.
+ * expanded region will be filled with Qnil.
+ * \param ary an array
+ * \param len new size
+ * \return \a ary
+ * \post the size of \a ary is \a len.
+ */
+VALUE
+rb_ary_resize(VALUE ary, long len)
+{
+ long olen;
+
+ rb_ary_modify(ary);
+ olen = RARRAY_LEN(ary);
+ if (len == olen) return ary;
+ if (len > ARY_MAX_SIZE) {
+ rb_raise(rb_eIndexError, "index %ld too big", len);
+ }
+ if (len > olen) {
+ if (len >= ARY_CAPA(ary)) {
+ ary_double_capa(ary, len);
+ }
+ ary_mem_clear(ary, olen, len - olen);
+ ARY_SET_LEN(ary, len);
+ }
+ else if (ARY_EMBED_P(ary)) {
+ ARY_SET_EMBED_LEN(ary, len);
+ }
+ else if (len <= RARRAY_EMBED_LEN_MAX) {
+ VALUE tmp[RARRAY_EMBED_LEN_MAX];
+ MEMCPY(tmp, ARY_HEAP_PTR(ary), VALUE, len);
+ ary_discard(ary);
+ MEMCPY((VALUE *)ARY_EMBED_PTR(ary), tmp, VALUE, len); /* WB: no new reference */
+ ARY_SET_EMBED_LEN(ary, len);
+ }
+ else {
+ if (olen > len + ARY_DEFAULT_SIZE) {
+ SIZED_REALLOC_N(RARRAY(ary)->as.heap.ptr, VALUE, len, RARRAY(ary)->as.heap.aux.capa);
+ ARY_SET_CAPA(ary, len);
+ }
+ ARY_SET_HEAP_LEN(ary, len);
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary[index] = obj -> obj
+ * ary[start, length] = obj or other_ary or nil -> obj or other_ary or nil
+ * ary[range] = obj or other_ary or nil -> obj or other_ary or nil
+ *
+ * Element Assignment --- Sets the element at +index+, or replaces a subarray
+ * from the +start+ index for +length+ elements, or replaces a subarray
+ * specified by the +range+ of indices.
+ *
+ * If indices are greater than the current capacity of the array, the array
+ * grows automatically. Elements are inserted into the array at +start+ if
+ * +length+ is zero.
+ *
+ * Negative indices will count backward from the end of the array. For
+ * +start+ and +range+ cases the starting index is just before an element.
+ *
+ * An IndexError is raised if a negative index points past the beginning of
+ * the array.
+ *
+ * See also Array#push, and Array#unshift.
+ *
+ * a = Array.new
+ * a[4] = "4"; #=> [nil, nil, nil, nil, "4"]
+ * a[0, 3] = [ 'a', 'b', 'c' ] #=> ["a", "b", "c", nil, "4"]
+ * a[1..2] = [ 1, 2 ] #=> ["a", 1, 2, nil, "4"]
+ * a[0, 2] = "?" #=> ["?", 2, nil, "4"]
+ * a[0..2] = "A" #=> ["A", "4"]
+ * a[-1] = "Z" #=> ["A", "Z"]
+ * a[1..-1] = nil #=> ["A", nil]
+ * a[1..-1] = [] #=> ["A"]
+ * a[0, 0] = [ 1, 2 ] #=> [1, 2, "A"]
+ * a[3, 0] = "B" #=> [1, 2, "A", "B"]
+ */
+
+static VALUE
+rb_ary_aset(int argc, VALUE *argv, VALUE ary)
+{
+ long offset, beg, len;
+
+ if (argc == 3) {
+ rb_ary_modify_check(ary);
+ beg = NUM2LONG(argv[0]);
+ len = NUM2LONG(argv[1]);
+ rb_ary_splice(ary, beg, len, argv[2]);
+ return argv[2];
+ }
+ rb_check_arity(argc, 2, 2);
+ rb_ary_modify_check(ary);
+ if (FIXNUM_P(argv[0])) {
+ offset = FIX2LONG(argv[0]);
+ goto fixnum;
+ }
+ if (rb_range_beg_len(argv[0], &beg, &len, RARRAY_LEN(ary), 1)) {
+ /* check if idx is Range */
+ rb_ary_splice(ary, beg, len, argv[1]);
+ return argv[1];
+ }
+
+ offset = NUM2LONG(argv[0]);
+fixnum:
+ rb_ary_store(ary, offset, argv[1]);
+ return argv[1];
+}
+
+/*
+ * call-seq:
+ * ary.insert(index, obj...) -> ary
+ *
+ * Inserts the given values before the element with the given +index+.
+ *
+ * Negative indices count backwards from the end of the array, where +-1+ is
+ * the last element. If a negative index is used, the given values will be
+ * inserted after that element, so using an index of +-1+ will insert the
+ * values at the end of the array.
+ *
+ * a = %w{ a b c d }
+ * a.insert(2, 99) #=> ["a", "b", 99, "c", "d"]
+ * a.insert(-2, 1, 2, 3) #=> ["a", "b", 99, "c", 1, 2, 3, "d"]
+ */
+
+static VALUE
+rb_ary_insert(int argc, VALUE *argv, VALUE ary)
+{
+ long pos;
+
+ rb_check_arity(argc, 1, UNLIMITED_ARGUMENTS);
+ rb_ary_modify_check(ary);
+ if (argc == 1) return ary;
+ pos = NUM2LONG(argv[0]);
+ if (pos == -1) {
+ pos = RARRAY_LEN(ary);
+ }
+ if (pos < 0) {
+ pos++;
+ }
+ rb_ary_splice(ary, pos, 0, rb_ary_new4(argc - 1, argv + 1));
+ return ary;
+}
+
+static VALUE
+rb_ary_length(VALUE ary);
+
+static VALUE
+ary_enum_length(VALUE ary, VALUE args, VALUE eobj)
+{
+ return rb_ary_length(ary);
+}
+
+/*
+ * call-seq:
+ * ary.each { |item| block } -> ary
+ * ary.each -> Enumerator
+ *
+ * Calls the given block once for each element in +self+, passing that element
+ * as a parameter.
+ *
+ * An Enumerator is returned if no block is given.
+ *
+ * a = [ "a", "b", "c" ]
+ * a.each {|x| print x, " -- " }
+ *
+ * produces:
+ *
+ * a -- b -- c --
+ */
+
+VALUE
+rb_ary_each(VALUE array)
+{
+ long i;
+ volatile VALUE ary = array;
+
+ RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ rb_yield(RARRAY_AREF(ary, i));
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.each_index { |index| block } -> ary
+ * ary.each_index -> Enumerator
+ *
+ * Same as Array#each, but passes the +index+ of the element instead of the
+ * element itself.
+ *
+ * An Enumerator is returned if no block is given.
+ *
+ * a = [ "a", "b", "c" ]
+ * a.each_index {|x| print x, " -- " }
+ *
+ * produces:
+ *
+ * 0 -- 1 -- 2 --
+ */
+
+static VALUE
+rb_ary_each_index(VALUE ary)
+{
+ long i;
+ RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
+
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ rb_yield(LONG2NUM(i));
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.reverse_each { |item| block } -> ary
+ * ary.reverse_each -> Enumerator
+ *
+ * Same as Array#each, but traverses +self+ in reverse order.
+ *
+ * a = [ "a", "b", "c" ]
+ * a.reverse_each {|x| print x, " " }
+ *
+ * produces:
+ *
+ * c b a
+ */
+
+static VALUE
+rb_ary_reverse_each(VALUE ary)
+{
+ long len;
+
+ RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
+ len = RARRAY_LEN(ary);
+ while (len--) {
+ long nlen;
+ rb_yield(RARRAY_AREF(ary, len));
+ nlen = RARRAY_LEN(ary);
+ if (nlen < len) {
+ len = nlen;
+ }
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.length -> int
+ *
+ * Returns the number of elements in +self+. May be zero.
+ *
+ * [ 1, 2, 3, 4, 5 ].length #=> 5
+ * [].length #=> 0
+ */
+
+static VALUE
+rb_ary_length(VALUE ary)
+{
+ long len = RARRAY_LEN(ary);
+ return LONG2NUM(len);
+}
+
+/*
+ * call-seq:
+ * ary.empty? -> true or false
+ *
+ * Returns +true+ if +self+ contains no elements.
+ *
+ * [].empty? #=> true
+ */
+
+static VALUE
+rb_ary_empty_p(VALUE ary)
+{
+ if (RARRAY_LEN(ary) == 0)
+ return Qtrue;
+ return Qfalse;
+}
+
+VALUE
+rb_ary_dup(VALUE ary)
+{
+ long len = RARRAY_LEN(ary);
+ VALUE dup = rb_ary_new2(len);
+ ary_memcpy(dup, 0, len, RARRAY_CONST_PTR(ary));
+ ARY_SET_LEN(dup, len);
+ return dup;
+}
+
+VALUE
+rb_ary_resurrect(VALUE ary)
+{
+ return rb_ary_new4(RARRAY_LEN(ary), RARRAY_CONST_PTR(ary));
+}
+
+extern VALUE rb_output_fs;
+
+static void ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result, int *first);
+
+static VALUE
+recursive_join(VALUE obj, VALUE argp, int recur)
+{
+ VALUE *arg = (VALUE *)argp;
+ VALUE ary = arg[0];
+ VALUE sep = arg[1];
+ VALUE result = arg[2];
+ int *first = (int *)arg[3];
+
+ if (recur) {
+ rb_raise(rb_eArgError, "recursive array join");
+ }
+ else {
+ ary_join_1(obj, ary, sep, 0, result, first);
+ }
+ return Qnil;
+}
+
+static void
+ary_join_0(VALUE ary, VALUE sep, long max, VALUE result)
+{
+ long i;
+ VALUE val;
+
+ if (max > 0) rb_enc_copy(result, RARRAY_AREF(ary, 0));
+ for (i=0; i<max; i++) {
+ val = RARRAY_AREF(ary, i);
+ if (i > 0 && !NIL_P(sep))
+ rb_str_buf_append(result, sep);
+ rb_str_buf_append(result, val);
+ if (OBJ_TAINTED(val)) OBJ_TAINT(result);
+ }
+}
+
+static void
+ary_join_1(VALUE obj, VALUE ary, VALUE sep, long i, VALUE result, int *first)
+{
+ VALUE val, tmp;
+
+ for (; i<RARRAY_LEN(ary); i++) {
+ if (i > 0 && !NIL_P(sep))
+ rb_str_buf_append(result, sep);
+
+ val = RARRAY_AREF(ary, i);
+ if (RB_TYPE_P(val, T_STRING)) {
+ str_join:
+ rb_str_buf_append(result, val);
+ *first = FALSE;
+ }
+ else if (RB_TYPE_P(val, T_ARRAY)) {
+ obj = val;
+ ary_join:
+ if (val == ary) {
+ rb_raise(rb_eArgError, "recursive array join");
+ }
+ else {
+ VALUE args[4];
+
+ args[0] = val;
+ args[1] = sep;
+ args[2] = result;
+ args[3] = (VALUE)first;
+ rb_exec_recursive(recursive_join, obj, (VALUE)args);
+ }
+ }
+ else {
+ tmp = rb_check_string_type(val);
+ if (!NIL_P(tmp)) {
+ val = tmp;
+ goto str_join;
+ }
+ tmp = rb_check_convert_type(val, T_ARRAY, "Array", "to_ary");
+ if (!NIL_P(tmp)) {
+ obj = val;
+ val = tmp;
+ goto ary_join;
+ }
+ val = rb_obj_as_string(val);
+ if (*first) {
+ rb_enc_copy(result, val);
+ *first = FALSE;
+ }
+ goto str_join;
+ }
+ }
+}
+
+VALUE
+rb_ary_join(VALUE ary, VALUE sep)
+{
+ long len = 1, i;
+ int taint = FALSE;
+ VALUE val, tmp, result;
+
+ if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new(0, 0);
+ if (OBJ_TAINTED(ary)) taint = TRUE;
+
+ if (!NIL_P(sep)) {
+ StringValue(sep);
+ len += RSTRING_LEN(sep) * (RARRAY_LEN(ary) - 1);
+ }
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ val = RARRAY_AREF(ary, i);
+ tmp = rb_check_string_type(val);
+
+ if (NIL_P(tmp) || tmp != val) {
+ int first;
+ result = rb_str_buf_new(len + (RARRAY_LEN(ary)-i)*10);
+ rb_enc_associate(result, rb_usascii_encoding());
+ if (taint) OBJ_TAINT(result);
+ ary_join_0(ary, sep, i, result);
+ first = i == 0;
+ ary_join_1(ary, ary, sep, i, result, &first);
+ return result;
+ }
+
+ len += RSTRING_LEN(tmp);
+ }
+
+ result = rb_str_buf_new(len);
+ if (taint) OBJ_TAINT(result);
+ ary_join_0(ary, sep, RARRAY_LEN(ary), result);
+
+ return result;
+}
+
+/*
+ * call-seq:
+ * ary.join(separator=$,) -> str
+ *
+ * Returns a string created by converting each element of the array to
+ * a string, separated by the given +separator+.
+ * If the +separator+ is +nil+, it uses current $,.
+ * If both the +separator+ and $, are nil, it uses empty string.
+ *
+ * [ "a", "b", "c" ].join #=> "abc"
+ * [ "a", "b", "c" ].join("-") #=> "a-b-c"
+ */
+
+static VALUE
+rb_ary_join_m(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE sep;
+
+ rb_scan_args(argc, argv, "01", &sep);
+ if (NIL_P(sep)) sep = rb_output_fs;
+
+ return rb_ary_join(ary, sep);
+}
+
+static VALUE
+inspect_ary(VALUE ary, VALUE dummy, int recur)
+{
+ int tainted = OBJ_TAINTED(ary);
+ long i;
+ VALUE s, str;
+
+ if (recur) return rb_usascii_str_new_cstr("[...]");
+ str = rb_str_buf_new2("[");
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ s = rb_inspect(RARRAY_AREF(ary, i));
+ if (OBJ_TAINTED(s)) tainted = TRUE;
+ if (i > 0) rb_str_buf_cat2(str, ", ");
+ else rb_enc_copy(str, s);
+ rb_str_buf_append(str, s);
+ }
+ rb_str_buf_cat2(str, "]");
+ if (tainted) OBJ_TAINT(str);
+ return str;
+}
+
+/*
+ * call-seq:
+ * ary.inspect -> string
+ * ary.to_s -> string
+ *
+ * Creates a string representation of +self+.
+ *
+ * [ "a", "b", "c" ].to_s #=> "[\"a\", \"b\", \"c\"]"
+ */
+
+static VALUE
+rb_ary_inspect(VALUE ary)
+{
+ if (RARRAY_LEN(ary) == 0) return rb_usascii_str_new2("[]");
+ return rb_exec_recursive(inspect_ary, ary, 0);
+}
+
+VALUE
+rb_ary_to_s(VALUE ary)
+{
+ return rb_ary_inspect(ary);
+}
+
+/*
+ * call-seq:
+ * ary.to_a -> ary
+ *
+ * Returns +self+.
+ *
+ * If called on a subclass of Array, converts the receiver to an Array object.
+ */
+
+static VALUE
+rb_ary_to_a(VALUE ary)
+{
+ if (rb_obj_class(ary) != rb_cArray) {
+ VALUE dup = rb_ary_new2(RARRAY_LEN(ary));
+ rb_ary_replace(dup, ary);
+ return dup;
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.to_h -> hash
+ *
+ * Returns the result of interpreting <i>ary</i> as an array of
+ * <tt>[key, value]</tt> pairs.
+ *
+ * [[:foo, :bar], [1, 2]].to_h
+ * # => {:foo => :bar, 1 => 2}
+ */
+
+static VALUE
+rb_ary_to_h(VALUE ary)
+{
+ long i;
+ VALUE hash = rb_hash_new();
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ VALUE key_value_pair = rb_check_array_type(rb_ary_elt(ary, i));
+ if (NIL_P(key_value_pair)) {
+ rb_raise(rb_eTypeError, "wrong element type %s at %ld (expected array)",
+ rb_builtin_class_name(rb_ary_elt(ary, i)), i);
+ }
+ if (RARRAY_LEN(key_value_pair) != 2) {
+ rb_raise(rb_eArgError, "wrong array length at %ld (expected 2, was %ld)",
+ i, RARRAY_LEN(key_value_pair));
+ }
+ rb_hash_aset(hash, RARRAY_AREF(key_value_pair, 0), RARRAY_AREF(key_value_pair, 1));
+ }
+ return hash;
+}
+
+/*
+ * call-seq:
+ * ary.to_ary -> ary
+ *
+ * Returns +self+.
+ */
+
+static VALUE
+rb_ary_to_ary_m(VALUE ary)
+{
+ return ary;
+}
+
+static void
+ary_reverse(VALUE *p1, VALUE *p2)
+{
+ while (p1 < p2) {
+ VALUE tmp = *p1;
+ *p1++ = *p2;
+ *p2-- = tmp;
+ }
+}
+
+VALUE
+rb_ary_reverse(VALUE ary)
+{
+ VALUE *p2;
+ long len = RARRAY_LEN(ary);
+
+ rb_ary_modify(ary);
+ if (len > 1) {
+ RARRAY_PTR_USE(ary, p1, {
+ p2 = p1 + len - 1; /* points last item */
+ ary_reverse(p1, p2);
+ }); /* WB: no new reference */
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.reverse! -> ary
+ *
+ * Reverses +self+ in place.
+ *
+ * a = [ "a", "b", "c" ]
+ * a.reverse! #=> ["c", "b", "a"]
+ * a #=> ["c", "b", "a"]
+ */
+
+static VALUE
+rb_ary_reverse_bang(VALUE ary)
+{
+ return rb_ary_reverse(ary);
+}
+
+/*
+ * call-seq:
+ * ary.reverse -> new_ary
+ *
+ * Returns a new array containing +self+'s elements in reverse order.
+ *
+ * [ "a", "b", "c" ].reverse #=> ["c", "b", "a"]
+ * [ 1 ].reverse #=> [1]
+ */
+
+static VALUE
+rb_ary_reverse_m(VALUE ary)
+{
+ long len = RARRAY_LEN(ary);
+ VALUE dup = rb_ary_new2(len);
+
+ if (len > 0) {
+ const VALUE *p1 = RARRAY_CONST_PTR(ary);
+ VALUE *p2 = (VALUE *)RARRAY_CONST_PTR(dup) + len - 1;
+ do *p2-- = *p1++; while (--len > 0);
+ }
+ ARY_SET_LEN(dup, RARRAY_LEN(ary));
+ return dup;
+}
+
+static inline long
+rotate_count(long cnt, long len)
+{
+ return (cnt < 0) ? (len - (~cnt % len) - 1) : (cnt % len);
+}
+
+VALUE
+rb_ary_rotate(VALUE ary, long cnt)
+{
+ rb_ary_modify(ary);
+
+ if (cnt != 0) {
+ VALUE *ptr = RARRAY_PTR(ary);
+ long len = RARRAY_LEN(ary);
+
+ if (len > 0 && (cnt = rotate_count(cnt, len)) > 0) {
+ --len;
+ if (cnt < len) ary_reverse(ptr + cnt, ptr + len);
+ if (--cnt > 0) ary_reverse(ptr, ptr + cnt);
+ if (len > 0) ary_reverse(ptr, ptr + len);
+ return ary;
+ }
+ }
+
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * ary.rotate!(count=1) -> ary
+ *
+ * Rotates +self+ in place so that the element at +count+ comes first, and
+ * returns +self+.
+ *
+ * If +count+ is negative then it rotates in the opposite direction, starting
+ * from the end of the array where +-1+ is the last element.
+ *
+ * a = [ "a", "b", "c", "d" ]
+ * a.rotate! #=> ["b", "c", "d", "a"]
+ * a #=> ["b", "c", "d", "a"]
+ * a.rotate!(2) #=> ["d", "a", "b", "c"]
+ * a.rotate!(-3) #=> ["a", "b", "c", "d"]
+ */
+
+static VALUE
+rb_ary_rotate_bang(int argc, VALUE *argv, VALUE ary)
+{
+ long n = 1;
+
+ switch (argc) {
+ case 1: n = NUM2LONG(argv[0]);
+ case 0: break;
+ default: rb_scan_args(argc, argv, "01", NULL);
+ }
+ rb_ary_rotate(ary, n);
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.rotate(count=1) -> new_ary
+ *
+ * Returns a new array by rotating +self+ so that the element at +count+ is
+ * the first element of the new array.
+ *
+ * If +count+ is negative then it rotates in the opposite direction, starting
+ * from the end of +self+ where +-1+ is the last element.
+ *
+ * a = [ "a", "b", "c", "d" ]
+ * a.rotate #=> ["b", "c", "d", "a"]
+ * a #=> ["a", "b", "c", "d"]
+ * a.rotate(2) #=> ["c", "d", "a", "b"]
+ * a.rotate(-3) #=> ["b", "c", "d", "a"]
+ */
+
+static VALUE
+rb_ary_rotate_m(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE rotated;
+ const VALUE *ptr;
+ long len, cnt = 1;
+
+ switch (argc) {
+ case 1: cnt = NUM2LONG(argv[0]);
+ case 0: break;
+ default: rb_scan_args(argc, argv, "01", NULL);
+ }
+
+ len = RARRAY_LEN(ary);
+ rotated = rb_ary_new2(len);
+ if (len > 0) {
+ cnt = rotate_count(cnt, len);
+ ptr = RARRAY_CONST_PTR(ary);
+ len -= cnt;
+ ary_memcpy(rotated, 0, len, ptr + cnt);
+ ary_memcpy(rotated, len, cnt, ptr);
+ }
+ ARY_SET_LEN(rotated, RARRAY_LEN(ary));
+ return rotated;
+}
+
+struct ary_sort_data {
+ VALUE ary;
+ int opt_methods;
+ int opt_inited;
+};
+
+enum {
+ sort_opt_Fixnum,
+ sort_opt_String,
+ sort_optimizable_count
+};
+
+#define STRING_P(s) (RB_TYPE_P((s), T_STRING) && CLASS_OF(s) == rb_cString)
+
+#define SORT_OPTIMIZABLE_BIT(type) (1U << TOKEN_PASTE(sort_opt_,type))
+#define SORT_OPTIMIZABLE(data, type) \
+ (((data)->opt_inited & SORT_OPTIMIZABLE_BIT(type)) ? \
+ ((data)->opt_methods & SORT_OPTIMIZABLE_BIT(type)) : \
+ (((data)->opt_inited |= SORT_OPTIMIZABLE_BIT(type)), \
+ rb_method_basic_definition_p(TOKEN_PASTE(rb_c,type), id_cmp) && \
+ ((data)->opt_methods |= SORT_OPTIMIZABLE_BIT(type))))
+
+static VALUE
+sort_reentered(VALUE ary)
+{
+ if (RBASIC(ary)->klass) {
+ rb_raise(rb_eRuntimeError, "sort reentered");
+ }
+ return Qnil;
+}
+
+static int
+sort_1(const void *ap, const void *bp, void *dummy)
+{
+ struct ary_sort_data *data = dummy;
+ VALUE retval = sort_reentered(data->ary);
+ VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
+ int n;
+
+ retval = rb_yield_values(2, a, b);
+ n = rb_cmpint(retval, a, b);
+ sort_reentered(data->ary);
+ return n;
+}
+
+static int
+sort_2(const void *ap, const void *bp, void *dummy)
+{
+ struct ary_sort_data *data = dummy;
+ VALUE retval = sort_reentered(data->ary);
+ VALUE a = *(const VALUE *)ap, b = *(const VALUE *)bp;
+ int n;
+
+ if (FIXNUM_P(a) && FIXNUM_P(b) && SORT_OPTIMIZABLE(data, Fixnum)) {
+ if ((long)a > (long)b) return 1;
+ if ((long)a < (long)b) return -1;
+ return 0;
+ }
+ if (STRING_P(a) && STRING_P(b) && SORT_OPTIMIZABLE(data, String)) {
+ return rb_str_cmp(a, b);
+ }
+
+ retval = rb_funcallv(a, id_cmp, 1, &b);
+ n = rb_cmpint(retval, a, b);
+ sort_reentered(data->ary);
+
+ return n;
+}
+
+/*
+ * call-seq:
+ * ary.sort! -> ary
+ * ary.sort! { |a, b| block } -> ary
+ *
+ * Sorts +self+ in place.
+ *
+ * Comparisons for the sort will be done using the <code><=></code> operator
+ * or using an optional code block.
+ *
+ * The block must implement a comparison between +a+ and +b+, and return
+ * +-1+, when +a+ follows +b+, +0+ when +a+ and +b+ are equivalent, or ++1+
+ * if +b+ follows +a+.
+ *
+ * See also Enumerable#sort_by.
+ *
+ * a = [ "d", "a", "e", "c", "b" ]
+ * a.sort! #=> ["a", "b", "c", "d", "e"]
+ * a.sort! { |x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
+ */
+
+VALUE
+rb_ary_sort_bang(VALUE ary)
+{
+ rb_ary_modify(ary);
+ assert(!ARY_SHARED_P(ary));
+ if (RARRAY_LEN(ary) > 1) {
+ VALUE tmp = ary_make_substitution(ary); /* only ary refers tmp */
+ struct ary_sort_data data;
+ long len = RARRAY_LEN(ary);
+
+ RBASIC_CLEAR_CLASS(tmp);
+ data.ary = tmp;
+ data.opt_methods = 0;
+ data.opt_inited = 0;
+ RARRAY_PTR_USE(tmp, ptr, {
+ ruby_qsort(ptr, len, sizeof(VALUE),
+ rb_block_given_p()?sort_1:sort_2, &data);
+ }); /* WB: no new reference */
+ rb_ary_modify(ary);
+ if (ARY_EMBED_P(tmp)) {
+ if (ARY_SHARED_P(ary)) { /* ary might be destructively operated in the given block */
+ rb_ary_unshare(ary);
+ }
+ FL_SET_EMBED(ary);
+ ary_memcpy(ary, 0, ARY_EMBED_LEN(tmp), ARY_EMBED_PTR(tmp));
+ ARY_SET_LEN(ary, ARY_EMBED_LEN(tmp));
+ }
+ else {
+ if (!ARY_EMBED_P(ary) && ARY_HEAP_PTR(ary) == ARY_HEAP_PTR(tmp)) {
+ FL_UNSET_SHARED(ary);
+ ARY_SET_CAPA(ary, RARRAY_LEN(tmp));
+ }
+ else {
+ assert(!ARY_SHARED_P(tmp));
+ if (ARY_EMBED_P(ary)) {
+ FL_UNSET_EMBED(ary);
+ }
+ else if (ARY_SHARED_P(ary)) {
+ /* ary might be destructively operated in the given block */
+ rb_ary_unshare(ary);
+ }
+ else {
+ ruby_sized_xfree((void *)ARY_HEAP_PTR(ary), ARY_HEAP_SIZE(ary));
+ }
+ ARY_SET_PTR(ary, RARRAY_CONST_PTR(tmp));
+ ARY_SET_HEAP_LEN(ary, len);
+ ARY_SET_CAPA(ary, RARRAY_LEN(tmp));
+ }
+ /* tmp was lost ownership for the ptr */
+ FL_UNSET(tmp, FL_FREEZE);
+ FL_SET_EMBED(tmp);
+ ARY_SET_EMBED_LEN(tmp, 0);
+ FL_SET(tmp, FL_FREEZE);
+ }
+ /* tmp will be GC'ed. */
+ RBASIC_SET_CLASS_RAW(tmp, rb_cArray); /* rb_cArray must be marked */
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.sort -> new_ary
+ * ary.sort { |a, b| block } -> new_ary
+ *
+ * Returns a new array created by sorting +self+.
+ *
+ * Comparisons for the sort will be done using the <code><=></code> operator
+ * or using an optional code block.
+ *
+ * The block must implement a comparison between +a+ and +b+, and return
+ * +-1+, when +a+ follows +b+, +0+ when +a+ and +b+ are equivalent, or ++1+
+ * if +b+ follows +a+.
+ *
+ *
+ * See also Enumerable#sort_by.
+ *
+ * a = [ "d", "a", "e", "c", "b" ]
+ * a.sort #=> ["a", "b", "c", "d", "e"]
+ * a.sort { |x,y| y <=> x } #=> ["e", "d", "c", "b", "a"]
+ */
+
+VALUE
+rb_ary_sort(VALUE ary)
+{
+ ary = rb_ary_dup(ary);
+ rb_ary_sort_bang(ary);
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.bsearch {|x| block } -> elem
+ *
+ * By using binary search, finds a value from this array which meets
+ * the given condition in O(log n) where n is the size of the array.
+ *
+ * You can use this method in two use cases: a find-minimum mode and
+ * a find-any mode. In either case, the elements of the array must be
+ * monotone (or sorted) with respect to the block.
+ *
+ * In find-minimum mode (this is a good choice for typical use case),
+ * the block must return true or false, and there must be an index i
+ * (0 <= i <= ary.size) so that:
+ *
+ * - the block returns false for any element whose index is less than
+ * i, and
+ * - the block returns true for any element whose index is greater
+ * than or equal to i.
+ *
+ * This method returns the i-th element. If i is equal to ary.size,
+ * it returns nil.
+ *
+ * ary = [0, 4, 7, 10, 12]
+ * ary.bsearch {|x| x >= 4 } #=> 4
+ * ary.bsearch {|x| x >= 6 } #=> 7
+ * ary.bsearch {|x| x >= -1 } #=> 0
+ * ary.bsearch {|x| x >= 100 } #=> nil
+ *
+ * In find-any mode (this behaves like libc's bsearch(3)), the block
+ * must return a number, and there must be two indices i and j
+ * (0 <= i <= j <= ary.size) so that:
+ *
+ * - the block returns a positive number for ary[k] if 0 <= k < i,
+ * - the block returns zero for ary[k] if i <= k < j, and
+ * - the block returns a negative number for ary[k] if
+ * j <= k < ary.size.
+ *
+ * Under this condition, this method returns any element whose index
+ * is within i...j. If i is equal to j (i.e., there is no element
+ * that satisfies the block), this method returns nil.
+ *
+ * ary = [0, 4, 7, 10, 12]
+ * # try to find v such that 4 <= v < 8
+ * ary.bsearch {|x| 1 - x / 4 } #=> 4 or 7
+ * # try to find v such that 8 <= v < 10
+ * ary.bsearch {|x| 4 - x / 2 } #=> nil
+ *
+ * You must not mix the two modes at a time; the block must always
+ * return either true/false, or always return a number. It is
+ * undefined which value is actually picked up at each iteration.
+ */
+
+static VALUE
+rb_ary_bsearch(VALUE ary)
+{
+ long low = 0, high = RARRAY_LEN(ary), mid;
+ int smaller = 0, satisfied = 0;
+ VALUE v, val;
+
+ RETURN_ENUMERATOR(ary, 0, 0);
+ while (low < high) {
+ mid = low + ((high - low) / 2);
+ val = rb_ary_entry(ary, mid);
+ v = rb_yield(val);
+ if (FIXNUM_P(v)) {
+ if (FIX2INT(v) == 0) return val;
+ smaller = FIX2INT(v) < 0;
+ }
+ else if (v == Qtrue) {
+ satisfied = 1;
+ smaller = 1;
+ }
+ else if (v == Qfalse || v == Qnil) {
+ smaller = 0;
+ }
+ else if (rb_obj_is_kind_of(v, rb_cNumeric)) {
+ const VALUE zero = INT2FIX(0);
+ switch (rb_cmpint(rb_funcallv(v, id_cmp, 1, &zero), v, INT2FIX(0))) {
+ case 0: return val;
+ case 1: smaller = 1; break;
+ case -1: smaller = 0;
+ }
+ }
+ else {
+ rb_raise(rb_eTypeError, "wrong argument type %s"
+ " (must be numeric, true, false or nil)",
+ rb_obj_classname(v));
+ }
+ if (smaller) {
+ high = mid;
+ }
+ else {
+ low = mid + 1;
+ }
+ }
+ if (low == RARRAY_LEN(ary)) return Qnil;
+ if (!satisfied) return Qnil;
+ return rb_ary_entry(ary, low);
+}
+
+
+static VALUE
+sort_by_i(RB_BLOCK_CALL_FUNC_ARGLIST(i, dummy))
+{
+ return rb_yield(i);
+}
+
+/*
+ * call-seq:
+ * ary.sort_by! { |obj| block } -> ary
+ * ary.sort_by! -> Enumerator
+ *
+ * Sorts +self+ in place using a set of keys generated by mapping the
+ * values in +self+ through the given block.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ */
+
+static VALUE
+rb_ary_sort_by_bang(VALUE ary)
+{
+ VALUE sorted;
+
+ RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
+ rb_ary_modify(ary);
+ sorted = rb_block_call(ary, rb_intern("sort_by"), 0, 0, sort_by_i, 0);
+ rb_ary_replace(ary, sorted);
+ return ary;
+}
+
+
+/*
+ * call-seq:
+ * ary.collect { |item| block } -> new_ary
+ * ary.map { |item| block } -> new_ary
+ * ary.collect -> Enumerator
+ * ary.map -> Enumerator
+ *
+ * Invokes the given block once for each element of +self+.
+ *
+ * Creates a new array containing the values returned by the block.
+ *
+ * See also Enumerable#collect.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ * a = [ "a", "b", "c", "d" ]
+ * a.collect { |x| x + "!" } #=> ["a!", "b!", "c!", "d!"]
+ * a.map.with_index{ |x, i| x * i } #=> ["", "b", "cc", "ddd"]
+ * a #=> ["a", "b", "c", "d"]
+ */
+
+static VALUE
+rb_ary_collect(VALUE ary)
+{
+ long i;
+ VALUE collect;
+
+ RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
+ collect = rb_ary_new2(RARRAY_LEN(ary));
+ for (i = 0; i < RARRAY_LEN(ary); i++) {
+ rb_ary_push(collect, rb_yield(RARRAY_AREF(ary, i)));
+ }
+ return collect;
+}
+
+
+/*
+ * call-seq:
+ * ary.collect! {|item| block } -> ary
+ * ary.map! {|item| block } -> ary
+ * ary.collect! -> Enumerator
+ * ary.map! -> Enumerator
+ *
+ * Invokes the given block once for each element of +self+, replacing the
+ * element with the value returned by the block.
+ *
+ * See also Enumerable#collect.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ * a = [ "a", "b", "c", "d" ]
+ * a.map! {|x| x + "!" }
+ * a #=> [ "a!", "b!", "c!", "d!" ]
+ * a.collect!.with_index {|x, i| x[0...i] }
+ * a #=> ["", "b", "c!", "d!"]
+ */
+
+static VALUE
+rb_ary_collect_bang(VALUE ary)
+{
+ long i;
+
+ RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
+ rb_ary_modify(ary);
+ for (i = 0; i < RARRAY_LEN(ary); i++) {
+ rb_ary_store(ary, i, rb_yield(RARRAY_AREF(ary, i)));
+ }
+ return ary;
+}
+
+VALUE
+rb_get_values_at(VALUE obj, long olen, int argc, const VALUE *argv, VALUE (*func) (VALUE, long))
+{
+ VALUE result = rb_ary_new2(argc);
+ long beg, len, i, j;
+
+ for (i=0; i<argc; i++) {
+ if (FIXNUM_P(argv[i])) {
+ rb_ary_push(result, (*func)(obj, FIX2LONG(argv[i])));
+ continue;
+ }
+ /* check if idx is Range */
+ if (rb_range_beg_len(argv[i], &beg, &len, olen, 1)) {
+ long end = olen < beg+len ? olen : beg+len;
+ for (j = beg; j < end; j++) {
+ rb_ary_push(result, (*func)(obj, j));
+ }
+ if (beg + len > j)
+ rb_ary_resize(result, RARRAY_LEN(result) + (beg + len) - j);
+ continue;
+ }
+ rb_ary_push(result, (*func)(obj, NUM2LONG(argv[i])));
+ }
+ return result;
+}
+
+/*
+ * call-seq:
+ * ary.values_at(selector, ...) -> new_ary
+ *
+ * Returns an array containing the elements in +self+ corresponding to the
+ * given +selector+(s).
+ *
+ * The selectors may be either integer indices or ranges.
+ *
+ * See also Array#select.
+ *
+ * a = %w{ a b c d e f }
+ * a.values_at(1, 3, 5) # => ["b", "d", "f"]
+ * a.values_at(1, 3, 5, 7) # => ["b", "d", "f", nil]
+ * a.values_at(-1, -2, -2, -7) # => ["f", "e", "e", nil]
+ * a.values_at(4..6, 3...6) # => ["e", "f", nil, "d", "e", "f"]
+ */
+
+static VALUE
+rb_ary_values_at(int argc, VALUE *argv, VALUE ary)
+{
+ return rb_get_values_at(ary, RARRAY_LEN(ary), argc, argv, rb_ary_entry);
+}
+
+
+/*
+ * call-seq:
+ * ary.select { |item| block } -> new_ary
+ * ary.select -> Enumerator
+ *
+ * Returns a new array containing all elements of +ary+
+ * for which the given +block+ returns a true value.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ * [1,2,3,4,5].select { |num| num.even? } #=> [2, 4]
+ *
+ * a = %w{ a b c d e f }
+ * a.select { |v| v =~ /[aeiou]/ } #=> ["a", "e"]
+ *
+ * See also Enumerable#select.
+ */
+
+static VALUE
+rb_ary_select(VALUE ary)
+{
+ VALUE result;
+ long i;
+
+ RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
+ result = rb_ary_new2(RARRAY_LEN(ary));
+ for (i = 0; i < RARRAY_LEN(ary); i++) {
+ if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) {
+ rb_ary_push(result, rb_ary_elt(ary, i));
+ }
+ }
+ return result;
+}
+
+/*
+ * call-seq:
+ * ary.select! {|item| block } -> ary or nil
+ * ary.select! -> Enumerator
+ *
+ * Invokes the given block passing in successive elements from +self+,
+ * deleting elements for which the block returns a +false+ value.
+ *
+ * If changes were made, it will return +self+, otherwise it returns +nil+.
+ *
+ * See also Array#keep_if
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ */
+
+static VALUE
+rb_ary_select_bang(VALUE ary)
+{
+ long i1, i2;
+
+ RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
+ rb_ary_modify(ary);
+ for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
+ VALUE v = RARRAY_AREF(ary, i1);
+ if (!RTEST(rb_yield(v))) continue;
+ if (i1 != i2) {
+ rb_ary_store(ary, i2, v);
+ }
+ i2++;
+ }
+
+ if (i1 == i2) return Qnil;
+ if (i2 < i1)
+ ARY_SET_LEN(ary, i2);
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.keep_if { |item| block } -> ary
+ * ary.keep_if -> Enumerator
+ *
+ * Deletes every element of +self+ for which the given block evaluates to
+ * +false+.
+ *
+ * See also Array#select!
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ * a = %w{ a b c d e f }
+ * a.keep_if { |v| v =~ /[aeiou]/ } #=> ["a", "e"]
+ */
+
+static VALUE
+rb_ary_keep_if(VALUE ary)
+{
+ RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
+ rb_ary_select_bang(ary);
+ return ary;
+}
+
+static void
+ary_resize_smaller(VALUE ary, long len)
+{
+ rb_ary_modify(ary);
+ if (RARRAY_LEN(ary) > len) {
+ ARY_SET_LEN(ary, len);
+ if (len * 2 < ARY_CAPA(ary) &&
+ ARY_CAPA(ary) > ARY_DEFAULT_SIZE) {
+ ary_resize_capa(ary, len * 2);
+ }
+ }
+}
+
+/*
+ * call-seq:
+ * ary.delete(obj) -> item or nil
+ * ary.delete(obj) { block } -> item or result of block
+ *
+ * Deletes all items from +self+ that are equal to +obj+.
+ *
+ * Returns the last deleted item, or +nil+ if no matching item is found.
+ *
+ * If the optional code block is given, the result of the block is returned if
+ * the item is not found. (To remove +nil+ elements and get an informative
+ * return value, use Array#compact!)
+ *
+ * a = [ "a", "b", "b", "b", "c" ]
+ * a.delete("b") #=> "b"
+ * a #=> ["a", "c"]
+ * a.delete("z") #=> nil
+ * a.delete("z") { "not found" } #=> "not found"
+ */
+
+VALUE
+rb_ary_delete(VALUE ary, VALUE item)
+{
+ VALUE v = item;
+ long i1, i2;
+
+ for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
+ VALUE e = RARRAY_AREF(ary, i1);
+
+ if (rb_equal(e, item)) {
+ v = e;
+ continue;
+ }
+ if (i1 != i2) {
+ rb_ary_store(ary, i2, e);
+ }
+ i2++;
+ }
+ if (RARRAY_LEN(ary) == i2) {
+ if (rb_block_given_p()) {
+ return rb_yield(item);
+ }
+ return Qnil;
+ }
+
+ ary_resize_smaller(ary, i2);
+
+ return v;
+}
+
+void
+rb_ary_delete_same(VALUE ary, VALUE item)
+{
+ long i1, i2;
+
+ for (i1 = i2 = 0; i1 < RARRAY_LEN(ary); i1++) {
+ VALUE e = RARRAY_AREF(ary, i1);
+
+ if (e == item) {
+ continue;
+ }
+ if (i1 != i2) {
+ rb_ary_store(ary, i2, e);
+ }
+ i2++;
+ }
+ if (RARRAY_LEN(ary) == i2) {
+ return;
+ }
+
+ ary_resize_smaller(ary, i2);
+}
+
+VALUE
+rb_ary_delete_at(VALUE ary, long pos)
+{
+ long len = RARRAY_LEN(ary);
+ VALUE del;
+
+ if (pos >= len) return Qnil;
+ if (pos < 0) {
+ pos += len;
+ if (pos < 0) return Qnil;
+ }
+
+ rb_ary_modify(ary);
+ del = RARRAY_AREF(ary, pos);
+ RARRAY_PTR_USE(ary, ptr, {
+ MEMMOVE(ptr+pos, ptr+pos+1, VALUE, len-pos-1);
+ });
+ ARY_INCREASE_LEN(ary, -1);
+
+ return del;
+}
+
+/*
+ * call-seq:
+ * ary.delete_at(index) -> obj or nil
+ *
+ * Deletes the element at the specified +index+, returning that element, or
+ * +nil+ if the +index+ is out of range.
+ *
+ * See also Array#slice!
+ *
+ * a = ["ant", "bat", "cat", "dog"]
+ * a.delete_at(2) #=> "cat"
+ * a #=> ["ant", "bat", "dog"]
+ * a.delete_at(99) #=> nil
+ */
+
+static VALUE
+rb_ary_delete_at_m(VALUE ary, VALUE pos)
+{
+ return rb_ary_delete_at(ary, NUM2LONG(pos));
+}
+
+/*
+ * call-seq:
+ * ary.slice!(index) -> obj or nil
+ * ary.slice!(start, length) -> new_ary or nil
+ * ary.slice!(range) -> new_ary or nil
+ *
+ * Deletes the element(s) given by an +index+ (optionally up to +length+
+ * elements) or by a +range+.
+ *
+ * Returns the deleted object (or objects), or +nil+ if the +index+ is out of
+ * range.
+ *
+ * a = [ "a", "b", "c" ]
+ * a.slice!(1) #=> "b"
+ * a #=> ["a", "c"]
+ * a.slice!(-1) #=> "c"
+ * a #=> ["a"]
+ * a.slice!(100) #=> nil
+ * a #=> ["a"]
+ */
+
+static VALUE
+rb_ary_slice_bang(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE arg1, arg2;
+ long pos, len, orig_len;
+
+ rb_ary_modify_check(ary);
+ if (argc == 2) {
+ pos = NUM2LONG(argv[0]);
+ len = NUM2LONG(argv[1]);
+ delete_pos_len:
+ if (len < 0) return Qnil;
+ orig_len = RARRAY_LEN(ary);
+ if (pos < 0) {
+ pos += orig_len;
+ if (pos < 0) return Qnil;
+ }
+ else if (orig_len < pos) return Qnil;
+ if (orig_len < pos + len) {
+ len = orig_len - pos;
+ }
+ if (len == 0) return rb_ary_new2(0);
+ arg2 = rb_ary_new4(len, RARRAY_CONST_PTR(ary)+pos);
+ RBASIC_SET_CLASS(arg2, rb_obj_class(ary));
+ rb_ary_splice(ary, pos, len, Qundef);
+ return arg2;
+ }
+
+ if (argc != 1) {
+ /* error report */
+ rb_scan_args(argc, argv, "11", NULL, NULL);
+ }
+ arg1 = argv[0];
+
+ if (!FIXNUM_P(arg1)) {
+ switch (rb_range_beg_len(arg1, &pos, &len, RARRAY_LEN(ary), 0)) {
+ case Qtrue:
+ /* valid range */
+ goto delete_pos_len;
+ case Qnil:
+ /* invalid range */
+ return Qnil;
+ default:
+ /* not a range */
+ break;
+ }
+ }
+
+ return rb_ary_delete_at(ary, NUM2LONG(arg1));
+}
+
+static VALUE
+ary_reject(VALUE orig, VALUE result)
+{
+ long i;
+
+ for (i = 0; i < RARRAY_LEN(orig); i++) {
+ VALUE v = RARRAY_AREF(orig, i);
+ if (!RTEST(rb_yield(v))) {
+ rb_ary_push(result, v);
+ }
+ }
+ return result;
+}
+
+static VALUE
+ary_reject_bang(VALUE ary)
+{
+ long i;
+ VALUE result = Qnil;
+
+ rb_ary_modify_check(ary);
+ for (i = 0; i < RARRAY_LEN(ary); ) {
+ VALUE v = RARRAY_AREF(ary, i);
+ if (RTEST(rb_yield(v))) {
+ rb_ary_delete_at(ary, i);
+ result = ary;
+ }
+ else {
+ i++;
+ }
+ }
+ return result;
+}
+
+/*
+ * call-seq:
+ * ary.reject! { |item| block } -> ary or nil
+ * ary.reject! -> Enumerator
+ *
+ * Equivalent to Array#delete_if, deleting elements from +self+ for which the
+ * block evaluates to +true+, but returns +nil+ if no changes were made.
+ *
+ * The array is changed instantly every time the block is called, not after
+ * the iteration is over.
+ *
+ * See also Enumerable#reject and Array#delete_if.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ */
+
+static VALUE
+rb_ary_reject_bang(VALUE ary)
+{
+ RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
+ return ary_reject_bang(ary);
+}
+
+/*
+ * call-seq:
+ * ary.reject {|item| block } -> new_ary
+ * ary.reject -> Enumerator
+ *
+ * Returns a new array containing the items in +self+ for which the given
+ * block is not +true+.
+ *
+ * See also Array#delete_if
+ *
+ * If no block is given, an Enumerator is returned instead.
+ */
+
+static VALUE
+rb_ary_reject(VALUE ary)
+{
+ VALUE rejected_ary;
+
+ RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
+ rejected_ary = rb_ary_new();
+ ary_reject(ary, rejected_ary);
+ return rejected_ary;
+}
+
+/*
+ * call-seq:
+ * ary.delete_if { |item| block } -> ary
+ * ary.delete_if -> Enumerator
+ *
+ * Deletes every element of +self+ for which block evaluates to +true+.
+ *
+ * The array is changed instantly every time the block is called, not after
+ * the iteration is over.
+ *
+ * See also Array#reject!
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ * scores = [ 97, 42, 75 ]
+ * scores.delete_if {|score| score < 80 } #=> [97]
+ */
+
+static VALUE
+rb_ary_delete_if(VALUE ary)
+{
+ RETURN_SIZED_ENUMERATOR(ary, 0, 0, ary_enum_length);
+ ary_reject_bang(ary);
+ return ary;
+}
+
+static VALUE
+take_i(RB_BLOCK_CALL_FUNC_ARGLIST(val, cbarg))
+{
+ VALUE *args = (VALUE *)cbarg;
+ if (args[1]-- == 0) rb_iter_break();
+ if (argc > 1) val = rb_ary_new4(argc, argv);
+ rb_ary_push(args[0], val);
+ return Qnil;
+}
+
+static VALUE
+take_items(VALUE obj, long n)
+{
+ VALUE result = rb_check_array_type(obj);
+ VALUE args[2];
+
+ if (!NIL_P(result)) return rb_ary_subseq(result, 0, n);
+ result = rb_ary_new2(n);
+ args[0] = result; args[1] = (VALUE)n;
+ if (rb_check_block_call(obj, idEach, 0, 0, take_i, (VALUE)args) == Qundef)
+ rb_raise(rb_eTypeError, "wrong argument type %"PRIsVALUE" (must respond to :each)",
+ rb_obj_class(obj));
+ return result;
+}
+
+
+/*
+ * call-seq:
+ * ary.zip(arg, ...) -> new_ary
+ * ary.zip(arg, ...) { |arr| block } -> nil
+ *
+ * Converts any arguments to arrays, then merges elements of +self+ with
+ * corresponding elements from each argument.
+ *
+ * This generates a sequence of <code>ary.size</code> _n_-element arrays,
+ * where _n_ is one more than the count of arguments.
+ *
+ * If the size of any argument is less than the size of the initial array,
+ * +nil+ values are supplied.
+ *
+ * If a block is given, it is invoked for each output +array+, otherwise an
+ * array of arrays is returned.
+ *
+ * a = [ 4, 5, 6 ]
+ * b = [ 7, 8, 9 ]
+ * [1, 2, 3].zip(a, b) #=> [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
+ * [1, 2].zip(a, b) #=> [[1, 4, 7], [2, 5, 8]]
+ * a.zip([1, 2], [8]) #=> [[4, 1, 8], [5, 2, nil], [6, nil, nil]]
+ */
+
+static VALUE
+rb_ary_zip(int argc, VALUE *argv, VALUE ary)
+{
+ int i, j;
+ long len = RARRAY_LEN(ary);
+ VALUE result = Qnil;
+
+ for (i=0; i<argc; i++) {
+ argv[i] = take_items(argv[i], len);
+ }
+
+ if (rb_block_given_p()) {
+ int arity = rb_block_arity();
+
+ if (arity > 1) {
+ VALUE work, *tmp;
+
+ tmp = ALLOCV_N(VALUE, work, argc+1);
+
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ tmp[0] = RARRAY_AREF(ary, i);
+ for (j=0; j<argc; j++) {
+ tmp[j+1] = rb_ary_elt(argv[j], i);
+ }
+ rb_yield_values2(argc+1, tmp);
+ }
+
+ if (work) ALLOCV_END(work);
+ }
+ else {
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ VALUE tmp = rb_ary_new2(argc+1);
+
+ rb_ary_push(tmp, RARRAY_AREF(ary, i));
+ for (j=0; j<argc; j++) {
+ rb_ary_push(tmp, rb_ary_elt(argv[j], i));
+ }
+ rb_yield(tmp);
+ }
+ }
+ }
+ else {
+ result = rb_ary_new_capa(len);
+
+ for (i=0; i<len; i++) {
+ VALUE tmp = rb_ary_new_capa(argc+1);
+
+ rb_ary_push(tmp, RARRAY_AREF(ary, i));
+ for (j=0; j<argc; j++) {
+ rb_ary_push(tmp, rb_ary_elt(argv[j], i));
+ }
+ rb_ary_push(result, tmp);
+ }
+ }
+
+ return result;
+}
+
+/*
+ * call-seq:
+ * ary.transpose -> new_ary
+ *
+ * Assumes that +self+ is an array of arrays and transposes the rows and
+ * columns.
+ *
+ * a = [[1,2], [3,4], [5,6]]
+ * a.transpose #=> [[1, 3, 5], [2, 4, 6]]
+ *
+ * If the length of the subarrays don't match, an IndexError is raised.
+ */
+
+static VALUE
+rb_ary_transpose(VALUE ary)
+{
+ long elen = -1, alen, i, j;
+ VALUE tmp, result = 0;
+
+ alen = RARRAY_LEN(ary);
+ if (alen == 0) return rb_ary_dup(ary);
+ for (i=0; i<alen; i++) {
+ tmp = to_ary(rb_ary_elt(ary, i));
+ if (elen < 0) { /* first element */
+ elen = RARRAY_LEN(tmp);
+ result = rb_ary_new2(elen);
+ for (j=0; j<elen; j++) {
+ rb_ary_store(result, j, rb_ary_new2(alen));
+ }
+ }
+ else if (elen != RARRAY_LEN(tmp)) {
+ rb_raise(rb_eIndexError, "element size differs (%ld should be %ld)",
+ RARRAY_LEN(tmp), elen);
+ }
+ for (j=0; j<elen; j++) {
+ rb_ary_store(rb_ary_elt(result, j), i, rb_ary_elt(tmp, j));
+ }
+ }
+ return result;
+}
+
+/*
+ * call-seq:
+ * ary.replace(other_ary) -> ary
+ * ary.initialize_copy(other_ary) -> ary
+ *
+ * Replaces the contents of +self+ with the contents of +other_ary+,
+ * truncating or expanding if necessary.
+ *
+ * a = [ "a", "b", "c", "d", "e" ]
+ * a.replace([ "x", "y", "z" ]) #=> ["x", "y", "z"]
+ * a #=> ["x", "y", "z"]
+ */
+
+VALUE
+rb_ary_replace(VALUE copy, VALUE orig)
+{
+ rb_ary_modify_check(copy);
+ orig = to_ary(orig);
+ if (copy == orig) return copy;
+
+ if (RARRAY_LEN(orig) <= RARRAY_EMBED_LEN_MAX) {
+ VALUE shared = 0;
+
+ if (ARY_OWNS_HEAP_P(copy)) {
+ RARRAY_PTR_USE(copy, ptr, ruby_sized_xfree(ptr, ARY_HEAP_SIZE(copy)));
+ }
+ else if (ARY_SHARED_P(copy)) {
+ shared = ARY_SHARED(copy);
+ FL_UNSET_SHARED(copy);
+ }
+ FL_SET_EMBED(copy);
+ ary_memcpy(copy, 0, RARRAY_LEN(orig), RARRAY_CONST_PTR(orig));
+ if (shared) {
+ rb_ary_decrement_share(shared);
+ }
+ ARY_SET_LEN(copy, RARRAY_LEN(orig));
+ }
+ else {
+ VALUE shared = ary_make_shared(orig);
+ if (ARY_OWNS_HEAP_P(copy)) {
+ RARRAY_PTR_USE(copy, ptr, ruby_sized_xfree(ptr, ARY_HEAP_SIZE(copy)));
+ }
+ else {
+ rb_ary_unshare_safe(copy);
+ }
+ FL_UNSET_EMBED(copy);
+ ARY_SET_PTR(copy, RARRAY_CONST_PTR(orig));
+ ARY_SET_LEN(copy, RARRAY_LEN(orig));
+ rb_ary_set_shared(copy, shared);
+ }
+ return copy;
+}
+
+/*
+ * call-seq:
+ * ary.clear -> ary
+ *
+ * Removes all elements from +self+.
+ *
+ * a = [ "a", "b", "c", "d", "e" ]
+ * a.clear #=> [ ]
+ */
+
+VALUE
+rb_ary_clear(VALUE ary)
+{
+ rb_ary_modify_check(ary);
+ ARY_SET_LEN(ary, 0);
+ if (ARY_SHARED_P(ary)) {
+ if (!ARY_EMBED_P(ary)) {
+ rb_ary_unshare(ary);
+ FL_SET_EMBED(ary);
+ }
+ }
+ else if (ARY_DEFAULT_SIZE * 2 < ARY_CAPA(ary)) {
+ ary_resize_capa(ary, ARY_DEFAULT_SIZE * 2);
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.fill(obj) -> ary
+ * ary.fill(obj, start [, length]) -> ary
+ * ary.fill(obj, range ) -> ary
+ * ary.fill { |index| block } -> ary
+ * ary.fill(start [, length] ) { |index| block } -> ary
+ * ary.fill(range) { |index| block } -> ary
+ *
+ * The first three forms set the selected elements of +self+ (which
+ * may be the entire array) to +obj+.
+ *
+ * A +start+ of +nil+ is equivalent to zero.
+ *
+ * A +length+ of +nil+ is equivalent to the length of the array.
+ *
+ * The last three forms fill the array with the value of the given block,
+ * which is passed the absolute index of each element to be filled.
+ *
+ * Negative values of +start+ count from the end of the array, where +-1+ is
+ * the last element.
+ *
+ * a = [ "a", "b", "c", "d" ]
+ * a.fill("x") #=> ["x", "x", "x", "x"]
+ * a.fill("z", 2, 2) #=> ["x", "x", "z", "z"]
+ * a.fill("y", 0..1) #=> ["y", "y", "z", "z"]
+ * a.fill { |i| i*i } #=> [0, 1, 4, 9]
+ * a.fill(-2) { |i| i*i*i } #=> [0, 1, 8, 27]
+ */
+
+static VALUE
+rb_ary_fill(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE item, arg1, arg2;
+ long beg = 0, end = 0, len = 0;
+ int block_p = FALSE;
+
+ if (rb_block_given_p()) {
+ block_p = TRUE;
+ rb_scan_args(argc, argv, "02", &arg1, &arg2);
+ argc += 1; /* hackish */
+ }
+ else {
+ rb_scan_args(argc, argv, "12", &item, &arg1, &arg2);
+ }
+ switch (argc) {
+ case 1:
+ beg = 0;
+ len = RARRAY_LEN(ary);
+ break;
+ case 2:
+ if (rb_range_beg_len(arg1, &beg, &len, RARRAY_LEN(ary), 1)) {
+ break;
+ }
+ /* fall through */
+ case 3:
+ beg = NIL_P(arg1) ? 0 : NUM2LONG(arg1);
+ if (beg < 0) {
+ beg = RARRAY_LEN(ary) + beg;
+ if (beg < 0) beg = 0;
+ }
+ len = NIL_P(arg2) ? RARRAY_LEN(ary) - beg : NUM2LONG(arg2);
+ break;
+ }
+ rb_ary_modify(ary);
+ if (len < 0) {
+ return ary;
+ }
+ if (beg >= ARY_MAX_SIZE || len > ARY_MAX_SIZE - beg) {
+ rb_raise(rb_eArgError, "argument too big");
+ }
+ end = beg + len;
+ if (RARRAY_LEN(ary) < end) {
+ if (end >= ARY_CAPA(ary)) {
+ ary_resize_capa(ary, end);
+ }
+ ary_mem_clear(ary, RARRAY_LEN(ary), end - RARRAY_LEN(ary));
+ ARY_SET_LEN(ary, end);
+ }
+
+ if (block_p) {
+ VALUE v;
+ long i;
+
+ for (i=beg; i<end; i++) {
+ v = rb_yield(LONG2NUM(i));
+ if (i>=RARRAY_LEN(ary)) break;
+ ARY_SET(ary, i, v);
+ }
+ }
+ else {
+ ary_memfill(ary, beg, len, item);
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary + other_ary -> new_ary
+ *
+ * Concatenation --- Returns a new array built by concatenating the
+ * two arrays together to produce a third array.
+ *
+ * [ 1, 2, 3 ] + [ 4, 5 ] #=> [ 1, 2, 3, 4, 5 ]
+ * a = [ "a", "b", "c" ]
+ * c = a + [ "d", "e", "f" ]
+ * c #=> [ "a", "b", "c", "d", "e", "f" ]
+ * a #=> [ "a", "b", "c" ]
+ *
+ * Note that
+ * x += y
+ * is the same as
+ * x = x + y
+ * This means that it produces a new array. As a consequence,
+ * repeated use of <code>+=</code> on arrays can be quite inefficient.
+ *
+ * See also Array#concat.
+ */
+
+VALUE
+rb_ary_plus(VALUE x, VALUE y)
+{
+ VALUE z;
+ long len, xlen, ylen;
+
+ y = to_ary(y);
+ xlen = RARRAY_LEN(x);
+ ylen = RARRAY_LEN(y);
+ len = xlen + ylen;
+ z = rb_ary_new2(len);
+
+ ary_memcpy(z, 0, xlen, RARRAY_CONST_PTR(x));
+ ary_memcpy(z, xlen, ylen, RARRAY_CONST_PTR(y));
+ ARY_SET_LEN(z, len);
+ return z;
+}
+
+/*
+ * call-seq:
+ * ary.concat(other_ary) -> ary
+ *
+ * Appends the elements of +other_ary+ to +self+.
+ *
+ * [ "a", "b" ].concat( ["c", "d"] ) #=> [ "a", "b", "c", "d" ]
+ * a = [ 1, 2, 3 ]
+ * a.concat( [ 4, 5 ] )
+ * a #=> [ 1, 2, 3, 4, 5 ]
+ *
+ * See also Array#+.
+ */
+
+VALUE
+rb_ary_concat(VALUE x, VALUE y)
+{
+ rb_ary_modify_check(x);
+ y = to_ary(y);
+ if (RARRAY_LEN(y) > 0) {
+ rb_ary_splice(x, RARRAY_LEN(x), 0, y);
+ }
+ return x;
+}
+
+
+/*
+ * call-seq:
+ * ary * int -> new_ary
+ * ary * str -> new_string
+ *
+ * Repetition --- With a String argument, equivalent to
+ * <code>ary.join(str)</code>.
+ *
+ * Otherwise, returns a new array built by concatenating the +int+ copies of
+ * +self+.
+ *
+ *
+ * [ 1, 2, 3 ] * 3 #=> [ 1, 2, 3, 1, 2, 3, 1, 2, 3 ]
+ * [ 1, 2, 3 ] * "," #=> "1,2,3"
+ *
+ */
+
+static VALUE
+rb_ary_times(VALUE ary, VALUE times)
+{
+ VALUE ary2, tmp;
+ const VALUE *ptr;
+ long t, len;
+
+ tmp = rb_check_string_type(times);
+ if (!NIL_P(tmp)) {
+ return rb_ary_join(ary, tmp);
+ }
+
+ len = NUM2LONG(times);
+ if (len == 0) {
+ ary2 = ary_new(rb_obj_class(ary), 0);
+ goto out;
+ }
+ if (len < 0) {
+ rb_raise(rb_eArgError, "negative argument");
+ }
+ if (ARY_MAX_SIZE/len < RARRAY_LEN(ary)) {
+ rb_raise(rb_eArgError, "argument too big");
+ }
+ len *= RARRAY_LEN(ary);
+
+ ary2 = ary_new(rb_obj_class(ary), len);
+ ARY_SET_LEN(ary2, len);
+
+ ptr = RARRAY_CONST_PTR(ary);
+ t = RARRAY_LEN(ary);
+ if (0 < t) {
+ ary_memcpy(ary2, 0, t, ptr);
+ while (t <= len/2) {
+ ary_memcpy(ary2, t, t, RARRAY_CONST_PTR(ary2));
+ t *= 2;
+ }
+ if (t < len) {
+ ary_memcpy(ary2, t, len-t, RARRAY_CONST_PTR(ary2));
+ }
+ }
+ out:
+ OBJ_INFECT(ary2, ary);
+
+ return ary2;
+}
+
+/*
+ * call-seq:
+ * ary.assoc(obj) -> new_ary or nil
+ *
+ * Searches through an array whose elements are also arrays comparing +obj+
+ * with the first element of each contained array using <code>obj.==</code>.
+ *
+ * Returns the first contained array that matches (that is, the first
+ * associated array), or +nil+ if no match is found.
+ *
+ * See also Array#rassoc
+ *
+ * s1 = [ "colors", "red", "blue", "green" ]
+ * s2 = [ "letters", "a", "b", "c" ]
+ * s3 = "foo"
+ * a = [ s1, s2, s3 ]
+ * a.assoc("letters") #=> [ "letters", "a", "b", "c" ]
+ * a.assoc("foo") #=> nil
+ */
+
+VALUE
+rb_ary_assoc(VALUE ary, VALUE key)
+{
+ long i;
+ VALUE v;
+
+ for (i = 0; i < RARRAY_LEN(ary); ++i) {
+ v = rb_check_array_type(RARRAY_AREF(ary, i));
+ if (!NIL_P(v) && RARRAY_LEN(v) > 0 &&
+ rb_equal(RARRAY_AREF(v, 0), key))
+ return v;
+ }
+ return Qnil;
+}
+
+/*
+ * call-seq:
+ * ary.rassoc(obj) -> new_ary or nil
+ *
+ * Searches through the array whose elements are also arrays.
+ *
+ * Compares +obj+ with the second element of each contained array using
+ * <code>obj.==</code>.
+ *
+ * Returns the first contained array that matches +obj+.
+ *
+ * See also Array#assoc.
+ *
+ * a = [ [ 1, "one"], [2, "two"], [3, "three"], ["ii", "two"] ]
+ * a.rassoc("two") #=> [2, "two"]
+ * a.rassoc("four") #=> nil
+ */
+
+VALUE
+rb_ary_rassoc(VALUE ary, VALUE value)
+{
+ long i;
+ VALUE v;
+
+ for (i = 0; i < RARRAY_LEN(ary); ++i) {
+ v = RARRAY_AREF(ary, i);
+ if (RB_TYPE_P(v, T_ARRAY) &&
+ RARRAY_LEN(v) > 1 &&
+ rb_equal(RARRAY_AREF(v, 1), value))
+ return v;
+ }
+ return Qnil;
+}
+
+static VALUE
+recursive_equal(VALUE ary1, VALUE ary2, int recur)
+{
+ long i, len1;
+ const VALUE *p1, *p2;
+
+ if (recur) return Qtrue; /* Subtle! */
+
+ p1 = RARRAY_CONST_PTR(ary1);
+ p2 = RARRAY_CONST_PTR(ary2);
+ len1 = RARRAY_LEN(ary1);
+
+ for (i = 0; i < len1; i++) {
+ if (*p1 != *p2) {
+ if (rb_equal(*p1, *p2)) {
+ len1 = RARRAY_LEN(ary1);
+ if (len1 != RARRAY_LEN(ary2))
+ return Qfalse;
+ if (len1 < i)
+ return Qtrue;
+ p1 = RARRAY_CONST_PTR(ary1) + i;
+ p2 = RARRAY_CONST_PTR(ary2) + i;
+ }
+ else {
+ return Qfalse;
+ }
+ }
+ p1++;
+ p2++;
+ }
+ return Qtrue;
+}
+
+/*
+ * call-seq:
+ * ary == other_ary -> bool
+ *
+ * Equality --- Two arrays are equal if they contain the same number of
+ * elements and if each element is equal to (according to Object#==) the
+ * corresponding element in +other_ary+.
+ *
+ * [ "a", "c" ] == [ "a", "c", 7 ] #=> false
+ * [ "a", "c", 7 ] == [ "a", "c", 7 ] #=> true
+ * [ "a", "c", 7 ] == [ "a", "d", "f" ] #=> false
+ *
+ */
+
+static VALUE
+rb_ary_equal(VALUE ary1, VALUE ary2)
+{
+ if (ary1 == ary2) return Qtrue;
+ if (!RB_TYPE_P(ary2, T_ARRAY)) {
+ if (!rb_respond_to(ary2, idTo_ary)) {
+ return Qfalse;
+ }
+ return rb_equal(ary2, ary1);
+ }
+ if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
+ if (RARRAY_CONST_PTR(ary1) == RARRAY_CONST_PTR(ary2)) return Qtrue;
+ return rb_exec_recursive_paired(recursive_equal, ary1, ary2, ary2);
+}
+
+static VALUE
+recursive_eql(VALUE ary1, VALUE ary2, int recur)
+{
+ long i;
+
+ if (recur) return Qtrue; /* Subtle! */
+ for (i=0; i<RARRAY_LEN(ary1); i++) {
+ if (!rb_eql(rb_ary_elt(ary1, i), rb_ary_elt(ary2, i)))
+ return Qfalse;
+ }
+ return Qtrue;
+}
+
+/*
+ * call-seq:
+ * ary.eql?(other) -> true or false
+ *
+ * Returns +true+ if +self+ and +other+ are the same object,
+ * or are both arrays with the same content (according to Object#eql?).
+ */
+
+static VALUE
+rb_ary_eql(VALUE ary1, VALUE ary2)
+{
+ if (ary1 == ary2) return Qtrue;
+ if (!RB_TYPE_P(ary2, T_ARRAY)) return Qfalse;
+ if (RARRAY_LEN(ary1) != RARRAY_LEN(ary2)) return Qfalse;
+ if (RARRAY_CONST_PTR(ary1) == RARRAY_CONST_PTR(ary2)) return Qtrue;
+ return rb_exec_recursive_paired(recursive_eql, ary1, ary2, ary2);
+}
+
+/*
+ * call-seq:
+ * ary.hash -> fixnum
+ *
+ * Compute a hash-code for this array.
+ *
+ * Two arrays with the same content will have the same hash code (and will
+ * compare using #eql?).
+ *
+ * See also Object#hash.
+ */
+
+static VALUE
+rb_ary_hash(VALUE ary)
+{
+ long i;
+ st_index_t h;
+ VALUE n;
+
+ h = rb_hash_start(RARRAY_LEN(ary));
+ h = rb_hash_uint(h, (st_index_t)rb_ary_hash);
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ n = rb_hash(RARRAY_AREF(ary, i));
+ h = rb_hash_uint(h, NUM2LONG(n));
+ }
+ h = rb_hash_end(h);
+ return LONG2FIX(h);
+}
+
+/*
+ * call-seq:
+ * ary.include?(object) -> true or false
+ *
+ * Returns +true+ if the given +object+ is present in +self+ (that is, if any
+ * element <code>==</code> +object+), otherwise returns +false+.
+ *
+ * a = [ "a", "b", "c" ]
+ * a.include?("b") #=> true
+ * a.include?("z") #=> false
+ */
+
+VALUE
+rb_ary_includes(VALUE ary, VALUE item)
+{
+ long i;
+ VALUE e;
+
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ e = RARRAY_AREF(ary, i);
+ switch (rb_equal_opt(e, item)) {
+ case Qundef:
+ if (rb_equal(e, item)) return Qtrue;
+ break;
+ case Qtrue:
+ return Qtrue;
+ }
+ }
+ return Qfalse;
+}
+
+
+static VALUE
+recursive_cmp(VALUE ary1, VALUE ary2, int recur)
+{
+ long i, len;
+
+ if (recur) return Qundef; /* Subtle! */
+ len = RARRAY_LEN(ary1);
+ if (len > RARRAY_LEN(ary2)) {
+ len = RARRAY_LEN(ary2);
+ }
+ for (i=0; i<len; i++) {
+ VALUE e1 = rb_ary_elt(ary1, i), e2 = rb_ary_elt(ary2, i);
+ VALUE v = rb_funcallv(e1, id_cmp, 1, &e2);
+ if (v != INT2FIX(0)) {
+ return v;
+ }
+ }
+ return Qundef;
+}
+
+/*
+ * call-seq:
+ * ary <=> other_ary -> -1, 0, +1 or nil
+ *
+ * Comparison --- Returns an integer (+-1+, +0+, or <code>+1</code>) if this
+ * array is less than, equal to, or greater than +other_ary+.
+ *
+ * Each object in each array is compared (using the <=> operator).
+ *
+ * Arrays are compared in an "element-wise" manner; the first element of +ary+
+ * is compared with the first one of +other_ary+ using the <=> operator, then
+ * each of the second elements, etc...
+ * As soon as the result of any such comparison is non zero (i.e. the two
+ * corresponding elements are not equal), that result is returned for the
+ * whole array comparison.
+ *
+ * If all the elements are equal, then the result is based on a comparison of
+ * the array lengths. Thus, two arrays are "equal" according to Array#<=> if,
+ * and only if, they have the same length and the value of each element is
+ * equal to the value of the corresponding element in the other array.
+ *
+ * +nil+ is returned if the +other_ary+ is not an array or if the comparison
+ * of two elements returned +nil+.
+ *
+ * [ "a", "a", "c" ] <=> [ "a", "b", "c" ] #=> -1
+ * [ 1, 2, 3, 4, 5, 6 ] <=> [ 1, 2 ] #=> +1
+ * [ 1, 2 ] <=> [ 1, :two ] #=> nil
+ *
+ */
+
+VALUE
+rb_ary_cmp(VALUE ary1, VALUE ary2)
+{
+ long len;
+ VALUE v;
+
+ ary2 = rb_check_array_type(ary2);
+ if (NIL_P(ary2)) return Qnil;
+ if (ary1 == ary2) return INT2FIX(0);
+ v = rb_exec_recursive_paired(recursive_cmp, ary1, ary2, ary2);
+ if (v != Qundef) return v;
+ len = RARRAY_LEN(ary1) - RARRAY_LEN(ary2);
+ if (len == 0) return INT2FIX(0);
+ if (len > 0) return INT2FIX(1);
+ return INT2FIX(-1);
+}
+
+static VALUE
+ary_add_hash(VALUE hash, VALUE ary)
+{
+ long i;
+
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ VALUE elt = RARRAY_AREF(ary, i);
+ if (rb_hash_lookup2(hash, elt, Qundef) == Qundef) {
+ rb_hash_aset(hash, elt, elt);
+ }
+ }
+ return hash;
+}
+
+static inline VALUE
+ary_tmp_hash_new(void)
+{
+ VALUE hash = rb_hash_new();
+
+ RBASIC_CLEAR_CLASS(hash);
+ return hash;
+}
+
+static VALUE
+ary_make_hash(VALUE ary)
+{
+ VALUE hash = ary_tmp_hash_new();
+ return ary_add_hash(hash, ary);
+}
+
+static VALUE
+ary_add_hash_by(VALUE hash, VALUE ary)
+{
+ long i;
+
+ for (i = 0; i < RARRAY_LEN(ary); ++i) {
+ VALUE v = rb_ary_elt(ary, i), k = rb_yield(v);
+ if (rb_hash_lookup2(hash, k, Qundef) == Qundef) {
+ rb_hash_aset(hash, k, v);
+ }
+ }
+ return hash;
+}
+
+static VALUE
+ary_make_hash_by(VALUE ary)
+{
+ VALUE hash = ary_tmp_hash_new();
+ return ary_add_hash_by(hash, ary);
+}
+
+static inline void
+ary_recycle_hash(VALUE hash)
+{
+ if (RHASH(hash)->ntbl) {
+ st_table *tbl = RHASH(hash)->ntbl;
+ RHASH(hash)->ntbl = 0;
+ st_free_table(tbl);
+ }
+ RB_GC_GUARD(hash);
+}
+
+/*
+ * call-seq:
+ * ary - other_ary -> new_ary
+ *
+ * Array Difference
+ *
+ * Returns a new array that is a copy of the original array, removing any
+ * items that also appear in +other_ary+. The order is preserved from the
+ * original array.
+ *
+ * It compares elements using their #hash and #eql? methods for efficiency.
+ *
+ * [ 1, 1, 2, 2, 3, 3, 4, 5 ] - [ 1, 2, 4 ] #=> [ 3, 3, 5 ]
+ *
+ * If you need set-like behavior, see the library class Set.
+ */
+
+static VALUE
+rb_ary_diff(VALUE ary1, VALUE ary2)
+{
+ VALUE ary3;
+ VALUE hash;
+ long i;
+
+ hash = ary_make_hash(to_ary(ary2));
+ ary3 = rb_ary_new();
+
+ for (i=0; i<RARRAY_LEN(ary1); i++) {
+ if (st_lookup(rb_hash_tbl_raw(hash), RARRAY_AREF(ary1, i), 0)) continue;
+ rb_ary_push(ary3, rb_ary_elt(ary1, i));
+ }
+ ary_recycle_hash(hash);
+ return ary3;
+}
+
+/*
+ * call-seq:
+ * ary & other_ary -> new_ary
+ *
+ * Set Intersection --- Returns a new array containing elements common to the
+ * two arrays, excluding any duplicates. The order is preserved from the
+ * original array.
+ *
+ * It compares elements using their #hash and #eql? methods for efficiency.
+ *
+ * [ 1, 1, 3, 5 ] & [ 1, 2, 3 ] #=> [ 1, 3 ]
+ * [ 'a', 'b', 'b', 'z' ] & [ 'a', 'b', 'c' ] #=> [ 'a', 'b' ]
+ *
+ * See also Array#uniq.
+ */
+
+
+static VALUE
+rb_ary_and(VALUE ary1, VALUE ary2)
+{
+ VALUE hash, ary3, v;
+ st_table *table;
+ st_data_t vv;
+ long i;
+
+ ary2 = to_ary(ary2);
+ ary3 = rb_ary_new();
+ if (RARRAY_LEN(ary2) == 0) return ary3;
+ hash = ary_make_hash(ary2);
+ table = rb_hash_tbl_raw(hash);
+
+ for (i=0; i<RARRAY_LEN(ary1); i++) {
+ v = RARRAY_AREF(ary1, i);
+ vv = (st_data_t)v;
+ if (st_delete(table, &vv, 0)) {
+ rb_ary_push(ary3, v);
+ }
+ }
+ ary_recycle_hash(hash);
+
+ return ary3;
+}
+
+static int
+ary_hash_orset(st_data_t *key, st_data_t *value, st_data_t arg, int existing)
+{
+ if (existing) return ST_STOP;
+ *key = *value = (VALUE)arg;
+ return ST_CONTINUE;
+}
+
+/*
+ * call-seq:
+ * ary | other_ary -> new_ary
+ *
+ * Set Union --- Returns a new array by joining +ary+ with +other_ary+,
+ * excluding any duplicates and preserving the order from the original array.
+ *
+ * It compares elements using their #hash and #eql? methods for efficiency.
+ *
+ * [ "a", "b", "c" ] | [ "c", "d", "a" ] #=> [ "a", "b", "c", "d" ]
+ *
+ * See also Array#uniq.
+ */
+
+static VALUE
+rb_ary_or(VALUE ary1, VALUE ary2)
+{
+ VALUE hash, ary3;
+ long i;
+
+ ary2 = to_ary(ary2);
+ hash = ary_make_hash(ary1);
+
+ for (i=0; i<RARRAY_LEN(ary2); i++) {
+ VALUE elt = RARRAY_AREF(ary2, i);
+ if (!st_update(RHASH_TBL_RAW(hash), (st_data_t)elt, ary_hash_orset, (st_data_t)elt)) {
+ RB_OBJ_WRITTEN(hash, Qundef, elt);
+ }
+ }
+ ary3 = rb_hash_values(hash);
+ ary_recycle_hash(hash);
+ return ary3;
+}
+
+static int
+push_value(st_data_t key, st_data_t val, st_data_t ary)
+{
+ rb_ary_push((VALUE)ary, (VALUE)val);
+ return ST_CONTINUE;
+}
+
+/*
+ * call-seq:
+ * ary.uniq! -> ary or nil
+ * ary.uniq! { |item| ... } -> ary or nil
+ *
+ * Removes duplicate elements from +self+.
+ *
+ * If a block is given, it will use the return value of the block for
+ * comparison.
+ *
+ * It compares values using their #hash and #eql? methods for efficiency.
+ *
+ * Returns +nil+ if no changes are made (that is, no duplicates are found).
+ *
+ * a = [ "a", "a", "b", "b", "c" ]
+ * a.uniq! # => ["a", "b", "c"]
+ *
+ * b = [ "a", "b", "c" ]
+ * b.uniq! # => nil
+ *
+ * c = [["student","sam"], ["student","george"], ["teacher","matz"]]
+ * c.uniq! { |s| s.first } # => [["student", "sam"], ["teacher", "matz"]]
+ *
+ */
+
+static VALUE
+rb_ary_uniq_bang(VALUE ary)
+{
+ VALUE hash;
+ long hash_size;
+
+ rb_ary_modify_check(ary);
+ if (RARRAY_LEN(ary) <= 1)
+ return Qnil;
+ if (rb_block_given_p())
+ hash = ary_make_hash_by(ary);
+ else
+ hash = ary_make_hash(ary);
+
+ hash_size = RHASH_SIZE(hash);
+ if (RARRAY_LEN(ary) == hash_size) {
+ return Qnil;
+ }
+ rb_ary_modify_check(ary);
+ ARY_SET_LEN(ary, 0);
+ if (ARY_SHARED_P(ary) && !ARY_EMBED_P(ary)) {
+ rb_ary_unshare(ary);
+ FL_SET_EMBED(ary);
+ }
+ ary_resize_capa(ary, hash_size);
+ st_foreach(rb_hash_tbl_raw(hash), push_value, ary);
+ ary_recycle_hash(hash);
+
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.uniq -> new_ary
+ * ary.uniq { |item| ... } -> new_ary
+ *
+ * Returns a new array by removing duplicate values in +self+.
+ *
+ * If a block is given, it will use the return value of the block for comparison.
+ *
+ * It compares values using their #hash and #eql? methods for efficiency.
+ *
+ * a = [ "a", "a", "b", "b", "c" ]
+ * a.uniq # => ["a", "b", "c"]
+ *
+ * b = [["student","sam"], ["student","george"], ["teacher","matz"]]
+ * b.uniq { |s| s.first } # => [["student", "sam"], ["teacher", "matz"]]
+ *
+ */
+
+static VALUE
+rb_ary_uniq(VALUE ary)
+{
+ VALUE hash, uniq;
+
+ if (RARRAY_LEN(ary) <= 1)
+ return rb_ary_dup(ary);
+ if (rb_block_given_p()) {
+ hash = ary_make_hash_by(ary);
+ uniq = rb_hash_values(hash);
+ }
+ else {
+ hash = ary_make_hash(ary);
+ uniq = rb_hash_values(hash);
+ }
+ RBASIC_SET_CLASS(uniq, rb_obj_class(ary));
+ ary_recycle_hash(hash);
+
+ return uniq;
+}
+
+/*
+ * call-seq:
+ * ary.compact! -> ary or nil
+ *
+ * Removes +nil+ elements from the array.
+ *
+ * Returns +nil+ if no changes were made, otherwise returns the array.
+ *
+ * [ "a", nil, "b", nil, "c" ].compact! #=> [ "a", "b", "c" ]
+ * [ "a", "b", "c" ].compact! #=> nil
+ */
+
+static VALUE
+rb_ary_compact_bang(VALUE ary)
+{
+ VALUE *p, *t, *end;
+ long n;
+
+ rb_ary_modify(ary);
+ p = t = (VALUE *)RARRAY_CONST_PTR(ary); /* WB: no new reference */
+ end = p + RARRAY_LEN(ary);
+
+ while (t < end) {
+ if (NIL_P(*t)) t++;
+ else *p++ = *t++;
+ }
+ n = p - RARRAY_CONST_PTR(ary);
+ if (RARRAY_LEN(ary) == n) {
+ return Qnil;
+ }
+ ary_resize_smaller(ary, n);
+
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.compact -> new_ary
+ *
+ * Returns a copy of +self+ with all +nil+ elements removed.
+ *
+ * [ "a", nil, "b", nil, "c", nil ].compact
+ * #=> [ "a", "b", "c" ]
+ */
+
+static VALUE
+rb_ary_compact(VALUE ary)
+{
+ ary = rb_ary_dup(ary);
+ rb_ary_compact_bang(ary);
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.count -> int
+ * ary.count(obj) -> int
+ * ary.count { |item| block } -> int
+ *
+ * Returns the number of elements.
+ *
+ * If an argument is given, counts the number of elements which equal +obj+
+ * using <code>==</code>.
+ *
+ * If a block is given, counts the number of elements for which the block
+ * returns a true value.
+ *
+ * ary = [1, 2, 4, 2]
+ * ary.count #=> 4
+ * ary.count(2) #=> 2
+ * ary.count { |x| x%2 == 0 } #=> 3
+ *
+ */
+
+static VALUE
+rb_ary_count(int argc, VALUE *argv, VALUE ary)
+{
+ long i, n = 0;
+
+ if (argc == 0) {
+ VALUE v;
+
+ if (!rb_block_given_p())
+ return LONG2NUM(RARRAY_LEN(ary));
+
+ for (i = 0; i < RARRAY_LEN(ary); i++) {
+ v = RARRAY_AREF(ary, i);
+ if (RTEST(rb_yield(v))) n++;
+ }
+ }
+ else {
+ VALUE obj;
+
+ rb_scan_args(argc, argv, "1", &obj);
+ if (rb_block_given_p()) {
+ rb_warn("given block not used");
+ }
+ for (i = 0; i < RARRAY_LEN(ary); i++) {
+ if (rb_equal(RARRAY_AREF(ary, i), obj)) n++;
+ }
+ }
+
+ return LONG2NUM(n);
+}
+
+static VALUE
+flatten(VALUE ary, int level, int *modified)
+{
+ long i = 0;
+ VALUE stack, result, tmp, elt;
+ st_table *memo;
+ st_data_t id;
+
+ stack = ary_new(0, ARY_DEFAULT_SIZE);
+ result = ary_new(0, RARRAY_LEN(ary));
+ memo = st_init_numtable();
+ st_insert(memo, (st_data_t)ary, (st_data_t)Qtrue);
+ *modified = 0;
+
+ while (1) {
+ while (i < RARRAY_LEN(ary)) {
+ elt = RARRAY_AREF(ary, i++);
+ tmp = rb_check_array_type(elt);
+ if (RBASIC(result)->klass) {
+ rb_raise(rb_eRuntimeError, "flatten reentered");
+ }
+ if (NIL_P(tmp) || (level >= 0 && RARRAY_LEN(stack) / 2 >= level)) {
+ rb_ary_push(result, elt);
+ }
+ else {
+ *modified = 1;
+ id = (st_data_t)tmp;
+ if (st_lookup(memo, id, 0)) {
+ st_free_table(memo);
+ rb_raise(rb_eArgError, "tried to flatten recursive array");
+ }
+ st_insert(memo, id, (st_data_t)Qtrue);
+ rb_ary_push(stack, ary);
+ rb_ary_push(stack, LONG2NUM(i));
+ ary = tmp;
+ i = 0;
+ }
+ }
+ if (RARRAY_LEN(stack) == 0) {
+ break;
+ }
+ id = (st_data_t)ary;
+ st_delete(memo, &id, 0);
+ tmp = rb_ary_pop(stack);
+ i = NUM2LONG(tmp);
+ ary = rb_ary_pop(stack);
+ }
+
+ st_free_table(memo);
+
+ RBASIC_SET_CLASS(result, rb_class_of(ary));
+ return result;
+}
+
+/*
+ * call-seq:
+ * ary.flatten! -> ary or nil
+ * ary.flatten!(level) -> ary or nil
+ *
+ * Flattens +self+ in place.
+ *
+ * Returns +nil+ if no modifications were made (i.e., the array contains no
+ * subarrays.)
+ *
+ * The optional +level+ argument determines the level of recursion to flatten.
+ *
+ * a = [ 1, 2, [3, [4, 5] ] ]
+ * a.flatten! #=> [1, 2, 3, 4, 5]
+ * a.flatten! #=> nil
+ * a #=> [1, 2, 3, 4, 5]
+ * a = [ 1, 2, [3, [4, 5] ] ]
+ * a.flatten!(1) #=> [1, 2, 3, [4, 5]]
+ */
+
+static VALUE
+rb_ary_flatten_bang(int argc, VALUE *argv, VALUE ary)
+{
+ int mod = 0, level = -1;
+ VALUE result, lv;
+
+ rb_scan_args(argc, argv, "01", &lv);
+ rb_ary_modify_check(ary);
+ if (!NIL_P(lv)) level = NUM2INT(lv);
+ if (level == 0) return Qnil;
+
+ result = flatten(ary, level, &mod);
+ if (mod == 0) {
+ ary_discard(result);
+ return Qnil;
+ }
+ if (!(mod = ARY_EMBED_P(result))) rb_obj_freeze(result);
+ rb_ary_replace(ary, result);
+ if (mod) ARY_SET_EMBED_LEN(result, 0);
+
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.flatten -> new_ary
+ * ary.flatten(level) -> new_ary
+ *
+ * Returns a new array that is a one-dimensional flattening of +self+
+ * (recursively).
+ *
+ * That is, for every element that is an array, extract its elements into
+ * the new array.
+ *
+ * The optional +level+ argument determines the level of recursion to
+ * flatten.
+ *
+ * s = [ 1, 2, 3 ] #=> [1, 2, 3]
+ * t = [ 4, 5, 6, [7, 8] ] #=> [4, 5, 6, [7, 8]]
+ * a = [ s, t, 9, 10 ] #=> [[1, 2, 3], [4, 5, 6, [7, 8]], 9, 10]
+ * a.flatten #=> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
+ * a = [ 1, 2, [3, [4, 5] ] ]
+ * a.flatten(1) #=> [1, 2, 3, [4, 5]]
+ */
+
+static VALUE
+rb_ary_flatten(int argc, VALUE *argv, VALUE ary)
+{
+ int mod = 0, level = -1;
+ VALUE result, lv;
+
+ rb_scan_args(argc, argv, "01", &lv);
+ if (!NIL_P(lv)) level = NUM2INT(lv);
+ if (level == 0) return ary_make_shared_copy(ary);
+
+ result = flatten(ary, level, &mod);
+ OBJ_INFECT(result, ary);
+
+ return result;
+}
+
+#define OPTHASH_GIVEN_P(opts) \
+ (argc > 0 && !NIL_P((opts) = rb_check_hash_type(argv[argc-1])) && (--argc, 1))
+static ID id_random;
+
+#define RAND_UPTO(max) (long)rb_random_ulong_limited((randgen), (max)-1)
+
+/*
+ * call-seq:
+ * ary.shuffle! -> ary
+ * ary.shuffle!(random: rng) -> ary
+ *
+ * Shuffles elements in +self+ in place.
+ *
+ * a = [ 1, 2, 3 ] #=> [1, 2, 3]
+ * a.shuffle! #=> [2, 3, 1]
+ * a #=> [2, 3, 1]
+ *
+ * The optional +rng+ argument will be used as the random number generator.
+ *
+ * a.shuffle!(random: Random.new(1)) #=> [1, 3, 2]
+ */
+
+static VALUE
+rb_ary_shuffle_bang(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE opts, randgen = rb_cRandom;
+ long i, len;
+
+ if (OPTHASH_GIVEN_P(opts)) {
+ VALUE rnd;
+ ID keyword_ids[1];
+
+ keyword_ids[0] = id_random;
+ rb_get_kwargs(opts, keyword_ids, 0, 1, &rnd);
+ if (rnd != Qundef) {
+ randgen = rnd;
+ }
+ }
+ rb_check_arity(argc, 0, 0);
+ rb_ary_modify(ary);
+ i = len = RARRAY_LEN(ary);
+ RARRAY_PTR_USE(ary, ptr, {
+ while (i) {
+ long j = RAND_UPTO(i);
+ VALUE tmp;
+ if (len != RARRAY_LEN(ary) || ptr != RARRAY_CONST_PTR(ary)) {
+ rb_raise(rb_eRuntimeError, "modified during shuffle");
+ }
+ tmp = ptr[--i];
+ ptr[i] = ptr[j];
+ ptr[j] = tmp;
+ }
+ }); /* WB: no new reference */
+ return ary;
+}
+
+
+/*
+ * call-seq:
+ * ary.shuffle -> new_ary
+ * ary.shuffle(random: rng) -> new_ary
+ *
+ * Returns a new array with elements of +self+ shuffled.
+ *
+ * a = [ 1, 2, 3 ] #=> [1, 2, 3]
+ * a.shuffle #=> [2, 3, 1]
+ * a #=> [1, 2, 3]
+ *
+ * The optional +rng+ argument will be used as the random number generator.
+ *
+ * a.shuffle(random: Random.new(1)) #=> [1, 3, 2]
+ */
+
+static VALUE
+rb_ary_shuffle(int argc, VALUE *argv, VALUE ary)
+{
+ ary = rb_ary_dup(ary);
+ rb_ary_shuffle_bang(argc, argv, ary);
+ return ary;
+}
+
+
+/*
+ * call-seq:
+ * ary.sample -> obj
+ * ary.sample(random: rng) -> obj
+ * ary.sample(n) -> new_ary
+ * ary.sample(n, random: rng) -> new_ary
+ *
+ * Choose a random element or +n+ random elements from the array.
+ *
+ * The elements are chosen by using random and unique indices into the array
+ * in order to ensure that an element doesn't repeat itself unless the array
+ * already contained duplicate elements.
+ *
+ * If the array is empty the first form returns +nil+ and the second form
+ * returns an empty array.
+ *
+ * The optional +rng+ argument will be used as the random number generator.
+ *
+ * a = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
+ * a.sample #=> 7
+ * a.sample(4) #=> [6, 4, 2, 5]
+ */
+
+
+static VALUE
+rb_ary_sample(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE nv, result;
+ VALUE opts, randgen = rb_cRandom;
+ long n, len, i, j, k, idx[10];
+ long rnds[numberof(idx)];
+
+ if (OPTHASH_GIVEN_P(opts)) {
+ VALUE rnd;
+ ID keyword_ids[1];
+
+ keyword_ids[0] = id_random;
+ rb_get_kwargs(opts, keyword_ids, 0, 1, &rnd);
+ if (rnd != Qundef) {
+ randgen = rnd;
+ }
+ }
+ len = RARRAY_LEN(ary);
+ if (argc == 0) {
+ if (len < 2)
+ i = 0;
+ else
+ i = RAND_UPTO(len);
+
+ return rb_ary_elt(ary, i);
+ }
+ rb_scan_args(argc, argv, "1", &nv);
+ n = NUM2LONG(nv);
+ if (n < 0) rb_raise(rb_eArgError, "negative sample number");
+ if (n > len) n = len;
+ if (n <= numberof(idx)) {
+ for (i = 0; i < n; ++i) {
+ rnds[i] = RAND_UPTO(len - i);
+ }
+ }
+ k = len;
+ len = RARRAY_LEN(ary);
+ if (len < k && n <= numberof(idx)) {
+ for (i = 0; i < n; ++i) {
+ if (rnds[i] >= len) return rb_ary_new_capa(0);
+ }
+ }
+ if (n > len) n = len;
+ switch (n) {
+ case 0:
+ return rb_ary_new_capa(0);
+ case 1:
+ i = rnds[0];
+ return rb_ary_new_from_values(1, &RARRAY_AREF(ary, i));
+ case 2:
+ i = rnds[0];
+ j = rnds[1];
+ if (j >= i) j++;
+ return rb_ary_new_from_args(2, RARRAY_AREF(ary, i), RARRAY_AREF(ary, j));
+ case 3:
+ i = rnds[0];
+ j = rnds[1];
+ k = rnds[2];
+ {
+ long l = j, g = i;
+ if (j >= i) l = i, g = ++j;
+ if (k >= l && (++k >= g)) ++k;
+ }
+ return rb_ary_new_from_args(3, RARRAY_AREF(ary, i), RARRAY_AREF(ary, j), RARRAY_AREF(ary, k));
+ }
+ if (n <= numberof(idx)) {
+ long sorted[numberof(idx)];
+ sorted[0] = idx[0] = rnds[0];
+ for (i=1; i<n; i++) {
+ k = rnds[i];
+ for (j = 0; j < i; ++j) {
+ if (k < sorted[j]) break;
+ ++k;
+ }
+ memmove(&sorted[j+1], &sorted[j], sizeof(sorted[0])*(i-j));
+ sorted[j] = idx[i] = k;
+ }
+ result = rb_ary_new_capa(n);
+ RARRAY_PTR_USE(result, ptr_result, {
+ for (i=0; i<n; i++) {
+ ptr_result[i] = RARRAY_AREF(ary, idx[i]);
+ }
+ });
+ }
+ else {
+ result = rb_ary_dup(ary);
+ RBASIC_CLEAR_CLASS(result);
+ RB_GC_GUARD(ary);
+ RARRAY_PTR_USE(result, ptr_result, {
+ for (i=0; i<n; i++) {
+ j = RAND_UPTO(len-i) + i;
+ nv = ptr_result[j];
+ ptr_result[j] = ptr_result[i];
+ ptr_result[i] = nv;
+ }
+ });
+ RBASIC_SET_CLASS_RAW(result, rb_cArray);
+ }
+ ARY_SET_LEN(result, n);
+
+ return result;
+}
+
+static VALUE
+rb_ary_cycle_size(VALUE self, VALUE args, VALUE eobj)
+{
+ long mul;
+ VALUE n = Qnil;
+ if (args && (RARRAY_LEN(args) > 0)) {
+ n = RARRAY_AREF(args, 0);
+ }
+ if (RARRAY_LEN(self) == 0) return INT2FIX(0);
+ if (n == Qnil) return DBL2NUM(INFINITY);
+ mul = NUM2LONG(n);
+ if (mul <= 0) return INT2FIX(0);
+ n = LONG2FIX(mul);
+ return rb_funcallv(rb_ary_length(self), '*', 1, &n);
+}
+
+/*
+ * call-seq:
+ * ary.cycle(n=nil) { |obj| block } -> nil
+ * ary.cycle(n=nil) -> Enumerator
+ *
+ * Calls the given block for each element +n+ times or forever if +nil+ is
+ * given.
+ *
+ * Does nothing if a non-positive number is given or the array is empty.
+ *
+ * Returns +nil+ if the loop has finished without getting interrupted.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ * a = ["a", "b", "c"]
+ * a.cycle { |x| puts x } # print, a, b, c, a, b, c,.. forever.
+ * a.cycle(2) { |x| puts x } # print, a, b, c, a, b, c.
+ *
+ */
+
+static VALUE
+rb_ary_cycle(int argc, VALUE *argv, VALUE ary)
+{
+ long n, i;
+ VALUE nv = Qnil;
+
+ rb_scan_args(argc, argv, "01", &nv);
+
+ RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_cycle_size);
+ if (NIL_P(nv)) {
+ n = -1;
+ }
+ else {
+ n = NUM2LONG(nv);
+ if (n <= 0) return Qnil;
+ }
+
+ while (RARRAY_LEN(ary) > 0 && (n < 0 || 0 < n--)) {
+ for (i=0; i<RARRAY_LEN(ary); i++) {
+ rb_yield(RARRAY_AREF(ary, i));
+ }
+ }
+ return Qnil;
+}
+
+#define tmpbuf(n, size) rb_str_tmp_new((n)*(size))
+#define tmpbuf_discard(s) (rb_str_resize((s), 0L), RBASIC_SET_CLASS_RAW(s, rb_cString))
+#define tmpary(n) rb_ary_tmp_new(n)
+#define tmpary_discard(a) (ary_discard(a), RBASIC_SET_CLASS_RAW(a, rb_cArray))
+
+/*
+ * Build a ruby array of the corresponding values and yield it to the
+ * associated block.
+ * Return the class of +values+ for reentry check.
+ */
+static int
+yield_indexed_values(const VALUE values, const long r, const long *const p)
+{
+ const VALUE result = rb_ary_new2(r);
+ VALUE *const result_array = RARRAY_PTR(result);
+ const VALUE *const values_array = RARRAY_CONST_PTR(values);
+ long i;
+
+ for (i = 0; i < r; i++) result_array[i] = values_array[p[i]];
+ ARY_SET_LEN(result, r);
+ rb_yield(result);
+ return !RBASIC(values)->klass;
+}
+
+/*
+ * Compute permutations of +r+ elements of the set <code>[0..n-1]</code>.
+ *
+ * When we have a complete permutation of array indexes, copy the values
+ * at those indexes into a new array and yield that array.
+ *
+ * n: the size of the set
+ * r: the number of elements in each permutation
+ * p: the array (of size r) that we're filling in
+ * used: an array of booleans: whether a given index is already used
+ * values: the Ruby array that holds the actual values to permute
+ */
+static void
+permute0(const long n, const long r, long *const p, char *const used, const VALUE values)
+{
+ long i = 0, index = 0;
+
+ for (;;) {
+ const char *const unused = memchr(&used[i], 0, n-i);
+ if (!unused) {
+ if (!index) break;
+ i = p[--index]; /* pop index */
+ used[i++] = 0; /* index unused */
+ }
+ else {
+ i = unused - used;
+ p[index] = i;
+ used[i] = 1; /* mark index used */
+ ++index;
+ if (index < r-1) { /* if not done yet */
+ p[index] = i = 0;
+ continue;
+ }
+ for (i = 0; i < n; ++i) {
+ if (used[i]) continue;
+ p[index] = i;
+ if (!yield_indexed_values(values, r, p)) {
+ rb_raise(rb_eRuntimeError, "permute reentered");
+ }
+ }
+ i = p[--index]; /* pop index */
+ used[i] = 0; /* index unused */
+ p[index] = ++i;
+ }
+ }
+}
+
+/*
+ * Returns the product of from, from-1, ..., from - how_many + 1.
+ * http://en.wikipedia.org/wiki/Pochhammer_symbol
+ */
+static VALUE
+descending_factorial(long from, long how_many)
+{
+ VALUE cnt = LONG2FIX(how_many >= 0);
+ while (how_many-- > 0) {
+ VALUE v = LONG2FIX(from--);
+ cnt = rb_funcallv(cnt, '*', 1, &v);
+ }
+ return cnt;
+}
+
+static VALUE
+binomial_coefficient(long comb, long size)
+{
+ VALUE r, v;
+ if (comb > size-comb) {
+ comb = size-comb;
+ }
+ if (comb < 0) {
+ return LONG2FIX(0);
+ }
+ r = descending_factorial(size, comb);
+ v = descending_factorial(comb, comb);
+ return rb_funcallv(r, id_div, 1, &v);
+}
+
+static VALUE
+rb_ary_permutation_size(VALUE ary, VALUE args, VALUE eobj)
+{
+ long n = RARRAY_LEN(ary);
+ long k = (args && (RARRAY_LEN(args) > 0)) ? NUM2LONG(RARRAY_AREF(args, 0)) : n;
+
+ return descending_factorial(n, k);
+}
+
+/*
+ * call-seq:
+ * ary.permutation { |p| block } -> ary
+ * ary.permutation -> Enumerator
+ * ary.permutation(n) { |p| block } -> ary
+ * ary.permutation(n) -> Enumerator
+ *
+ * When invoked with a block, yield all permutations of length +n+ of the
+ * elements of the array, then return the array itself.
+ *
+ * If +n+ is not specified, yield all permutations of all elements.
+ *
+ * The implementation makes no guarantees about the order in which the
+ * permutations are yielded.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ * Examples:
+ *
+ * a = [1, 2, 3]
+ * a.permutation.to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
+ * a.permutation(1).to_a #=> [[1],[2],[3]]
+ * a.permutation(2).to_a #=> [[1,2],[1,3],[2,1],[2,3],[3,1],[3,2]]
+ * a.permutation(3).to_a #=> [[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
+ * a.permutation(0).to_a #=> [[]] # one permutation of length 0
+ * a.permutation(4).to_a #=> [] # no permutations of length 4
+ */
+
+static VALUE
+rb_ary_permutation(int argc, VALUE *argv, VALUE ary)
+{
+ VALUE num;
+ long r, n, i;
+
+ n = RARRAY_LEN(ary); /* Array length */
+ RETURN_SIZED_ENUMERATOR(ary, argc, argv, rb_ary_permutation_size); /* Return enumerator if no block */
+ rb_scan_args(argc, argv, "01", &num);
+ r = NIL_P(num) ? n : NUM2LONG(num); /* Permutation size from argument */
+
+ if (r < 0 || n < r) {
+ /* no permutations: yield nothing */
+ }
+ else if (r == 0) { /* exactly one permutation: the zero-length array */
+ rb_yield(rb_ary_new2(0));
+ }
+ else if (r == 1) { /* this is a special, easy case */
+ for (i = 0; i < RARRAY_LEN(ary); i++) {
+ rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
+ }
+ }
+ else { /* this is the general case */
+ volatile VALUE t0;
+ long *p = (long*)ALLOCV(t0, r*sizeof(long)+n*sizeof(char));
+ char *used = (char*)(p + r);
+ VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
+ RBASIC_CLEAR_CLASS(ary0);
+
+ MEMZERO(used, char, n); /* initialize array */
+
+ permute0(n, r, p, used, ary0); /* compute and yield permutations */
+ ALLOCV_END(t0);
+ RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
+ }
+ return ary;
+}
+
+static void
+combinate0(const long len, const long n, long *const stack, const VALUE values)
+{
+ long lev = 0;
+
+ MEMZERO(stack+1, long, n);
+ stack[0] = -1;
+ for (;;) {
+ for (lev++; lev < n; lev++) {
+ stack[lev+1] = stack[lev]+1;
+ }
+ if (!yield_indexed_values(values, n, stack+1)) {
+ rb_raise(rb_eRuntimeError, "combination reentered");
+ }
+ do {
+ if (lev == 0) return;
+ stack[lev--]++;
+ } while (stack[lev+1]+n == len+lev+1);
+ }
+}
+
+static VALUE
+rb_ary_combination_size(VALUE ary, VALUE args, VALUE eobj)
+{
+ long n = RARRAY_LEN(ary);
+ long k = NUM2LONG(RARRAY_AREF(args, 0));
+
+ return binomial_coefficient(k, n);
+}
+
+/*
+ * call-seq:
+ * ary.combination(n) { |c| block } -> ary
+ * ary.combination(n) -> Enumerator
+ *
+ * When invoked with a block, yields all combinations of length +n+ of elements
+ * from the array and then returns the array itself.
+ *
+ * The implementation makes no guarantees about the order in which the
+ * combinations are yielded.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ * Examples:
+ *
+ * a = [1, 2, 3, 4]
+ * a.combination(1).to_a #=> [[1],[2],[3],[4]]
+ * a.combination(2).to_a #=> [[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
+ * a.combination(3).to_a #=> [[1,2,3],[1,2,4],[1,3,4],[2,3,4]]
+ * a.combination(4).to_a #=> [[1,2,3,4]]
+ * a.combination(0).to_a #=> [[]] # one combination of length 0
+ * a.combination(5).to_a #=> [] # no combinations of length 5
+ *
+ */
+
+static VALUE
+rb_ary_combination(VALUE ary, VALUE num)
+{
+ long i, n, len;
+
+ n = NUM2LONG(num);
+ RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_combination_size);
+ len = RARRAY_LEN(ary);
+ if (n < 0 || len < n) {
+ /* yield nothing */
+ }
+ else if (n == 0) {
+ rb_yield(rb_ary_new2(0));
+ }
+ else if (n == 1) {
+ for (i = 0; i < len; i++) {
+ rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
+ }
+ }
+ else {
+ VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
+ volatile VALUE t0;
+ long *stack = ALLOCV_N(long, t0, n+1);
+
+ RBASIC_CLEAR_CLASS(ary0);
+ combinate0(len, n, stack, ary0);
+ ALLOCV_END(t0);
+ RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
+ }
+ return ary;
+}
+
+/*
+ * Compute repeated permutations of +r+ elements of the set
+ * <code>[0..n-1]</code>.
+ *
+ * When we have a complete repeated permutation of array indexes, copy the
+ * values at those indexes into a new array and yield that array.
+ *
+ * n: the size of the set
+ * r: the number of elements in each permutation
+ * p: the array (of size r) that we're filling in
+ * values: the Ruby array that holds the actual values to permute
+ */
+static void
+rpermute0(const long n, const long r, long *const p, const VALUE values)
+{
+ long i = 0, index = 0;
+
+ p[index] = i;
+ for (;;) {
+ if (++index < r-1) {
+ p[index] = i = 0;
+ continue;
+ }
+ for (i = 0; i < n; ++i) {
+ p[index] = i;
+ if (!yield_indexed_values(values, r, p)) {
+ rb_raise(rb_eRuntimeError, "repeated permute reentered");
+ }
+ }
+ do {
+ if (index <= 0) return;
+ } while ((i = ++p[--index]) >= n);
+ }
+}
+
+static VALUE
+rb_ary_repeated_permutation_size(VALUE ary, VALUE args, VALUE eobj)
+{
+ long n = RARRAY_LEN(ary);
+ long k = NUM2LONG(RARRAY_AREF(args, 0));
+ VALUE v;
+
+ if (k < 0) {
+ return LONG2FIX(0);
+ }
+
+ v = LONG2NUM(k);
+ return rb_funcallv(LONG2NUM(n), id_power, 1, &v);
+}
+
+/*
+ * call-seq:
+ * ary.repeated_permutation(n) { |p| block } -> ary
+ * ary.repeated_permutation(n) -> Enumerator
+ *
+ * When invoked with a block, yield all repeated permutations of length +n+ of
+ * the elements of the array, then return the array itself.
+ *
+ * The implementation makes no guarantees about the order in which the repeated
+ * permutations are yielded.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ * Examples:
+ *
+ * a = [1, 2]
+ * a.repeated_permutation(1).to_a #=> [[1], [2]]
+ * a.repeated_permutation(2).to_a #=> [[1,1],[1,2],[2,1],[2,2]]
+ * a.repeated_permutation(3).to_a #=> [[1,1,1],[1,1,2],[1,2,1],[1,2,2],
+ * # [2,1,1],[2,1,2],[2,2,1],[2,2,2]]
+ * a.repeated_permutation(0).to_a #=> [[]] # one permutation of length 0
+ */
+
+static VALUE
+rb_ary_repeated_permutation(VALUE ary, VALUE num)
+{
+ long r, n, i;
+
+ n = RARRAY_LEN(ary); /* Array length */
+ RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_permutation_size); /* Return Enumerator if no block */
+ r = NUM2LONG(num); /* Permutation size from argument */
+
+ if (r < 0) {
+ /* no permutations: yield nothing */
+ }
+ else if (r == 0) { /* exactly one permutation: the zero-length array */
+ rb_yield(rb_ary_new2(0));
+ }
+ else if (r == 1) { /* this is a special, easy case */
+ for (i = 0; i < RARRAY_LEN(ary); i++) {
+ rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
+ }
+ }
+ else { /* this is the general case */
+ volatile VALUE t0;
+ long *p = ALLOCV_N(long, t0, r);
+ VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
+ RBASIC_CLEAR_CLASS(ary0);
+
+ rpermute0(n, r, p, ary0); /* compute and yield repeated permutations */
+ ALLOCV_END(t0);
+ RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
+ }
+ return ary;
+}
+
+static void
+rcombinate0(const long n, const long r, long *const p, const long rest, const VALUE values)
+{
+ long i = 0, index = 0;
+
+ p[index] = i;
+ for (;;) {
+ if (++index < r-1) {
+ p[index] = i;
+ continue;
+ }
+ for (; i < n; ++i) {
+ p[index] = i;
+ if (!yield_indexed_values(values, r, p)) {
+ rb_raise(rb_eRuntimeError, "repeated combination reentered");
+ }
+ }
+ do {
+ if (index <= 0) return;
+ } while ((i = ++p[--index]) >= n);
+ }
+}
+
+static VALUE
+rb_ary_repeated_combination_size(VALUE ary, VALUE args, VALUE eobj)
+{
+ long n = RARRAY_LEN(ary);
+ long k = NUM2LONG(RARRAY_AREF(args, 0));
+ if (k == 0) {
+ return LONG2FIX(1);
+ }
+ return binomial_coefficient(k, n + k - 1);
+}
+
+/*
+ * call-seq:
+ * ary.repeated_combination(n) { |c| block } -> ary
+ * ary.repeated_combination(n) -> Enumerator
+ *
+ * When invoked with a block, yields all repeated combinations of length +n+ of
+ * elements from the array and then returns the array itself.
+ *
+ * The implementation makes no guarantees about the order in which the repeated
+ * combinations are yielded.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ * Examples:
+ *
+ * a = [1, 2, 3]
+ * a.repeated_combination(1).to_a #=> [[1], [2], [3]]
+ * a.repeated_combination(2).to_a #=> [[1,1],[1,2],[1,3],[2,2],[2,3],[3,3]]
+ * a.repeated_combination(3).to_a #=> [[1,1,1],[1,1,2],[1,1,3],[1,2,2],[1,2,3],
+ * # [1,3,3],[2,2,2],[2,2,3],[2,3,3],[3,3,3]]
+ * a.repeated_combination(4).to_a #=> [[1,1,1,1],[1,1,1,2],[1,1,1,3],[1,1,2,2],[1,1,2,3],
+ * # [1,1,3,3],[1,2,2,2],[1,2,2,3],[1,2,3,3],[1,3,3,3],
+ * # [2,2,2,2],[2,2,2,3],[2,2,3,3],[2,3,3,3],[3,3,3,3]]
+ * a.repeated_combination(0).to_a #=> [[]] # one combination of length 0
+ *
+ */
+
+static VALUE
+rb_ary_repeated_combination(VALUE ary, VALUE num)
+{
+ long n, i, len;
+
+ n = NUM2LONG(num); /* Combination size from argument */
+ RETURN_SIZED_ENUMERATOR(ary, 1, &num, rb_ary_repeated_combination_size); /* Return enumerator if no block */
+ len = RARRAY_LEN(ary);
+ if (n < 0) {
+ /* yield nothing */
+ }
+ else if (n == 0) {
+ rb_yield(rb_ary_new2(0));
+ }
+ else if (n == 1) {
+ for (i = 0; i < len; i++) {
+ rb_yield(rb_ary_new3(1, RARRAY_AREF(ary, i)));
+ }
+ }
+ else if (len == 0) {
+ /* yield nothing */
+ }
+ else {
+ volatile VALUE t0;
+ long *p = ALLOCV_N(long, t0, n);
+ VALUE ary0 = ary_make_shared_copy(ary); /* private defensive copy of ary */
+ RBASIC_CLEAR_CLASS(ary0);
+
+ rcombinate0(len, n, p, n, ary0); /* compute and yield repeated combinations */
+ ALLOCV_END(t0);
+ RBASIC_SET_CLASS_RAW(ary0, rb_cArray);
+ }
+ return ary;
+}
+
+/*
+ * call-seq:
+ * ary.product(other_ary, ...) -> new_ary
+ * ary.product(other_ary, ...) { |p| block } -> ary
+ *
+ * Returns an array of all combinations of elements from all arrays.
+ *
+ * The length of the returned array is the product of the length of +self+ and
+ * the argument arrays.
+ *
+ * If given a block, #product will yield all combinations and return +self+
+ * instead.
+ *
+ * [1,2,3].product([4,5]) #=> [[1,4],[1,5],[2,4],[2,5],[3,4],[3,5]]
+ * [1,2].product([1,2]) #=> [[1,1],[1,2],[2,1],[2,2]]
+ * [1,2].product([3,4],[5,6]) #=> [[1,3,5],[1,3,6],[1,4,5],[1,4,6],
+ * # [2,3,5],[2,3,6],[2,4,5],[2,4,6]]
+ * [1,2].product() #=> [[1],[2]]
+ * [1,2].product([]) #=> []
+ */
+
+static VALUE
+rb_ary_product(int argc, VALUE *argv, VALUE ary)
+{
+ int n = argc+1; /* How many arrays we're operating on */
+ volatile VALUE t0 = tmpary(n);
+ volatile VALUE t1 = tmpbuf(n, sizeof(int));
+ VALUE *arrays = RARRAY_PTR(t0); /* The arrays we're computing the product of */
+ int *counters = (int*)RSTRING_PTR(t1); /* The current position in each one */
+ VALUE result = Qnil; /* The array we'll be returning, when no block given */
+ long i,j;
+ long resultlen = 1;
+
+ RBASIC_CLEAR_CLASS(t0);
+ RBASIC_CLEAR_CLASS(t1);
+
+ /* initialize the arrays of arrays */
+ ARY_SET_LEN(t0, n);
+ arrays[0] = ary;
+ for (i = 1; i < n; i++) arrays[i] = Qnil;
+ for (i = 1; i < n; i++) arrays[i] = to_ary(argv[i-1]);
+
+ /* initialize the counters for the arrays */
+ for (i = 0; i < n; i++) counters[i] = 0;
+
+ /* Otherwise, allocate and fill in an array of results */
+ if (rb_block_given_p()) {
+ /* Make defensive copies of arrays; exit if any is empty */
+ for (i = 0; i < n; i++) {
+ if (RARRAY_LEN(arrays[i]) == 0) goto done;
+ arrays[i] = ary_make_shared_copy(arrays[i]);
+ }
+ }
+ else {
+ /* Compute the length of the result array; return [] if any is empty */
+ for (i = 0; i < n; i++) {
+ long k = RARRAY_LEN(arrays[i]);
+ if (k == 0) {
+ result = rb_ary_new2(0);
+ goto done;
+ }
+ if (MUL_OVERFLOW_LONG_P(resultlen, k))
+ rb_raise(rb_eRangeError, "too big to product");
+ resultlen *= k;
+ }
+ result = rb_ary_new2(resultlen);
+ }
+ for (;;) {
+ int m;
+ /* fill in one subarray */
+ VALUE subarray = rb_ary_new2(n);
+ for (j = 0; j < n; j++) {
+ rb_ary_push(subarray, rb_ary_entry(arrays[j], counters[j]));
+ }
+
+ /* put it on the result array */
+ if (NIL_P(result)) {
+ FL_SET(t0, FL_USER5);
+ rb_yield(subarray);
+ if (! FL_TEST(t0, FL_USER5)) {
+ rb_raise(rb_eRuntimeError, "product reentered");
+ }
+ else {
+ FL_UNSET(t0, FL_USER5);
+ }
+ }
+ else {
+ rb_ary_push(result, subarray);
+ }
+
+ /*
+ * Increment the last counter. If it overflows, reset to 0
+ * and increment the one before it.
+ */
+ m = n-1;
+ counters[m]++;
+ while (counters[m] == RARRAY_LEN(arrays[m])) {
+ counters[m] = 0;
+ /* If the first counter overflows, we are done */
+ if (--m < 0) goto done;
+ counters[m]++;
+ }
+ }
+done:
+ tmpary_discard(t0);
+ tmpbuf_discard(t1);
+
+ return NIL_P(result) ? ary : result;
+}
+
+/*
+ * call-seq:
+ * ary.take(n) -> new_ary
+ *
+ * Returns first +n+ elements from the array.
+ *
+ * If a negative number is given, raises an ArgumentError.
+ *
+ * See also Array#drop
+ *
+ * a = [1, 2, 3, 4, 5, 0]
+ * a.take(3) #=> [1, 2, 3]
+ *
+ */
+
+static VALUE
+rb_ary_take(VALUE obj, VALUE n)
+{
+ long len = NUM2LONG(n);
+ if (len < 0) {
+ rb_raise(rb_eArgError, "attempt to take negative size");
+ }
+ return rb_ary_subseq(obj, 0, len);
+}
+
+/*
+ * call-seq:
+ * ary.take_while { |arr| block } -> new_ary
+ * ary.take_while -> Enumerator
+ *
+ * Passes elements to the block until the block returns +nil+ or +false+, then
+ * stops iterating and returns an array of all prior elements.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ * See also Array#drop_while
+ *
+ * a = [1, 2, 3, 4, 5, 0]
+ * a.take_while { |i| i < 3 } #=> [1, 2]
+ *
+ */
+
+static VALUE
+rb_ary_take_while(VALUE ary)
+{
+ long i;
+
+ RETURN_ENUMERATOR(ary, 0, 0);
+ for (i = 0; i < RARRAY_LEN(ary); i++) {
+ if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) break;
+ }
+ return rb_ary_take(ary, LONG2FIX(i));
+}
+
+/*
+ * call-seq:
+ * ary.drop(n) -> new_ary
+ *
+ * Drops first +n+ elements from +ary+ and returns the rest of the elements in
+ * an array.
+ *
+ * If a negative number is given, raises an ArgumentError.
+ *
+ * See also Array#take
+ *
+ * a = [1, 2, 3, 4, 5, 0]
+ * a.drop(3) #=> [4, 5, 0]
+ *
+ */
+
+static VALUE
+rb_ary_drop(VALUE ary, VALUE n)
+{
+ VALUE result;
+ long pos = NUM2LONG(n);
+ if (pos < 0) {
+ rb_raise(rb_eArgError, "attempt to drop negative size");
+ }
+
+ result = rb_ary_subseq(ary, pos, RARRAY_LEN(ary));
+ if (result == Qnil) result = rb_ary_new();
+ return result;
+}
+
+/*
+ * call-seq:
+ * ary.drop_while { |arr| block } -> new_ary
+ * ary.drop_while -> Enumerator
+ *
+ * Drops elements up to, but not including, the first element for which the
+ * block returns +nil+ or +false+ and returns an array containing the
+ * remaining elements.
+ *
+ * If no block is given, an Enumerator is returned instead.
+ *
+ * See also Array#take_while
+ *
+ * a = [1, 2, 3, 4, 5, 0]
+ * a.drop_while {|i| i < 3 } #=> [3, 4, 5, 0]
+ *
+ */
+
+static VALUE
+rb_ary_drop_while(VALUE ary)
+{
+ long i;
+
+ RETURN_ENUMERATOR(ary, 0, 0);
+ for (i = 0; i < RARRAY_LEN(ary); i++) {
+ if (!RTEST(rb_yield(RARRAY_AREF(ary, i)))) break;
+ }
+ return rb_ary_drop(ary, LONG2FIX(i));
+}
+
+/*
+ * call-seq:
+ * ary.any? [{ |obj| block }] -> true or false
+ *
+ * See also Enumerable#any?
+ */
+
+static VALUE
+rb_ary_any_p(VALUE ary)
+{
+ long i, len = RARRAY_LEN(ary);
+ const VALUE *ptr = RARRAY_CONST_PTR(ary);
+
+ if (!len) return Qfalse;
+ if (!rb_block_given_p()) {
+ for (i = 0; i < len; ++i) if (RTEST(ptr[i])) return Qtrue;
+ }
+ else {
+ for (i = 0; i < RARRAY_LEN(ary); ++i) {
+ if (RTEST(rb_yield(RARRAY_AREF(ary, i)))) return Qtrue;
+ }
+ }
+ return Qfalse;
+}
+
+/*
+ * Arrays are ordered, integer-indexed collections of any object.
+ *
+ * Array indexing starts at 0, as in C or Java. A negative index is assumed
+ * to be relative to the end of the array---that is, an index of -1 indicates
+ * the last element of the array, -2 is the next to last element in the
+ * array, and so on.
+ *
+ * == Creating Arrays
+ *
+ * A new array can be created by using the literal constructor
+ * <code>[]</code>. Arrays can contain different types of objects. For
+ * example, the array below contains an Integer, a String and a Float:
+ *
+ * ary = [1, "two", 3.0] #=> [1, "two", 3.0]
+ *
+ * An array can also be created by explicitly calling Array.new with zero, one
+ * (the initial size of the Array) or two arguments (the initial size and a
+ * default object).
+ *
+ * ary = Array.new #=> []
+ * Array.new(3) #=> [nil, nil, nil]
+ * Array.new(3, true) #=> [true, true, true]
+ *
+ * Note that the second argument populates the array with references to the
+ * same object. Therefore, it is only recommended in cases when you need to
+ * instantiate arrays with natively immutable objects such as Symbols,
+ * numbers, true or false.
+ *
+ * To create an array with separate objects a block can be passed instead.
+ * This method is safe to use with mutable objects such as hashes, strings or
+ * other arrays:
+ *
+ * Array.new(4) { Hash.new } #=> [{}, {}, {}, {}]
+ *
+ * This is also a quick way to build up multi-dimensional arrays:
+ *
+ * empty_table = Array.new(3) { Array.new(3) }
+ * #=> [[nil, nil, nil], [nil, nil, nil], [nil, nil, nil]]
+ *
+ * An array can also be created by using the Array() method, provided by
+ * Kernel, which tries to call #to_ary, then #to_a on its argument.
+ *
+ * Array({:a => "a", :b => "b"}) #=> [[:a, "a"], [:b, "b"]]
+ *
+ * == Example Usage
+ *
+ * In addition to the methods it mixes in through the Enumerable module, the
+ * Array class has proprietary methods for accessing, searching and otherwise
+ * manipulating arrays.
+ *
+ * Some of the more common ones are illustrated below.
+ *
+ * == Accessing Elements
+ *
+ * Elements in an array can be retrieved using the Array#[] method. It can
+ * take a single integer argument (a numeric index), a pair of arguments
+ * (start and length) or a range. Negative indices start counting from the end,
+ * with -1 being the last element.
+ *
+ * arr = [1, 2, 3, 4, 5, 6]
+ * arr[2] #=> 3
+ * arr[100] #=> nil
+ * arr[-3] #=> 4
+ * arr[2, 3] #=> [3, 4, 5]
+ * arr[1..4] #=> [2, 3, 4, 5]
+ * arr[1..-3] #=> [2, 3, 4]
+ *
+ * Another way to access a particular array element is by using the #at method
+ *
+ * arr.at(0) #=> 1
+ *
+ * The #slice method works in an identical manner to Array#[].
+ *
+ * To raise an error for indices outside of the array bounds or else to
+ * provide a default value when that happens, you can use #fetch.
+ *
+ * arr = ['a', 'b', 'c', 'd', 'e', 'f']
+ * arr.fetch(100) #=> IndexError: index 100 outside of array bounds: -6...6
+ * arr.fetch(100, "oops") #=> "oops"
+ *
+ * The special methods #first and #last will return the first and last
+ * elements of an array, respectively.
+ *
+ * arr.first #=> 1
+ * arr.last #=> 6
+ *
+ * To return the first +n+ elements of an array, use #take
+ *
+ * arr.take(3) #=> [1, 2, 3]
+ *
+ * #drop does the opposite of #take, by returning the elements after +n+
+ * elements have been dropped:
+ *
+ * arr.drop(3) #=> [4, 5, 6]
+ *
+ * == Obtaining Information about an Array
+ *
+ * Arrays keep track of their own length at all times. To query an array
+ * about the number of elements it contains, use #length, #count or #size.
+ *
+ * browsers = ['Chrome', 'Firefox', 'Safari', 'Opera', 'IE']
+ * browsers.length #=> 5
+ * browsers.count #=> 5
+ *
+ * To check whether an array contains any elements at all
+ *
+ * browsers.empty? #=> false
+ *
+ * To check whether a particular item is included in the array
+ *
+ * browsers.include?('Konqueror') #=> false
+ *
+ * == Adding Items to Arrays
+ *
+ * Items can be added to the end of an array by using either #push or #<<
+ *
+ * arr = [1, 2, 3, 4]
+ * arr.push(5) #=> [1, 2, 3, 4, 5]
+ * arr << 6 #=> [1, 2, 3, 4, 5, 6]
+ *
+ * #unshift will add a new item to the beginning of an array.
+ *
+ * arr.unshift(0) #=> [0, 1, 2, 3, 4, 5, 6]
+ *
+ * With #insert you can add a new element to an array at any position.
+ *
+ * arr.insert(3, 'apple') #=> [0, 1, 2, 'apple', 3, 4, 5, 6]
+ *
+ * Using the #insert method, you can also insert multiple values at once:
+ *
+ * arr.insert(3, 'orange', 'pear', 'grapefruit')
+ * #=> [0, 1, 2, "orange", "pear", "grapefruit", "apple", 3, 4, 5, 6]
+ *
+ * == Removing Items from an Array
+ *
+ * The method #pop removes the last element in an array and returns it:
+ *
+ * arr = [1, 2, 3, 4, 5, 6]
+ * arr.pop #=> 6
+ * arr #=> [1, 2, 3, 4, 5]
+ *
+ * To retrieve and at the same time remove the first item, use #shift:
+ *
+ * arr.shift #=> 1
+ * arr #=> [2, 3, 4, 5]
+ *
+ * To delete an element at a particular index:
+ *
+ * arr.delete_at(2) #=> 4
+ * arr #=> [2, 3, 5]
+ *
+ * To delete a particular element anywhere in an array, use #delete:
+ *
+ * arr = [1, 2, 2, 3]
+ * arr.delete(2) #=> 2
+ * arr #=> [1,3]
+ *
+ * A useful method if you need to remove +nil+ values from an array is
+ * #compact:
+ *
+ * arr = ['foo', 0, nil, 'bar', 7, 'baz', nil]
+ * arr.compact #=> ['foo', 0, 'bar', 7, 'baz']
+ * arr #=> ['foo', 0, nil, 'bar', 7, 'baz', nil]
+ * arr.compact! #=> ['foo', 0, 'bar', 7, 'baz']
+ * arr #=> ['foo', 0, 'bar', 7, 'baz']
+ *
+ * Another common need is to remove duplicate elements from an array.
+ *
+ * It has the non-destructive #uniq, and destructive method #uniq!
+ *
+ * arr = [2, 5, 6, 556, 6, 6, 8, 9, 0, 123, 556]
+ * arr.uniq #=> [2, 5, 6, 556, 8, 9, 0, 123]
+ *
+ * == Iterating over Arrays
+ *
+ * Like all classes that include the Enumerable module, Array has an each
+ * method, which defines what elements should be iterated over and how. In
+ * case of Array's #each, all elements in the Array instance are yielded to
+ * the supplied block in sequence.
+ *
+ * Note that this operation leaves the array unchanged.
+ *
+ * arr = [1, 2, 3, 4, 5]
+ * arr.each { |a| print a -= 10, " " }
+ * # prints: -9 -8 -7 -6 -5
+ * #=> [1, 2, 3, 4, 5]
+ *
+ * Another sometimes useful iterator is #reverse_each which will iterate over
+ * the elements in the array in reverse order.
+ *
+ * words = %w[first second third fourth fifth sixth]
+ * str = ""
+ * words.reverse_each { |word| str += "#{word} " }
+ * p str #=> "sixth fifth fourth third second first "
+ *
+ * The #map method can be used to create a new array based on the original
+ * array, but with the values modified by the supplied block:
+ *
+ * arr.map { |a| 2*a } #=> [2, 4, 6, 8, 10]
+ * arr #=> [1, 2, 3, 4, 5]
+ * arr.map! { |a| a**2 } #=> [1, 4, 9, 16, 25]
+ * arr #=> [1, 4, 9, 16, 25]
+ *
+ * == Selecting Items from an Array
+ *
+ * Elements can be selected from an array according to criteria defined in a
+ * block. The selection can happen in a destructive or a non-destructive
+ * manner. While the destructive operations will modify the array they were
+ * called on, the non-destructive methods usually return a new array with the
+ * selected elements, but leave the original array unchanged.
+ *
+ * === Non-destructive Selection
+ *
+ * arr = [1, 2, 3, 4, 5, 6]
+ * arr.select { |a| a > 3 } #=> [4, 5, 6]
+ * arr.reject { |a| a < 3 } #=> [3, 4, 5, 6]
+ * arr.drop_while { |a| a < 4 } #=> [4, 5, 6]
+ * arr #=> [1, 2, 3, 4, 5, 6]
+ *
+ * === Destructive Selection
+ *
+ * #select! and #reject! are the corresponding destructive methods to #select
+ * and #reject
+ *
+ * Similar to #select vs. #reject, #delete_if and #keep_if have the exact
+ * opposite result when supplied with the same block:
+ *
+ * arr.delete_if { |a| a < 4 } #=> [4, 5, 6]
+ * arr #=> [4, 5, 6]
+ *
+ * arr = [1, 2, 3, 4, 5, 6]
+ * arr.keep_if { |a| a < 4 } #=> [1, 2, 3]
+ * arr #=> [1, 2, 3]
+ *
+ */
+
+void
+Init_Array(void)
+{
+#undef rb_intern
+#define rb_intern(str) rb_intern_const(str)
+
+ rb_cArray = rb_define_class("Array", rb_cObject);
+ rb_include_module(rb_cArray, rb_mEnumerable);
+
+ rb_define_alloc_func(rb_cArray, empty_ary_alloc);
+ rb_define_singleton_method(rb_cArray, "[]", rb_ary_s_create, -1);
+ rb_define_singleton_method(rb_cArray, "try_convert", rb_ary_s_try_convert, 1);
+ rb_define_method(rb_cArray, "initialize", rb_ary_initialize, -1);
+ rb_define_method(rb_cArray, "initialize_copy", rb_ary_replace, 1);
+
+ rb_define_method(rb_cArray, "inspect", rb_ary_inspect, 0);
+ rb_define_alias(rb_cArray, "to_s", "inspect");
+ rb_define_method(rb_cArray, "to_a", rb_ary_to_a, 0);
+ rb_define_method(rb_cArray, "to_h", rb_ary_to_h, 0);
+ rb_define_method(rb_cArray, "to_ary", rb_ary_to_ary_m, 0);
+ rb_define_method(rb_cArray, "frozen?", rb_ary_frozen_p, 0);
+
+ rb_define_method(rb_cArray, "==", rb_ary_equal, 1);
+ rb_define_method(rb_cArray, "eql?", rb_ary_eql, 1);
+ rb_define_method(rb_cArray, "hash", rb_ary_hash, 0);
+
+ rb_define_method(rb_cArray, "[]", rb_ary_aref, -1);
+ rb_define_method(rb_cArray, "[]=", rb_ary_aset, -1);
+ rb_define_method(rb_cArray, "at", rb_ary_at, 1);
+ rb_define_method(rb_cArray, "fetch", rb_ary_fetch, -1);
+ rb_define_method(rb_cArray, "first", rb_ary_first, -1);
+ rb_define_method(rb_cArray, "last", rb_ary_last, -1);
+ rb_define_method(rb_cArray, "concat", rb_ary_concat, 1);
+ rb_define_method(rb_cArray, "<<", rb_ary_push, 1);
+ rb_define_method(rb_cArray, "push", rb_ary_push_m, -1);
+ rb_define_method(rb_cArray, "pop", rb_ary_pop_m, -1);
+ rb_define_method(rb_cArray, "shift", rb_ary_shift_m, -1);
+ rb_define_method(rb_cArray, "unshift", rb_ary_unshift_m, -1);
+ rb_define_method(rb_cArray, "insert", rb_ary_insert, -1);
+ rb_define_method(rb_cArray, "each", rb_ary_each, 0);
+ rb_define_method(rb_cArray, "each_index", rb_ary_each_index, 0);
+ rb_define_method(rb_cArray, "reverse_each", rb_ary_reverse_each, 0);
+ rb_define_method(rb_cArray, "length", rb_ary_length, 0);
+ rb_define_alias(rb_cArray, "size", "length");
+ rb_define_method(rb_cArray, "empty?", rb_ary_empty_p, 0);
+ rb_define_method(rb_cArray, "find_index", rb_ary_index, -1);
+ rb_define_method(rb_cArray, "index", rb_ary_index, -1);
+ rb_define_method(rb_cArray, "rindex", rb_ary_rindex, -1);
+ rb_define_method(rb_cArray, "join", rb_ary_join_m, -1);
+ rb_define_method(rb_cArray, "reverse", rb_ary_reverse_m, 0);
+ rb_define_method(rb_cArray, "reverse!", rb_ary_reverse_bang, 0);
+ rb_define_method(rb_cArray, "rotate", rb_ary_rotate_m, -1);
+ rb_define_method(rb_cArray, "rotate!", rb_ary_rotate_bang, -1);
+ rb_define_method(rb_cArray, "sort", rb_ary_sort, 0);
+ rb_define_method(rb_cArray, "sort!", rb_ary_sort_bang, 0);
+ rb_define_method(rb_cArray, "sort_by!", rb_ary_sort_by_bang, 0);
+ rb_define_method(rb_cArray, "collect", rb_ary_collect, 0);
+ rb_define_method(rb_cArray, "collect!", rb_ary_collect_bang, 0);
+ rb_define_method(rb_cArray, "map", rb_ary_collect, 0);
+ rb_define_method(rb_cArray, "map!", rb_ary_collect_bang, 0);
+ rb_define_method(rb_cArray, "select", rb_ary_select, 0);
+ rb_define_method(rb_cArray, "select!", rb_ary_select_bang, 0);
+ rb_define_method(rb_cArray, "keep_if", rb_ary_keep_if, 0);
+ rb_define_method(rb_cArray, "values_at", rb_ary_values_at, -1);
+ rb_define_method(rb_cArray, "delete", rb_ary_delete, 1);
+ rb_define_method(rb_cArray, "delete_at", rb_ary_delete_at_m, 1);
+ rb_define_method(rb_cArray, "delete_if", rb_ary_delete_if, 0);
+ rb_define_method(rb_cArray, "reject", rb_ary_reject, 0);
+ rb_define_method(rb_cArray, "reject!", rb_ary_reject_bang, 0);
+ rb_define_method(rb_cArray, "zip", rb_ary_zip, -1);
+ rb_define_method(rb_cArray, "transpose", rb_ary_transpose, 0);
+ rb_define_method(rb_cArray, "replace", rb_ary_replace, 1);
+ rb_define_method(rb_cArray, "clear", rb_ary_clear, 0);
+ rb_define_method(rb_cArray, "fill", rb_ary_fill, -1);
+ rb_define_method(rb_cArray, "include?", rb_ary_includes, 1);
+ rb_define_method(rb_cArray, "<=>", rb_ary_cmp, 1);
+
+ rb_define_method(rb_cArray, "slice", rb_ary_aref, -1);
+ rb_define_method(rb_cArray, "slice!", rb_ary_slice_bang, -1);
+
+ rb_define_method(rb_cArray, "assoc", rb_ary_assoc, 1);
+ rb_define_method(rb_cArray, "rassoc", rb_ary_rassoc, 1);
+
+ rb_define_method(rb_cArray, "+", rb_ary_plus, 1);
+ rb_define_method(rb_cArray, "*", rb_ary_times, 1);
+
+ rb_define_method(rb_cArray, "-", rb_ary_diff, 1);
+ rb_define_method(rb_cArray, "&", rb_ary_and, 1);
+ rb_define_method(rb_cArray, "|", rb_ary_or, 1);
+
+ rb_define_method(rb_cArray, "uniq", rb_ary_uniq, 0);
+ rb_define_method(rb_cArray, "uniq!", rb_ary_uniq_bang, 0);
+ rb_define_method(rb_cArray, "compact", rb_ary_compact, 0);
+ rb_define_method(rb_cArray, "compact!", rb_ary_compact_bang, 0);
+ rb_define_method(rb_cArray, "flatten", rb_ary_flatten, -1);
+ rb_define_method(rb_cArray, "flatten!", rb_ary_flatten_bang, -1);
+ rb_define_method(rb_cArray, "count", rb_ary_count, -1);
+ rb_define_method(rb_cArray, "shuffle!", rb_ary_shuffle_bang, -1);
+ rb_define_method(rb_cArray, "shuffle", rb_ary_shuffle, -1);
+ rb_define_method(rb_cArray, "sample", rb_ary_sample, -1);
+ rb_define_method(rb_cArray, "cycle", rb_ary_cycle, -1);
+ rb_define_method(rb_cArray, "permutation", rb_ary_permutation, -1);
+ rb_define_method(rb_cArray, "combination", rb_ary_combination, 1);
+ rb_define_method(rb_cArray, "repeated_permutation", rb_ary_repeated_permutation, 1);
+ rb_define_method(rb_cArray, "repeated_combination", rb_ary_repeated_combination, 1);
+ rb_define_method(rb_cArray, "product", rb_ary_product, -1);
+
+ rb_define_method(rb_cArray, "take", rb_ary_take, 1);
+ rb_define_method(rb_cArray, "take_while", rb_ary_take_while, 0);
+ rb_define_method(rb_cArray, "drop", rb_ary_drop, 1);
+ rb_define_method(rb_cArray, "drop_while", rb_ary_drop_while, 0);
+ rb_define_method(rb_cArray, "bsearch", rb_ary_bsearch, 0);
+ rb_define_method(rb_cArray, "any?", rb_ary_any_p, 0);
+
+ id_cmp = rb_intern("<=>");
+ id_random = rb_intern("random");
+ id_div = rb_intern("div");
+ id_power = rb_intern("**");
+}